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Asymptotic behavior of iterative M-estimartors for location
Ruben Klein and Victor J. Yohai

Abstract.

In this paper, we study the Huber M-estimator for location when
they are computed by a class of numerical iterative procedures. This
class includes the usual method of Newton-Raphson, iterated weighted
least squares and iterated winsorization. We show that under mild con-
ditions, the numerical iterative procedures converge and the resulting
estimators are consistent and asymptotically normal.

1. Introduction. Let x,,x,,...,x, be iid. random variables with dis-
tribution F(x — 6). Huber (1964) proposed the class of M-estimators
for the location parameter 6, defined by the solution of the following
equation:

M=

(1.1) Y(x;— 1) =0

1

where ¥ is any function such that
(1.2) fY(x)dF (x) = 0.

In particular, if F is symmetric and ¥ is odd and F-integrable, (1.2) is
automatically satisfied.

Huber studied the asymptotic behavior and showed that if ¥ is
conveniently chosen, the resulting estimator has robustness properties.
He also proved that if { is monotone non-decreasing, then under mild
conditions, the resulting estimator is consistent a.s. and asymptotically
normal with mean 6 and asymptotic variance V (Y, F)/n where

(1.3) VW, F) = W2(x)dF(x)/ [y (x)dF(x)]*.

In particular, if F is unknown, but it is in some sense in a neighborhood
of a normal distribution, Huber (1964) and Hampel (1968) showed that
the estimators, based on the class of functions given by
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(1.4) Yi(t) = min (| ¢|, k) sgn t,

have desirable optimal robustness properties. These functions are usually
called Huber functions.

Hampel (1974) considering other robustness properties, like the
influence curve, proposed to use Y-functions that vanish outside a compact
interval. Collins (1976) also suggested the use of such y-functions by
looking at estimators that behave well under distributions F that have
asymmetric tails. As examples, we hare:

(i) the Hampel functions given by

@ if | x| <a
s _ ] asgnx il
(1.5) Vap,{X) alc — [ x)sgnx/c — b) if b<|x| < ¢
0 lfIX'ZC,

and (ii) the sine functions given by

(1.6) i {sin(x/k) if | x| < kn

0 otherwise.

Numerical studies have shown that these estimators have good properties
of efficiency and robustness, even for small sample sizes (see Andrews
et al (1971)).

In these cases, the equation

(1.7) J(x — t)dF(x) =0

may have solutions different from 0. Then some solutions of equation
(1.1) may converge to 6 + t,, where ¢, is a root of equation (1.7) different
from 0. Therefore, in order to define the estimate, we have specify which
solution of equation (1.1) we are considering. This can be done by indi-
cating the numerical algorithm used to compute it.

Usually, the algorithm is an iterative procedure of the following
form:

M=

(1.8) Doy =8 % [ Woxi = 0, ) Y rx, — én,j)]
i i=1

1
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and
lim 6,; if limit exists

jo o

D)
I

(19)

B otherwise,
where the function r(x) is conveniently chosen and the iteration is started
from some initial estimate 0, ,, usually a simple, reasonable, robust
estimate for instance, the sample median.
As examples of the above iterative procedure, we have:

(i) Newton-Raphson procedure: r(x) = ¢/(x). Then
(1.10) én.j+1 o gn,j =5 [z ‘//(xi = én,j)/ lel(xi _én,j):|-
i=1 i=
(i) The weighted mean iterative procedure: r(x) = ¥(x)/x. Then

(1.11) Bujor = X e = 0, )% ) rxi = 0,,) =

i=1
i

= gn,j 5 ; ‘p(xi 3 én,j)/ =il r(xi % én,j):la

and

(i) (x) =y, a constant. In the particular case of the Huber functions
and y = 1, this corresponds to iterative winsorization given by:

(1.12) . 1B _ZZI @, ;+vx;,—0,)=0,,+ ; Y(x; — 0, )n.

The convergence of the iterative procedures (1.8)-(1.9) to a solution
of equation (1.1) and the asymptotic properties of the resulting estimator
were studied only (Collins (1976)) for the case of the Newton-Raphson
and with strong conditions on ¢ and F. F is assumed to be normal in the
central part and with arbitrary tails, and ¢ should be continuously diffe-
rentiable in any point and vanish outside the interval where F is normal.

In this paper, we prove in Theorem 2.1, the convergence of the ite-
rative procedure (1.8)-(1.9) and the consistency a.s. of the resulting es-
timator under very mild conditions on ¥, r and F, and assuming that
lp| =11 — (JY'(x)dF(x)/fr(x)dF(x))| < 1. This last assumption assures
that the transformation given by (1.8) is asymptotically; a contraction,
and | p | is a measure of the speed of convergence of the algorithms. For
the Newton-Raphson method, p = 0, and therefore this method has the
maximum speed of convergence.
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In Theorem 2.2, using a theorem of Huber (1967), we show that
these estimators are asymptotically normal with mean 6 and variance

VY, F)/n.
These estimators are location equivariant, i.e.,
OCx, + b, ....x, + b) = O(x,, ..., x,) + b,
but are not scale equivariant, ie., they do not satisfy
bax,,...,ax,) = ab(x,, ..., x,)

as used by Berk (1967) and Bickel (1975). So these estimators are not
reasonable when scale is unknown.

One way of getting location and scale equivariant estimation of 6
is by modifying equation (1.1) to

(1.13) 3 vl — 0/5,] =0

where s, is a location invariant and scale equivariant estimate of scale,
ie., s,,(ax1 +b,...,ax, + b) = | a|s,(x,, ..., x,). For instance, s, may be
the normalized interquartile range,

oy =(X m-tmia1+1) — X qnap)/2071(3/4),
or the normalized median deviation
62 = median (| x; — m [)/®@~1(3/4),

where X ;, < ... < X, are the order statistics, ® the standard normal dis-
tribution and m the sample median.
To solve (1.13), the iterative procedure is modified to:

(1.14) Q”mﬂ@+xiwmfﬁ0my;dm—@wm

and

lim 91 ; if limit exists
(1.15) g sl o
s otherwise.

In Theorems 2.3 and 2.4, we prove the consistency and asymptotic
normality of these estimators.

Another possibility is Huber’s proposal 2 (Huber (1964)), which
estimates simultaneously location and scale, by solving the following
system:

3 il — /5] =0
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(1.16)
T Vel — 1)l =n

In this case, the class of iterative algorithms for computing the so-
lution of (1.16) is given by:

gn,jﬂ = gn,j t Sp,j i; Yilx; — 5.,,,')/5",1']/ i; rl(x; — gn,j)/sn,j]

(1.17)
szu,j+1 = (I/n)s;‘,”j :ZI !ﬁz[((xi 5T é~n,j)/s,,,j)z],

and the estimators are defined analogously to (1.9).

In this paper, the properties of these estimators are not studied but
under more cumbersome regularity conditions on ¥, consistency and
asymptotic normality may be proven by methods similar to those used
in this paper.

2. Let x,, x,, ..., x, be iid random variables with distribution F(x — 6).
Let §, be the estimator defined by (1.8) and (1.9).
Consider the following set of assumptions.
A.1 — ¥ is continuous and has a continuous derivative Y/’ except in a finite
number of points. When ¥/’ is not defined at x, we put arbitrarily
Y'(x) =
A2 — F is continuous and [Y(x)dF(x) =
A.3 — There exists 6, > 0 such that
(1) supj4| <so| Y(x — a)| is F-integrable,
(i) sup|,j <5 ¥'(x — a)| is F-integrable,
(iii) SUp) 4 < s r(x — a)| is F-integrable.
A4 — r(x) is continuous except in a finite number of points and

2.1) Yo = Jr(x)dF(x) # O.

A5 — Put p = 1— (/' (x)dF(x)/fr(x)dF(x)).

Then |p| < 1.
A.6 — The initial estimator 8, , is location equivariant and consistent a.s.
A7 — [Y*(x)dF(x) < oo and ¥’ is bounded.

We can state the following theorems.
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Theorem 2.1.. Assume A.1 to A.6. Then

(i) 8, converges to 0 as.
(ii) With probability one, there exists a randon number n, such that for
n>n, 0,=1lim 8, and 0, satisfies (1.1).

=00

n,j

Theorem 2.2. Assume A.1 to A.l. Then \/17(9,, — 0) converges in distri-
bution to 4 (0, V(Y, F)).

Consider now the location scale equivariant estimator 0, defined by
(1.14) and (1.15) and the following set of assumptions.

B.0 — s, is location invariant and scale equivariant estimator of scale
and s, converges a.s. to s, > 0.

B.1 — The same as A.l.

B.2 — F is continuous and [Y(x/s,)dF(x) = 0.

B.3 — T'here exists , >0 and 4, > 0 such that

(i) sup | ¥((x — a)/b))| is F-integrable,
|a| <é0,|b—s0| <01
(i) sup |W/((x — a)/b)| is F-integrable,
|a|$60,|b—so|S61 ; ’
(iii) sup | ((x — a)| b)| is F-integrable.

|a| <d0,|b—so| <o

B.4 — r(x) is continuous except in a finite number of points and

2.2) Yo = Jr(x/so)dF(x) # 0.

B.S — Put p = 1 — (Y/(x/so)dF(x)/ §r(x/so)dF(x)).
Then |p| < 1. ;

B.6 — The initial estimator 0, , is location scale equivariant and is con-
sistent a.s.

B.7 — [Y3(x/so)dF(x) < co and ¥ is bounded.

B8 — /n(s, — s,) is bounded in probability.

B9 — [y'(x/sq)x dF = 0.

B.10 — There exist 6, > 0 and 6, > 0 such that
sup |¥'(x — a)/b)| is F-integrable.

|a| <60,|b—so| <0

We have the following theorems.

Iterative M-estimators for location 33

Theorem 2.3. Assume B.0 to B.6. Then

(i) 0, converges to 6 as.
(i) Whit probability one, there exists a random number n, such that for
n=ng 6, =1im 0, ;and 0, satisfies (1.13).

j= o

Theorem 2.4. Assume B.0 to B.10. Then \/;(67,, — 0) converges in distri-
bution to A (0, V(Y(+/s,), F)).

Since all our estimation is location equivariant, from now on, we
assume 6 = 0. In the case our estimation is location scale equivariant,
we also assume s, = 1.

In order to prove these theorems, the following lemmas will be ne-
cessary.

Lemma 2.1. (Yohai (1974)) Let U, U,, ... be a sequence of i.i.d. random
variables. Let C be a compact space, and (fiyec» @ family of Borel measu-
rable real functions such that

(@) |fi| < f where E(f(U,)) < oo,
(@) lim f(U,) =f(U,) as. for all k in C,
i—k

(i) | E(f(U,))| < A for all k in C.

Then

< Aa.s.

. flU/n

=1

lim sup sup

n— oo keC

Lemma 2.2. Let f: C = C* be a continuous function, where C is a convex
subset of a normed vector space and C* is a normed vector space. Assume

m
that there exists a finite family of convex sets (C;), <;<,, such that o
i=1

is dense in C and such that f satisfies a Lipschitz condition in each C N C,
i.e, there exists ko > 0, not depending on C;, such that ||f(x) — f(x)) | <
< kol x = x| for all x,x' in C;n C, 1 < i < m. Thenfsatisfies a Lipschitz
condition in C with same constant k.

Proof. Take x,x' in C;n C (C; denotes the closure of C,), then by the
continuity of f, we have.

(23) I f&x) = fx) | < ko | x — x|

Take now any two points x, x" in C. If x, x’ belong to the same C.,
(2.3) is satisfied. So let us assume that x, x’ do not belong to the same
Ci, 1 <i<m. Consider the line segment S joining these two points.
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Define x, = x and let C;, be any set such that x,e C;,. Let x, be the
last point in S such that x y is in C;, and let C;, be any set different from
C,, such that x, is also in C;,. We may defme in this way, a sequence
xo,xl, ..., X} in § such that Xo =X belong to C,,, x; belongs to C N C
2<j=<k-1, and x, = x’ belongs to C,_,. This sequence should be
finite by the convexity of the C,s. Then by-(2.3), we have

/) = £CN | = [l (xo) = f D || <
k K
= jgl ”f(xj) —f(xj—l)“ < ko j;l ” Xoas x;” =k, ” Xil— X;'Hs

the last equality holding by the alignment of x,, x,, ..., X.

Lemma 2.3. Let (S, d) be a metric space. Assume that each v in T', an ar-
bitrary set, n,:S — S is a contraction uniformly in y, ie., there exists
0<ky<1 such that

d(n,(x), n,(x")) < ko d(x, x') V' yinT.

Assume also that all n, have the same fixed point x*. Take any sequence
V1,72, ... in I' and any x,€S. Define inductively x, by x, =n,, (x,_,).
Then x, converges to x*.

Proof. We will prove by induction that

(2.4) d(x,, x*) < k% d(x,, x*).

For n =0, (2.4) is automatically satisfied.
Assume (2.4) true for n, then

A%y 1 2"l O bt kgt diog, ¥*) =48 L dOogea®)

Let us define for all ¢ in R, all y in R, all n > 1, the following trans-
formations from R into R.

@5) mo) =+ 3 ve— 0/ ¥ rix— 0
26) Molt) =t + 3 ¥ = ),

@7 a0 =t s, 3= s 3 rtx, = o))
(2.8) M0 = €+ 5, Y W — Dfs)my,

where s, is a scale estimator.
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Let us also define

n

(2.9) WD) = Y nx; — t)fn

i=1

(2.10) V(1) = =Z t)/s,)/n.

Lemma 2.4. Let I' be any subset of R bounded away from zero.
(a) Assume A.1, A2, A.3(1) Then
sup | 7,,(0)| - Oas.,

vell

(b) Assume B.O, B.1, B.2 and B.3(i). Then
sup | n%,(0)| - Oa.s.
yell

Proof. Call d =inf{|y|,yeT}. Then d > 0.

@ sup|n,, 0)] = sup| z W)y <t | 3 yixm].

But A.2 implies Z x;)/n— 0 as. Then (a) follows.

b) sup| 5, O] = sups,| ¥ wlxisim | < d™s,| 3 vtxisin].

By assumption B.0, s, is bounded by above, so it is enough to show

limp sup | Z Y(x/s,)/n| = Oas.

n— oo

Using B.0 again, it is enough to show that given u > 0, there exists é >0
such that |s — 1| < & implies

limp sup sup | Z Y(xi/s)n| < u as.

n-o |s—1
By B.1, B.2, B.3(i) and dominated convergence, given u > 0, there
exists 6 >0 such that |s — 1| < 6 implies | E((x;/s))| < p. Applying
Lemma 1, the result follows. ’

Lemma 2.5. (a) Assume A.1, A2, A.3 and A4 Then for every ¢ > 0, there
exists 6(g) > 0 such that

(i) limP< U { sup |<i Y(x; — t)/m) W' (x)dF(x)| > e}) 0,

n—0 \mn (|t| <d(e) i=1
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(i) lim P( U { sup | ( i rx; — t)/m> — [r(x)dF(x)| > ¢ }) =10

n—+ \m2n (|t]| <) i=1

(b) Assume B.0O, B.1, B.2, B.3 and B.4. Then for every ¢>0, there exists
O(e) > such that

(i) lim P( U { sup | < i Y'((x; — t)s )/m) — W' (x)dF(x)| > ¢ }) = 0,

n—>o \m2n (|t| <é(e) \i=1
i tim (U { sup 1( 5, = s - rwrarco) > d)-o
n—>o \m2n (|t]| <é(e) i=1

Proof. (a) (i). Put f(x) = ¥'(x — t) — JY/'(x)dF(x). Using A.1, A.2, A3 and
dominated convergence, given ¢ > 0, there exists é(¢j > O such that
| Ef(x)| < ¢/2 V| t| < d(e). Since f,(x) satisfies other conditions of Lemma
1, we have that

limpsup sup |(1/n) Z V(x; — t) — [W(x)dF(x)| < &2 as.
n—oo |t] <é(e)

So (i) follows.
Proof of (a)(ii) is analogous.
Proof of (b) is similar to (a). For instance, in (i), put

gs,s(x) = ¥'((x — 1)/s) — JY'(x)dF(x), instead of fi(x).

Lemma 26 (a) Assume A.1 to A.4. Then for each sample x,, ..., X,, there
exists a finite number of random open intervals D,, ..., D, such that

jyl D ; = R and such that n,,(t) is continuously differentiable in D;, 1 <j<u,
for all y # 0 with derivative given by

) = 1 = () 3 W(xi = )

Moreover, if ko > |p|, there exists &, >0 and 6, >0 depending on ki
such that

llmP<U fsup {01 t] < 6101€ U Dyly = 7ol < ) >ko}>=
(b) Assume B.O to B.4. Then (a) holds with n,, replaced by n,.

Proof. (a) According to A.1, there exist only a finite number of points
a,...,a, where ¥ is not continuously differentiable. Put z; = x; — a;,
1<i<n 1<j<k andcall z; <... <z, the z;s ordered. Putzo— o
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and z, = + o, where u =nk + 1. Let D; =(z;_,,z;), 1 <i < u. Then
in each D;, 7,, is centinuously differentiable with derivate

M) = 1 = (1/m) 3 93~ 0

and | D, =R

i=1

Now let h=ko—|p|, & =min{|y,|/2, hy3/4[¥'(x)dF(x)} and
i =h|y,|/4 Take 6, = 5(u) as in Lemma 2.5.

Let us show that

@10 fsup{| (/) T Vs~ 0 - <d)suc

e {sup{ln;,y(t)—-p|;lt|$5,,te.'UIDJ-,|y—y0|Ssl} £h =
P

< {sup{|n(O)|;|t]| < 6,,t€ U1 D |y — 70| <&} <k
P

The second inclusion is trivial,. so let us show the first one. Assume

the first event in (2.11) holds. Then for te U D;, we have
ji=1

|7(®) = p| = |(1 = (1/ny) Z Wibe s ) (I/Vo)I!//’(x JAF(x))| <
< [§Y'C)dF(x)| |70~ V|/|70|'V|+(1/|V|)|(1/")Z Vix; — 1) = fY/(x)dF(x)|.

Then using the definition of &, and u, we have -
sup{|m(0) — p|;|t| < 6;,te UD, |y — 70| <&} <
ji=1

< 2, | W' (x)dF(x)| /v5 + 2u/| vo| < (B/2) + (h/2) = h.

Now the result follows from Lemma 2.5 a(i).
Progf of (b). The same as (a), but using Lemma 2.5 b(i).

Lemma 2.7. Let 1 > ko|p|. Let

An,&,t::{lrln)'(t)_nny(t,)'SkOIt_t’, v‘tlsé’lt’|£5
and ¥ |y — y,| < ¢},
= {1,y takes {| t| < 6} intoitself ¥/ |y — y, | < &} and
Cn&a {yn takes{|t|<5} into {,'})—'}10'<8}}

Define AF;., B, Crs,c similarly replacing n,, by 5,
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(@) Assume A.l1, A2, A3 and A4. Then there exist ¢, >0 and 6, >0
such that

(i) lim P (ﬂ A,,,,a,h) =1%d <4,

n— oo m2n

(i) lim P (ﬂ B,,,,‘,h) =1Véd<3i,,

n— o m=n

(iii) lim P <ﬂ c,,,,‘,,u) =1Vé<s,

n— oo m2n

(b) Assume B.O, B.1, B2, B.3 and B.4. Then (i), (ii), (iii) hold replacing A,

B, C by A* B* C*.
Progf. (@) Let &, = ¢, defined in Lemma 2.6 and let 6, = min (3,, 6 (¢,))
where 6, and d(e,) are defined in Lemmas 2.6 and 2.5 respectively.

(1) According to Lemma 2.6 (a), to prove (i), it is enough to show (2.12):
Ans.e, 2 (sup{|n,(0)]5]t] < 0y, te U1 Dyly—yo|l <t} <ko} V<4,
s

If the event in the right-hand side of (2.12) occurs, then for any
|y — 70| < &,, we have that for all teD;n [—6,6],|n,()| <k, and
by the mean value theorem,

| upl®) = ()| < ko |t — ¢'|forallt,¢ inD;n [— 6,8].
Then by Lemma 2.2, we have that
k) - m ) =k le~¢ ] Vs8] <6
(i) According to (a)i) and Lemma 2.4, it is enough to show

B, 5., @ Apse,N {sup{ I My(0) |§ I Wi 70[ < g} < (1 — ko)}.
Assume that the event in the right-hand side occurs.
Then
Irlny(t)l = Irlny(o)l ok Inny(t) 7 ”ny(o)' < 5(1 hi kO) =+ 5k0 = 6'

(iii) Follows immediately from Lemma 2.5 (a)(ii).
The proof of (b)(i), (ii) and (iii) are identical to the corresponding

parts of (a), just replacing # by n* and parts (a) by parts (b) of the lemmas
used.
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Lemma 2.8. (a) Assume A.1, A2, A3, A4 and AS5. Put D, ;= {n )=t
has a unique fixed point t* in [— 6,6] and for any t, in [— 4,4d],
My to) — t*}, where n{(t,) is defined inductively by n®(ts) = n,(n%~e,)).
Then, there exists 6, >0 such that ¥/ & <4,

lim p( N D,,,,,,) g

n—»>ow \ m2n

(b) Assume, B0, B.1, B.2, B.3, B4 and B.5. Define D¥; in the same way
as D, s, just replacing n, by n¥. Then, there exists 8, > 0 such that
Vé<5i,,

lim P< N D,*;,J) = 1.
Proof. (a) Let &, >0 and §, >0 be as in Lemma 2.7 (a).
It is enough to show that

Dn,d > An,&,azm Bn,é,ezn Cn,&,ez V 6 = 52'

Suppose A4,;,,N B,;.,0 C,;.,, occurs. Then all the mappings Nny»> SUCh
that |y — 0| < &, are contractions of [— 6,0] into itself, and then by
Banach fixed point theorem, they have a unique fixed point. But the
fixed points of #,, are the same for all y and it is equal to the fixed point

of 1, since n,(6) =t + (1/m) . ¥(x;— 1) = ¢ if and only if 3" Y(x,— 1) =0,
i i=1 i=1

and
M) = t + (Um0) 3 ¥x, — ) = tifand only if 3, y(x, — 0 =0.

Take any t, in [—6,0]. Define inductively ¢, = Moymttic - \th—1) =
T r’n(tk—l)' g

We are going to prove by induction that | ti| < 6 for every k, if
A FEPB L IC i

For k =0, |t,| <|d| by assumption.

Suppose |,| < 4. Then as C,,,, occurs,
then as B, ;, occurs,

yn(rk) i ')’ol < ¢, and

l Lt | = 'nnyn(tk)(tk)' <.

Then using Lemma 2.3 and the fact that Moot B OLE
occurs, we have that r, — t*.
(b) The proof is the same as in part (a) using #* and part (b) of the lemmas
used instead of # and part (a) of the lemmas.

n.(s.tz
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Proof of Theorem 2.1. Let 6 < J, as in Lemma 2.8. Then
O {Iaml = 5} =2 O {Dm,&m {!gm,ol = 5}}

and

mn j— o

N {nm 8,,=0,and 0, satisﬁes(l.l)} Chmg ARG RS Y

So (i) and (ii) follows from Lemma 2.8 (a) and assumption A.6.

Proof of Theorem 2.3. Analogous to the proof of Theorem 2.1, but using
part (b) of Lemma 2.8 and assumption B.6.

Proof of Theorem 2.2. We have to show that the assumptions of Theorem
3 and its corollary of Huber (1967) hold.

It is easy to show that our conditions A.1 to A.7 imply Huber’s con-
ditions N1 to N4, and if A(6) = [y(x — 0)dF(x), then

A(0) = [Y'(x)dF(x) # 0.
Moreover, by Theorem 2.1, (7,, iS consistent a.s. and
(1/5/) ,Zl Y(x; — 0,) - 0 as.
So all conditions are satisfied and the theorem follows.

Proof of Theorem 2.4. 1t is enough to prove
(2.12) lim (1/\/n) . ¥((x; — B)/s,) = O in probability,
n— o i=1
since then Theorem 2.4 will follow from Huber’s (1967) Theorem 3 and

its corollary.
In order to prove (2.12), by Theorem 2.3 (ii), it is enough to show

(2.13) lim (1/y/n) Z [WA(x; — 8,)/s6) — ¥((x; — B,)/s,)] = O in probability.

Put
R ) {[tl/(b/C = a)fso) = Y(x — ayB)](so — ) if b # 5o
— ¥ ((x — a)fsg)(x — a)fs? if b =s,.

Then we have

(1/3/n) Z [W(Cxi = 0)/s0) = Wllx; — 8] = /n(s, — s,) i R(x;,0,,s,)/n.
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As \/— (s, — so) is bounded in probability by assumption B.8, and
0, — 0 a.s. by Theorem 2.3(i), in order to show (2.13), it is enough to show

(2.14) for every ¢ > 0, there exists 6 > 0 such that

limp sup sup ] Z R(x;,a,b)jn| <e

n>o  |b—so| <d.|a| < i=1
We have by B9 that
(2.15) EHR(x,0, 50)) = 0
sup | R(x,a,b) | < sup [V (x — a)/b)(x — a)/b?|,

la| <é,|b—so| <o |la| <éo.|b—s0| <o

by B.10, (2.15) and the dominated convergence theorem, we can find o
such that
sup | E{R(x,a,b)| <&

la| <é,|b—s0| <o

Then Lemma 2.1 implies (2.14).
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