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Free resolutions of certain triply generated ideals
Aron Simis".

Introduction.

Since the work of Hilbert on algebraic forms, the theory of finite
resolutions has seen many developments. More recently, the theory was
enriched by the work of Eagon, Northcott, Hochster, Buchsbaum, Eisen-
bud, Peskine, Szpiro, to mention a few.

I have learned from D. Buchsbaum that the theory bears intimate
relation to some rather delicate arithmetical questions. This paper is a
little inquest into the arithmetic of ideals generated by three elements
in UFD’s. Using the ged of two elements we build a complex that, in a
basic situation, turns out to be exact and furnishes a resolution of the
original ideal (Theorem 1.3). There are some corollaries for ideals gene-
rated by monomials in a regular sequence — these are identical to results
of D. Taylor [6] and the thesis of Gemeda [3].

In a second section we show that the hypotheses of Theorem 1.3
have to do with an “almost” self-duality in a sense that is made precise.
In such a situation we have properties that are similar to those enjoyed
by R-sequences and sequences that generate Gorenstein ideals in low
codimension (see [2]). But not quite so. We put forward in the third section
that the hypotheses of Theorem 1.3 are general enough as to include the
ideals generated by the gradient of some singular (projective) plane curves.

We wish to thank D. Buchsbaum for his encouragement and for
showing us a copy of Gemeda’s thesis “right off the oven”. Special thanks
to the referee for several corrections and many a good suggestions.

1. The basic compiex.

Let R be a UFD (unique factorization domain). We will denote by
ged(a, b) the greatst common divisor of two elements g, b € R, defined only
up to unit factors. This gives rise to a map R x R — R defined (up-to
unit factors) by (a, b) — a/gcd(a, b) This map will be denoted by p.

"This is a revised version of an earlier work done while the author was on leave at
Brandeis University, on a J. S. Guggenheim Fellowship.
Recebido em 15/10/78.



44 Aron Simis

Definition 1.1. Let f = {f,f,,f;} be an ordered sequence of elements in
a UFD R. We define new (ordered) sequences

Pi2() = {P(fl, 2),P(f2,f1),f3}
p13(/) =R {p(fl’f:i)sfz’ P(fs’fl)}
p23() = {fl’p(fl’f3)’ p(f3/2)}-

We call p,(f) = p,,(f) the first p-transform of /- Iterating, we define
the second p-transform p,(f) = p,;(p,(f)) and the third p-transform p,(f) =
= P23(p2(f))- It is mainly p;(f) that will occupy us.

Note the obvious inclusiens of ideals (f) < (p,(f)) < P20 < (p5().

Also note that p,(f) is obtained by simply “canceling out” all possible
common factors of the elements of the sequence f taken two at a time.
As a consequence, we have:

Lemma 1.2. If p5(f) as above is an R-sequence then any ordering of its
elements form an R-sequence.
Proof. This follows from [5, Theorem 118].

Remark. A question can be raised here as to how the p-transforms depend,
say, on the order of the elements of the given sequence. It is easy to see
by examples that if the three elements have a non-unit common factor
then p; does not commute with the obvious action of the symmetric
group S; on R x R x R. On the other hand, one can see that if ¢ is the
greatest common factor of the three elements of f then

Pl = { tf, tf tfs }
§ ged(fy.f3) ged(fy,f3)' ged(f.fs) ged(fy. f1)" ged(fs.f,) ged(fs,f,)

where f/t stands for the sequence {f,/t,1,/t,f,/t}. From this it immediately
follows that p,(f/t) does commute with the action of Ss.

Given a sequence f = {f,,f,,f;} of elements of R, we now build a
complex of free R-modules over R/(f). Namely, we have

(*) 0 —-R—R}®—R?® >R,

where, in matrix notation,

t-plf3.f1)/gcd(f, f3)
§3 = | = t-p(f2.13)/gcd(f>. 1)
t'p(fl’ 2)/ng(f3’ 1)

—p(fzafl) _P(fa’ 1) 0
Saii= Pf1.f2) 0 = plfs.f2)
0 P(fl,fa) P(fz,fs)
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sy =1 f2 f3)

Here, ¢ stands for the greatest common divisor of f,,f,,fs.
It is immediate to check that (*) is indeed a complex. We now have

Theorem 1.3. Let R be a noetherian UFD and let f = {f,,f,.f5} be a given
sequence in R. If ps(f]t) is an R-sequence then the complex (*) is exact (and
hence furnishes a free resolution of the R-module R/(f). Moreover, one has

1 \
a’mRHl(/) = (fl ’fz’f:&’ t‘z ng(fl ’fz) ng(fl ’f3) ng(fz’fS))’

where H \(f) stands for the first homology group of the Koszul complex
on the generators f,,f,,f5.

Proof. A direct attack requires a somewhat lengthy calculation with
ged's. We apply instead the criterion of Buchsbaum-Eisenbud [1, Cor. 1].

Thus, we are to check first whether the s; have the right rank:

rk(s;) = 1;indeed, the entries of s, are the elements of p,(f/t) up to order
and sign. As we are assuming that p,(f/t) is an R-sequence,
then some entry of s; is # 0.

rk(s,) = 1; by the same token, some f; # 0.

rk(s,) = 2; as above, some f; # 0. Say, f; # 0. Then the 2 x 2 minor

f I Y f 1 0
P AN AN

Next we check the depth condition. Namely, let I(s;) be the ideal
generated by the k;xk; minors of s;(k; = rk(s;)). Then:

plf.f2) p(f1.f3) =

depthl(s,) = 1; this is obvious since some f; # 0.

depthl(s;) = 3; this follows from the assumption that p,(f/t) is an R-se-
quence.

depthl(s;) = 2; to prove this, it suffices to find three generators of I(s,)
with no non-unit common factor (¢f. Remark below. We
claim that the minors

. a4 X Vot i
p(fl’fZ) p(fh 3) AT ng(fl,fz) gcd(fl’ 3) ” 5
e i .ji

P2 1) P2 S3) = pr T AN A e
Pfsrf) Plfsnfs) = s Ss

ged(f3, f1) ged(fs.f;) t
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have no non-unit common factor. Indeed, let g be such an irreducible
common factor. A little inspection, using the assumption that pi(fit) is
an R-sequence and that f, /1, 1, /t, f,/t have non-unit common factor, imme-
diately shows that ¢ must be a common divisor of, say, the elements

fi
b ¢
i ged(fy.f3) ged(fs.f)
t t

But this is impossible too.

Having shown the exactness of the complex, we now go over to
computing anngH (f).

First we claim that annH ,(f) = t- annH,(f]t). In fact, recall that H, =
= Z,/B,, where Z, is the module of relations and B, is the module ge-
nerated by the trivial relations. Now, sinze Z,(f) = Z,(f/t) it is clear that
t-annH,(f]t) = annH (f). Conversely, let G'eé R be such that G'Z,(f) =
< By(/f). Then, using the fact that t is relatively prime to at least one among
p(fi.f)), we get that ¢ divides G'. Thus G’ = Gt and, a fortiori, G € annH 1(f70).

Thus, assume ¢ = 1. In this case, a straightforward calculation yields

annH,\(f) < (ged(fy, £).£3)0 (ged(fy, f3).£2) 0 (gcd(f>.13). /1) We finaily claim
that this intersection equals

(f1:12:13 ged(fy.f3) ged(fy . f3) ged(fs,13)).

This will prove our contention as the latter is clearly contained in ann 1H(f).
Checking the claim is a burdensome nevertheless straightforward
job with ged’s. First we show the equality

(ged(fy,/2).13)0 (ged(fy,£3).12) = F2:f3. gcd(fy, £2) ged(fy, f3)).

Thus, let G = Tygcd(f,,f;) + Tofs = U gcd(f,,f;) + Uof,. Then we get

(Ty — Uaplfy, f) ged(fy, /o) = Uy — Toplfs, f1) ged(fy,f3). Therefore, we
must have T, = U,p(f.f,) + Ugcdl(f,,f;) for some UeR. Substituting
for T, above yields

G = U,plfs.f1) ged(fy.f>) + Ugcd(f,.f>) ged(f,,fs) + Tfs;=
= Uyfy + Tf; + Ugcd(fy.f,) ged(fy, f3).

The reverse inclusion is apparent. Next we verify the equality

(12, /3, ged(fy, fr)ged(fy . f3) 0 (ged(f, S =
= (f1>/2:13s ged(fy.f3) ged(f, J3) ged(fs,f3)).
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Thus, let

G = Kif; + Kyfs + Kyged(fy,f5) ged(fy, f3) =
= Lygcd(f.f3) + Lf;. *)

In particular, gcd(f;, f;) must divide the expression K, f, — L, ged(f, f3) =
=(Kp(f3,/3)— Ly) gcd(f3.£3), so that, in fact, L, =K, p(f,,f3)+ Tgcd(f,,f3)
for some TeR. Hence

Liged(fy.f3) = Kif; + Tged(fy.f3) ged(fs, f3).
Substituting this expression for L gcd(f,,f;) in (*) yields
Kofs + Ksged(fy.f5) ged(fy.f3) = Tgcd(fy,f3) ged(fs, f3) + Lof;.

In particular, gcd(fy,f3) ged(f,.f3) divides Kyged(f,.fs) ged(fy.f3) —
= Lyfy = (Ksgcd(fy,/3) — Lyp(f1,/3) ged(fy.f;) and further has to
divide the expression Kjged(fy,f3) — L,p(fy,/f2)- Say, then, Kigcd(f,,
f3) = L,p(f1./3) + Kged(f,,f3) ged (f5, f3). Substituting this value in (*)
yields our contention.

This finishes the proof of the theorem.

Remark. We made use of the following result: if I is an ideal of depth 1
in a noetherian UFD then I has height 1. This is standard and follows,
for instance, from [5, Theorem 95].

The theorem admits the following consequences.

Corollary 1.4. Let R be a noetherian local ring containing a field k. Let
Xy, ..., X, be an R-sequence contained in the maximal ideal m of R. If f,,
JS2,f3 € m are monomials in x,, ..., x, then the complex of Ttheorem 1.3 is a
Jfree resolution of R/(f,, f,, f3). Moreover, the following are equivalent:

(1) ps(f/t) generates a proper ideal, where t is the greatest commo:: factor

o f1:S2:S55

(i)) The complex of Theorem 1.3 is minimal.

Proof. Under the hypotheses, k[x, , ..., x,] is k-isomorphic to a polynomial
ring k[X,, ..., X,] and R is k[x,, ..., x,]-flat [4, Proposition 1]. We may
thus assume that R = k[x,,...,x,]. Now, since p,(f/t) consists as well
of monomials in x,, ..., x,, it can only generate the unit ideal provided
some of its elements is itself 1. In this case and taking in account the de-
finition of p, p4(f/t) is an R-sequence, so Theorem 1.3 applies. Otherwise,
P5(f/t) generates a proper ideal. In this case, we see from [7, Lemma 2.7}
that py(ft) is still an R-sequence. So Theorem 1.3 applies once more.
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To see that (i) implies (ii) we just recall that the entries of the map
s; of the complex are just the elements of ps(f/t), so the complex is minimal
there. Also, because ps(f/t) generates a proper ideal, no f; can be a multiple
of some f;, i # j. So, the complex is minimal at s, too.

The implication (ii) = (i) is clear.

Corollary 1.5. Let I = (f,,f,,/3) be a proper ideal in a noetherian local
ring R containing a field. If either p.d.(I) > 3 or else p.d(I) = 2 and type
(I) # 1, then I cannot be generated by monomials in an R-sequence con-
tained in the maximal ideal of R.

Here, p.d. stands for the projective dimension of an R-module, while
“type” is the rank of the last non-zero module in a free resolution of an
R-module (provided it has one).

2. An almost duality.

We keep the same assumptions as in the first section. A sequence
f = {f1.f2.f5} such that p,(f) is an R-sequence enjoys a property which
should be taken to mean an “almost duality”. Namely, the basic free
resolution

0—-R—R*—>R*—— 5 R—R/) —0
S3 S2 sy = (fifof3)

of Theorem 1.3 satisfies the following conditions.

(1) Any column of s, is obtained from a column of the matrix represen-
ting B, (f/t) by dividing out the gcd of (the nonzero elements of) that
column.

(2) Any row of s, is a multiple of a column of B,(p,(f/t)), while the gcd
of (the nonzero elements of) the row is the factor that multiplied by
a suitable column of s, gives a column of B,(f/t).

We will call almost self-dual a sequence f = {f,,f,,f5} such that
p;(f/t) is an R-sequence. One way of making such an almost duality trans-
parent is by means of matrices which are nearly alternating. We thus
agree to call almost alternating a 3 x 3 matrix

a;; a;; 0
a; 0 ass |,
0 az; A3z

where the g;;s are nonunits, satisfying the following conditions.
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(i) ged(ayy, ayy) = ged(ay,, as,) = ged(azs, az;) = 1
(ii) There exist a,b,ce R/ (0) such that the matrix

aay, ba,, O
aa, 0 Cas;y
0 bay, cas,

is skew-symmetric and aa, ,, aa,,, ba,, have no non-unit common factor.

We will not distinguish between the sequences {f;,f,,f;} and
{of 1, Bf2, 1f3}, where a, B, y are units. Likewise, no distinction will be
made between a matrix 4 and the matrix obtained from 4 by multiplying
the elements of a column by a unit. Finally, what we are here calling
skew-symmetric is a matrix obtained from a usual skew-symmetric matrix
by means of column interchange.

The first thing to note is that the elements a, b, ¢ of condition (ii)
are uniquely determined up to unit factors. Indeed, (ii) means that

aay, = —Caszy
aay, = —baj,
ba,, = —cay;

and that aa,,, aa,,, ba,, have no (simultaneous) common factor. Con-
dition (i) then easily implies that a = gcd(as,,as;), b = ged(a,,, a,s),
¢ =gcd(a,y,ay,), so that a, b, c are determined by the matrix itself.

The result that we seek reads as follows.

Proposition 2.1. There is a one-to-one correspondence between almost
self-dual sequences with no non-unit common factor and almost alternating
matrices.
Proof. To an almost self-dual sequence f = {f,f,,f3} (no common factor)
we associate the matrix s,(f) of 1-cycles as in Theorem 1.5. Clearly, s,(/)
is almost alternating. Conversely, to an almost alternating matrix we
associate the sequence {aa,,, —aa,,, — ba,,} as above. The verification
that these correspondences are inverse of each other is mere routine.

Note that if {f,,f,.f3} is almost self-dual then so is {tf,, tf;, tf3},
for any te R/(0), and both correspond to the same almost alternating
matrix. Thus, one cannot recover all almost self-dual sets.

In any case, however, it would be of some worth deciding whether
one can recover the ideal generated by an almost self-dual sequence f
from the annihilator of H, (f). This seems to be the case at least for an
ideal that can be generated by an almost self-dual set consisting of mo-
nomials in an R-sequence.
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An observation which can be of some value in the above question
is that if f = {f,,f,.f3} is an almost self-dual set then ann H,(f) has no
embedded primes if and only if £}, f,,f; have no (simultaneous) common
factor.

We close this brief section by noting that the concept of almost
duality can be given a meaning in terms of the dual of the basic free re-
solution of Theorem 1.3., much in a similar way to the results of [2].
As a matter of fact, an almost self-dual set generates an ideal which behaves
very nearly like a Gorenstein ideal, except that Gorenstein ideals cannot
be triply generated unless they are already generated by R-sequences.
Likewise, the algebra structure with which the free resolution of an almost
self-dual set is endowed can be explored. In the case of an ideal generated
by monomials in an R-sequence this has been partially indicated in [3].

This latter aspect will be the object of a forthcoming work.

3. Applications.

For simplicity, we will work with the polynomial ring R=k[ X ,,... X,]
(k a field). However, a good portion of the results of this section can be
carried out in the context of noetherian rings.

To start we have the following general.

Lemma 3.1. Let R be noetherian and let hy,...,h,,g,g4,,9,€R be ele-
ments satisfying the conditions

@) {hy,...,hy, g} is an R-sequence
(i) The radical of (hy,...,h,,g) is a prime ideal.
(iii) {hy,....hs,4y,9,} is an R-sequence in any order.

Then at least one of the sequences {h,, ..., hy, g,9;},i = 1,2, is an R-sequence.
Proof. Set I = (hy, ..., h;). We whish to show that either g, or g, is a non-
zero-divisor mod (1, g). Assume to the contrary, i.e., both g, and g, belong
to associated primes of (1, g). By (i) and (ii), one must then have g1:9;, €
€rad(l, g). Say, gy — G,g€l,g5 — G,g € 1.1t follows that G,g5 — GgTel
Using (iii) one easily derives G, — Gg™ 1 for some G e R. Substituting
in the relation g7 — G g€ yields (1 — Gg)gTel, hence 1€(l, g). This
contradicts (i).

Using the lemma one can prove:
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Proposition 3.2. Let R = ) R, be a noetherian graded ring with graded

i20

radical M = M, + i; R; (where M, is the Jacobson radical of R,). Let

his...;h, g, 91,9, € M be homogeneous elements satisfying conditions (i),
(ii), (iii) of the lemma. Then, for some permutation ¢ of {1,2}, {h,, ..., hed, .,
g, g,,z} is an R-sequence and

(hl, ""hs’ggl’ggz) i (hl’ ""hsag)m (hl’ ""hs’gaj’g’gaz)‘

In particular, if neight(M) = s + 2, the above is a primary decomposition
Of. (hl’ 3% hss 991, 992)7 with M= rad(hl’ sisieg hs’ gol’ 9, gaz)

Proof. By the lemma, (say) {h,, ..., h,,g,g,} is an R-sequence (in any order
because one has a graded situation). We will prove that {h,, ..., h,, g,, g9,}
is then an R-sequence. Since everything lies inside M, it suffices to show
that gg, is a non-zero-divisor mod(l, g,), where I = (hy, ..., h). Suppose
Ggg,€(l,g,). Then Gg,e(l,g,) as g is a non-zero-divisor mod(/, g,),
and further Ge(l,g,) because g, is a non-zero-divisor mod(l,g,) by
assumption.

Next, for the decomposition, note that one inclusion is obvious.
As to reverse inclusion, if ® (I, g) then ® — Gge I for some GeR. If
further ® € (I, g,,gg,) then (Fg, — G)ge(l,g,) for some FeR. As
{h1,...,hs, g,9,} is an R-sequence in M, g is a non-zero-divisor med (I, gi).
Therefore, Ge (1, g,,9,). It follows that ® = ® — Gg + Gge(l, gg,,99,)

Corollary 3.3. Let R = k[X, Y, Z] (k a field) and let h,g,,g,,g be ho-

mogeneous elements belonging to (X, Y, Z). Suppose that the following con-
ditions hold:

(i) gcd(h,g) = 1
(i1) rad(h,g) is a prime ideal
(iii) {h,g,,g,} is an R-sequence.
Then the ideal J = (h,gg,, gg,) admits the following primary decomposition
J =amH,0 (hg,,.99,,)

b

JSor some permutation o of {1, 2}, with (h, 9o,>99,,) the irrelevant component
and H, the first homology of the Koszul complex generated by h, gg,,49,.

Proof. It immediately follows from Theorem 1.3. and Proposition 3.2.

0X’ 3y’ 9Z

Applying the results to the gradient ideal ¢ 3 =< af 11 8f 3 8p
of a curve in P} defined by f € k[X, Y, Z], we see that, provided (1) rad
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i i
oX Y’ oZ

Ef—, L _6L’ L _6]; is an R-sequence, then J, coincides with ann
0X & 00X jg 407

H; (;ff, ;—{/, %) up to an irrelevant component.

0
< 4 ) g) is prime or else g = 1, where g = gcd( >, and (2)

Example. (k algebraically closed of char. 0) Consider the family of curves
{f(Ys Z) + 0,4y X" = 0}, in PZ, where f,(Y,Z) is homogeneous of
degree n > 2. For fixed n, this is a linear subsystem of the complete linear
system of curves of degree n. Look at the corresponding family

) G afa aja
{(ndn.;. 1 1a a; ,) ) a(z)>}
(@)

of gradient ideals. A curve in the family is singular if and only if

Vo Y is
Y. 42

f

aF s %
ged (55 55 ) = 9 # 1. Now, {X

almost self-dual outside a “nowhere dense subset”. More precisely, let

= PZ X [pn+1

Ipn+1

be the deformation parametrizing the family {f,(Y,Z) + o, ,X" = 0}.
Then the result reads as follows.

Proposition 3.4. There is a 2-dimensional (degenerate) come © in P"*!
such that s€e P"** \T if and only if the gradient of the curve Z, is almost
self-dual.

Proof. Namely, let (x) = (x4 : ... : x, : X, , ;) be homogeneous coordinates
of P"*! and let (u:v) be homogeneous coordinates of the projective
line P'. Consider the rational curve in P"(x,, : ... : x,) which is the image
of the map P' — P" defined by

B T e R e I Y e )

Let © be the cone over this curve in P"*!. Now, a point se P"*!, with
coordinates («, : ... :a, :a,,,), belongs to T if and only if the equation
of the corresponding tiber Z, is
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Fo VY Hagly X v MW@ D RET S Z o 0.0 5 0" 2% ol o
= @Y + bZ) + oy, X".

Our claim will, therefore, follow from the following lemma.

Yo Y
’ oY’ 0Z
and only if the equation of the curve has the form (aY + bZ)' + a,,, X"

Lemma 3.5. The gradient {noz,l+1 xesd is not almost selfdual if

Proof. The third p-transform of the gradient is the sequence

s Slepr OF: 1. éf at., . o,
n—1 @ @ ik @ Y
{"“"“X o ool B az}’ gL QCd<6Y’ 0z

as before. Clearly, X" ! is a non-zero-divisor iodulo the ideal generated

1 6f(¢) 1 6f(a)
and —
ot P A AN

if and only if it generates a proper ideal, ie., if and only if neither

=50 S o A st
1 e nor Ve is a constant. As the partial derivatives have the

, hence the third p-transform is an R-sequence

g OY day 9Z
same degree, we see that the gradient fails to be almost self-dual if and
Yo _ A af(a}
0z oY’

only if for some A€ek.

Yo, ,Yw _ Y
57" "% 37 =5y
(Y + AZ). Successive differentiation in Y eventually yields

a'.l/ia)
oy"

If this is so then, by Euler’s formula, Wy =Y

n! fo =

(Y + A2)", ie, fq =mY + AZ)" for some pek.

Conversely, if the equation of the curve is (Y + 12)" + a,,, X" then
the third p-transform of the gradient is {na,,, X"~ !, 1, 1}, so the gradient
is not almost self-dual. This finishes the proof of the lemma.

Next we set § = P"* !\ G. There is no harm in redenoting the product

X X p,_, S by X, so we will do that. Thus, we have a deformation ¥ — S,
where S is a smooth affine variety of dimension n + 1 and for every s€ S,
the gradient of the fiber &, is almost selfdual. By Cor. 1.4, for every s =

= («:a,,,) €S, the corresponding gradient admits the minimal free re-
solution

() 0—R—R*—>R*—>R
(5} @, @y
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where
b pr g
9 0Z
1 20f
1)
_nan+1X”_lJ
F g e By oo
Y YA
{8,
el n—1 e (@)
q’Z— nan+1X 0 g(a) 62
1 of,
0 na,, Xn—l 4 b (@) :
i s 9o OY |

w1180 s
P, =<na‘,,+1X 1,—6(7), ‘aLZ))

Now, the generic curve & , is smooth. Therefore, the minimal free reso-
lution of its gradient ideal is the Koszul complex on the partial derivatives.
In other words, the partial derivatives with respect to Y and Z, of the
generic equation F (Y, Z) + T,,,X", are relatively prime. If we let
So = S be the such that se S, if and only if the fiber Z, is smooth, we
get a 1-1 correspondence between the fibers of the induced deformation
Z x58,— S, and resolutions of* the form (*) with g, = L.

Next, we logk at the complementary set So = S\So. Note that, by
Sard’s theorem, S, is contained in a proper closed subset of S. The most
generic fiber of the map & x ¢S, — Sy is given by the equation

(U,Y + V,2) T[] (VY + V2) + T, X"
i=3

where T,,,, U,, V;, U;, V,, etc. are distinct indeterminates. It is clear
that this curve admits a minimal free resolution such as (*) with g, re-
placed by U,Y + V,Z (and a,,, by T,,,). Therefore, if we let S, oY
be such that a fiber over a point of S, is a curve with exactly one singular
point of multiplicity 2, then every fiber of & x 3§, — S, admits a resolu-
tion of the form (*) with 9@ =0, Y + by Z, for some a,, b, €k, and, con-
versely, every such resolution is the minimal free resolution of the gradient
ideal of a fiber of ¥ xS, - §,.
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Next, look at the complementary set S; = §,\ S,. This splits into
two components S, ,, S, ,, namely, the most generic curve of the fibration
Z xg8;,—8,, is of the form

(U, Y + 2P (U Y + V,Z) TT WY + ViZ) + T,,, X"
i=5

where T, Uy, Vo Vs, Us, Vs, etc. are distinct indeterminates, while
the generic curve of & x5S8;,—= S, , is of the form

n

U, Y+ VZ? []WUY+ VZ2)+ T,,, X"
i=4

where Uy, V;, U,, V,, etc. are distinct indeterminates. The generic curve
on the component S 1.1 (resp. S 1,2) has a minimal resolution of the form (*)
with g, replaced by (U, Y + V,Z)(U,Y + V,Z) (resp. (U, Y + V,Z)* and
%,y by T,.,. Therefore, if S,, =S, (resp. S;, = S, ,) denotes the
subset such that s€ S, | (resp. s€ S, ,) if and only if & has exactly two
distinct points of multiplicity 2 each (resp. exacly one single point of
multiplicity 3), then every fiber of x5S, = S, =S, , U S, , admits a
minimal resolution such as (*), where g, is to be replaced by a term of
the form (a,Y + b,Z)(a,Y + b,Z) — with a,Y + b,Z and a,Y + b,Z not
necessarily distinc — and, conversely, every such resolution comes from
a fiber of ¥ x5S, - S,.

Continuing in this way, we eventually exhaust S. This may summa-
rized as -follows.

Proposition 3.6. There is a (finite) stratification S =S,LU S, US, U

U S,,, VY ... and, for each stratum &, there exists a generic minimal free

resolution R(¥) such that

(i) For every (closed) point s€ &, the gradient ideal of the fibers ¥, of
X x5 — & over s admits R(S) B, k(s) as a minimal free resolution.

(i) For every stratum & and every reduction Os— k of coefficients, the
corresponding reduced resolution R(F) @ k is of the form R(F) ® ., k(s)
for a (closed) point se <.

The first interesting case is n = 3. Here S is stratified into two strata
So and §,, the first of which parametrizes a family of elliptic cubics, while
the second one parametrizes a family of irreducible cubics having a cusp.
For n = 4, we find a stratum parametrizing elliptic quartics, and so forth.

Let us remark that Proposition 3.6 is really a result on deformations
of free resolutions. As such, however, it is not entirely satisfactory. In
fact, one would like to have an answer to the following question.
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o o o : k
tion 1. L ==, ==, = f 1
Question et I ( X' Y’ 37 be the gradient ideal of a plane
curve C defined by the equation f = 0. Suppose I admits a minimal free
resolution such as (*). Does C belong to the family A L)+ a3 X°)

where n = deg f?

This question should perhaps be preceded by another (rather tech-
nical) question.

: 0 :
Question 2. Let I = X’ Y’ 37 admit an almost self-dual set of

generators. Is the gradient itself almost self-dual ?

A great many curious questions impose themselves in this kind of
analysis. Let us point out, for instance, that we do not know an example
of a triply generated ideal, having projective dimension 2 and type 1,
that is not generated by an almost self-dual set.
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