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Numerical study of an equation related to wave propagation

C. A. de Moura, M. A. Raupp and J. C. Barbetta

Abstract.

We discuss two algorithms for the computation of approximate
solutions of a generalization of the so-called Benjamin-Bona-Mahony
equation, which is a model proposed to describe unidirectional propa-
gation of long water waves.

Both schemes discussed are quadratically convergent with respect
to At in the H' — norm. They use the Galerkin method for the space
variable in such a way that the global truncation error has the same order
as the error for the interpolation with the Galerkin basis.

Estimates are obtained for the study of the discretization that also
yield an existence proof for the exact problem.

Results of some numerical experiments are presented.

1. Introduction.
The equation
(1.1) u, + u, + uu, — Uy, =0

was suggested in [1] as a model for uni-directional propagation of long
water waves. Such an equation was proposed as an alternative for the
Korteweg-de Vries equation

(1.2) upEBIL) g HEN= 10

which supposedly describes the same phenomenum.
In this paper, we discuss two numerical schemes for the study of

(13) o+ = [0 = Sy = glx,1)

which generalizes (1.1). These schemes modify the ones proposed in [2]
for (1.1), and have the advantage of dealing with matrices that are inde-
pendent of the time variable, thus achieving great computational savings.
Part of the results discussed here were announced in [3, 4].
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We consider the problem of finding a solution of (1.3) subjected to
the conditions

(1.4) u(x, 0) = uy(x),
(1.5) u@©,1) = u(l,r),

for0<x<1and 0<t< T, with T>0 preassigned.

In (1.3), 6 > 0 in an arbitrary constant and we assume that fand g
are as smooth as needed, the precise assumptions being described below.
We also require that

(1.6) g90,1) = g(1,0).

We shall stick to the notation used in [5]. By H* and L? we shall
mean H*(0,1) and L2(0, 1), respectively, while H}, shall stand for the
subspace of H* formed by the functions v such that
d’ d’

- p(0) = -
dx’ 50 dx’
for j=0,1,...,k— 1, with k > 1.

The rectangle [0, 1] x [0, T] will be denoted by Q, and () will

represent the inner product in H° = L2, If f, ge H!, we shall write

(1.8) (fl9) = {f19) + 6 {fr, 93D

The norms in L? and H* will be denoted by
vely.

We shall consider the weak form of (1.3), which with the above nota-
tion appears as

(1.3) (| w) = (), wey + <g,w),

for any w in H}. A weak solution t — u(-, t) must belong to H, and satisfy
(1.3) ae. in [0, T], u, assumed to belong also to H!.

(1.7)

v(),

Lz and respecti-

H*>

Note added in proof.

The present article was already accepted for publication when Professor
J. Douglas, Jr. kindly pointed to the authors the contents of [7]. In that
work, L. Wahlbin considers another generalization of (1.1) and analyzes
a numerical scheme which is closely related to one of the algorithms we
proposed.

Wahlbin’s paper differs from ours essentially in the following points:
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i) The behavior of the non-linear term, which in [7] appears in the
form of (x, u)/dx. Of course, different assumptions on f are then required
and other techniques employed to deduce the stability of the scheme.
(Recall that the “chop-off” technique introduced in (3.2) makes our a
priori estimates straightforward.)

ii) The algorithm proposed in [ 7] is a two-step discretization obtained
by simulating the equation at time levels 1, = nAt (and not at t,, ). The
same approximation spaces of piecewise-polynomial functions are em-
ployed, leading to error estimates that coincide with the ones we have
gotten.

iii) Our computer experiments indicated that the “predictor-corrector”
scheme we introduced performs much better than the “two-step” algorithm.
We expect that the other “two-step” algorithm would not fare much better.

iv) We present an existence proof for the exact solution of (1.3) based
on the numerical schemes we designed.

2. Description of the algorithm.

Let r,{ and N be positive integers such that 0 < r < ¢ — 1, and
denote 1/N by h. Consider the space S,"" = H}"! of functions w that
coincide with a polynomial of degree less than ¢ in each subinterval
[jh, (j + 1)h], 0 < j < N. Thus any function w in S;*" is of class C" and
further satisfy (1.5). Take also a positive integer M, denote T/M by At,
sAt by t, u(,t,) by u, and g(-,t) by g,.

For any integer n, 0 < n < M, we seek functions U" = U, in S§~
to approximate the solution u at instant ¢,.

The first algorithm we propose is of predictor-corrector type. Define
U° by

@.1) (U°| W) = (uo | )

and for n > 0, determine a first approximation U"*! thru
UAn+l LI 1 i

(22) <—~r| W> 5 <f(U )’ wx> + <gn+-}’ W>

and then obtain the “corrected” approximation U"*! by

n+1 _ pm n+1 n
@ 2l T o) =<s s ) W+ Gy ).

where (2.1) — (2.3) must hold for any w in S;"".
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When w runs thru a basis of §4", (2.2) and (2.3) give two non-singular
systems of linear algebraic equations. As remarked above, the coefficient
matrix of the systems thus obtained remains the same for all time levels,
so that triangularization is done once for all. To advance each time level,
two systems must always be solved. The non-singularity of the linear
systems we deal with is a consequence of being the inner-product (- | <) equi-
valent to the standard one in H'.

The second algorithm involves a two-step discretization in the time
variable:

(2.4) Ve = yo, v = Ul
with U® and U' as defined in (2.1) — (2.3), and for n > 1

Vn+1 N 0 i3 i 1 i
(2.5) (——Kt——w) ="(f <7 yn— 4 ),wx> TGiys W),

for any w in ;.

This scheme has the same accuracy as the previous one and. requires
approximately half the calculations, as one solves only one system for
each time level. Nevertheless the numerical experiments described in
section 4 indicate a sensibly better performance of the first algorithm, as
compared with the latter.

Both schemes are unconditionally convergent. This is proved by
using a slight change in the arguments presented in [2], and will be done
in the next section. Since all results we obtain are valid for both schemes,
in the sequel W" will denote approximations defined by either algorithm.

3. An existence theorem and convergence results.

From now on we shall assume that f is continuously differentiable
on the real line and that g, besides fulfilling (1.6), satisfies also

T
f |gC,t)|2dt < o0,

0

that is, ge L*(0, T; H!). Furthermore, ug will be taken as an arbitrary
function in H}.
First we state a basic fact:

Lemma 1. There exists at most one solution of (1.3') — (1.5) and it must
satisfy
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G.1) g =€, 02 t=T

where C = C(uqy, g, T) independs of f. |
Proof. Let ueH,‘, satisfy (1.3') — (1.5) and take w = u in (1.3'). By (1.5),

u(x) 1

Ges = | 1) ds] el

0 x=0

Thus (1.3) may be written in the form
4
2 4

from which we. obtain by integration

1
@0 =g uy < 3 {lgl3 + ulh),

t
|u|f,1(t)s|uolfp+f PRI B
0

An application of Gronwall’s lemma to this relation then gives (3.1').
We shall not repeat here the argument for uniqueness, which is
standard.

Thanks to this lemma, we can assume, with no loss of general.ity,
that fhas a bounded support. In fact, consider instead of (1.3), the equation

(32) (| w) = {few), we) + (g, w),
with f. defined by f.(s) = f(s)0(s/C), where
1 17> |s|
0(s) = exp{exp(1/1 — [sD/|s| -2} 1<|s|<2
0 |s| > 2.

Notice that fc has compact support and the same regularity as f.
Moreover, if u satisfies (3.2), (1.4) and (1.5), f(uc) = fc (uc), since the cons-
tant C in (3.1) depends only on u,, g and T. Consequently u, is also a
solution of (1.3') — (1.5), and by the uniqueness property, u. = u.

We further remark that there is no loss of generality in assuming
f(©0) =0, as (1.3) remains unchanged when a constant is added to f.

Under the above hypothesis for f, g, and u,, we have

Lemma 2. There exists T > 0 such that

33) |0 | s + | W | < C,
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Jor n=0,1,....M = T/At, with C = C(T.f, g, uy) independent of M, N
and n.
To prove this result, the saine steps in the proof of Lemma 2.1 in
[2] must be followed. The independence of the estimate of S(U" on n
is a consequence of f being assumed a regular function of bounded support.
In an analogous fashion, we take in (2.3) and (2.5)

w= 6: Wn+1/2 = (Wn+1 b W")/At
to get the following a priori estimate:

. 0n+1 + U
|6, U+ 12 |3, < { f(——2—>

+ |g,,+_§|Lz}|5,U"+%|Lz e

L2

< Lict v ja,umipa,

and analogously for d,V"*#, so that we can state

Lemma 3. There exist constants t >0 and C = C (. g, uy, T) such that
(3.4) T cadll b SAE,
for n=01...M=TA

To obtain (3.3) and (3.4) no relation between N and M needs to be
assumed. This means that both numerical schemes are unconditionally
stable.

We now define for (x,t) e Q; the global approximations

(35) Wanlx0)= 3 600 [W0) + 6, W 12(x) t — jAd)]
j=0

where 6}, is the characteristic function of the interval LjAt, (G + 1Ae] .
Notice that

M—1 :
%WN,M(x, )= Y O4(0) 6, Wit 2(x), for ¢ # 1,
ji=0

and thus the above estimates imply:
Win» Waa €L2(0, T; HY),

They also indicate that both families Wy » and WN,M remain in a
bounded set of L?*(0, T; H'). Consequently, there exist sub-sequences
Wy m and Wy, and functions W in L2(0, T; H}), W, in L*(0, T; H")
such that as N, M — oo
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’
Wym —

w 72 .yt
i, Wl}weakly iy L (05T HL).

Of course, by making use of the standard argument from the theory of
distributions, W, = W follows. Moreover, there is also a subsequence,
still denoted by W} ,;, such that

Wym = W ae. in Qr,

as a consequence of Sobolev’s Imbedding Theorem. Notice that both
sequences

M-1 s A
Unmlx, 1) = _Z,O 04 (1) [U7* ! (x) + U'(x)]/2

and

[

M-1
IA/N,M‘(x, t) 'Zo 05, (t) [3 Vit1(x) — Vj(x)]/2

have the same pointwise limit as Uym and Vy o respectively. This is
clear for the latter sequence. To study the former, take w = U"*! — p»+!
in both (2.2) and (2.3), then subtract, thus obtaining '

0n+1 1 dppiat Ifil < AI{I](0"+1/2 % U"/2)|L2| ljn+l i U"+IIH1 )
< At{lf((’jn+1/2 a8 Un/z)li2 1 |Uvn+1 il U"+1|12.,|}/2.

We also have that as M — oo,

M-
Iu(x, 1) = Zo 0a() g;4 ,(x) > g(x, 1)

J

weakly in L*(0, T; H}).
Now let w be an arbitrary function in L?(0, T; H ,) and let Q" S,
yield strong approximations of w, in the sense that, denoting

Qy m(x, 1)

M-1
Y 040 Q(x),
i=0

we have

: g
f | Qv — ©|fidt >0, as M,N - 0.

0

For i,j =1,...,M — 1, take in either (2.3) or (2.5) w = 6},(t), mul-
tiply by 6i,(r) and add to obtain f
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T T T
J O Wnoul Qy p)dt = f <f(WN,M)’ (Qy p)x) dt + J {gm> Qyumy dt.
0 0

0

Passing to the limit as M, N - oo we get
T T T

f (W|w)dt =J W), w,)dt + j (g, ®) dt,
0 0 0

for any @ in L2(0, T, H »). Now let 7€ (0, T) be arbitrary, choose 6 > 0
small enough and pick any w in H »- Take  as equal to the characteristic
function of (r — 4, 7 + &) multiplied by w/26 and thus get

i
2% ).

T+d

{W|w) = FW), w,) — (g, wd}dt = 0.

When we take the limit as 6 — 0 and use a result of Lebesgue’s, we
conclude that

(W|w) = (FW), w.) + {g, w), ae. in (0, T).

This means that W equals the solution u of equation (1.3') we are
seeking and further that the proposed algorithms do give approximations
for it. Observe that the uniqueness property implies that there is no need
for taking subsequences of Wy um»> the whole sequence being convergent.

To obtain a precise estimate for the error (u — Wy um)s the argument
explained in [2] may be followed with no changes so that we simply state

Theorem 1. Assume that fe C'(R), uo€ H(0,1) and g€ L*(0, T; H;).
Then there exists a unique solution of (1.3') — (1.5). This solution may be
obtained as the limit of the sequences U ~Num Or Vi o defined by (3.5) and
algorithms (2.1) — (2.3) or (24) — (2.5), respectively. Furthermore, if
u€ C*(Qy), the error in these approximations satisfies 3
sup | W" = u(,t)|m < C[H~1 + (Ar)?],
0sns<M

with C = C(ug,f, 9, T) and M = T/At.

Conditions implying the regularity of the solution u were obtained
in [6]. We should remark that weaker assumptions upon g would suffice.

4. Numerical experiments.

We have implemented the “algorithms described above with cubic
splines as the approximating spaces, that is, we took for ¢ the parameters
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¢ = 4 and r = 2. The value for 6 was always picked as 1/6 and the expe-
riments were performed on the IBM-370/145 at CBPF, with double-pre-
cision in-all runs.

In the first two examples we took g = 0, At = 1/25, h = 1/20 and
used the “predictor-corrector” scheme.

Example 1. The plots in Fig. 1 show the system evolution with fe)=s+
+ 35%/4 + 53/20 and uy(x) = (x(x — 1))3.

,r ux(1072) 4 ux(107?)
Ul 2 ol
0 o 0} —
i t=0 sec B t=0.8 sec
4 ux(1072) 4 ux(1072)
/ X X
-1.6 -1.6- t=2.8sec
t=1.6 sec
4 ux(1072)
0 0 F— o
X
-1.6 -1.6- t =8 sec

Fig. 1

Example 2. In this example, f(s) = s + 3 52/4 so that the equation assumes
the form (1.1). The initial value has a pulse-like shape:

S L18 X A0 D x < 1/4
uo(X) = { 0 1 >x> 1/4
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The plots obtained are shown in Fig. 2.

4 ux(107%) A ux(107%)
0.5+ 0.5+
0 [ \ /1 .
X X
-0.56+ -05+
= t=0.8 sec
apd t=0 sec 1 :
A ux(107%) L ux(1074)
0.5 4 0.5+

B~ er _//\\//'\\;"

0.5+ -0.5-
ol t=1.6 sec ~1ap t=2.8sec
A ux(107%) A ux(107%)
0.5+ 0.5+

N JRYfY b v oo

0 -
/ k \[\/ o :
- v\/ -0.51 \
t=5.2sec -1 t=8sec

Fig. 2

Example 3. For different values of At and h we used both schemes taking
f(s) = s+ 3s%/4 and u(x, t) = sin 2n(x — 1))/50,

which implies
2
cos 2n(x — t)) [T%G sin 2n(x — t)) — 2—’;—]
The variation of the error thus obtained is consistent with the estimates
deduced (see Table 1) and further indicates a sensibly better performance
of the first algorithm, as compared to the second one (see Table 2).

o
g(x’ t) . 50
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Table 1
At =15 At =
h=110 h=110
Time Maximum Maximum Maximum Maximum

Absolute error Relative error Absolute error Relative error
0.00000E + 0 —4.51652E—-6 —2.37447E — 4 —451652E—-6 —2.37447E — 4
2.00000E — 1 — 1.15600E — 3 — 1.07870E — 1 494997E — 6 2.51961E — 4
4.00000E — | —197411E-3 — 1.09087E — 1 5.34073E -6 3.46570E — 4
6.00000E — 1 —221629E -3 — 1.11033E-1 6.34775E - 6 3.75906E — 4
8.00000E — 1 — 1.81954E — 3 —1.12453E — 1 7.15064E — 6 395138E —4
1.00000E + 0 8.99359E — 4 1.05613E — 1 8.34852E -6 7.79031E — 4
1.20000E + 0 — 2.86002E — 4 —227742E -1 9.55385E -6 7.49411E — 4
1.40000E + 0 —1.39203E -3 —1.09193E - 1 1.06996E — 5 6.94320E — 4
1.60000E + 0 —2.09303E -3 —1.10037E — 1 1.16688E — S 691015E — 4
1.80000E + 0 2.18458E — 3 1.12772E -1 1.25619E — 5 1.47516E — 3
2.00000E + 0 1.64311E—3 1.12701E - 1 1.39246E — 5 1.29935E -3
2.20000E + 0 —6.31835E—4 —1.02233E -1 1.52075E -5 1.11077E - 3
2.40000E + 0 —5.67863E — 4 — 1.14170E — 1 1.63759E -5 1.06290E — 3
2.60000E + 0 — 1.59807E — 3 —1.09612E — 1 1.73626E — 5 1.02819E -3
2.80000E + 0 2.17252E-3 1.12149E — | 1.81386E — 5 1.00232E -3
3.00000E + 0 2.11528E—3 1.11207E — 1 1.86928E — 5 9.82739E — 4
3.20000E + 0 — 1.44459E - 3 — L1331SE—1 —195441E -5 — 1.42752E -3
3.40000E + 0 —3.5451SE—4 —141431E—-1 —207743E -5 — 1.34808E — 3
3.60000E + 0 —8.38713E—-4 —9.84910E — 2 —2.18145E -5 —1.29183E-3
3.80000E + 0 1.78245E — 3 1.10161E — 1 — 2.26468E — 5 — 1.125144E -3
4.00000E + 0 —221111E-3 — 1.11434E — 1 —2.32565E -5 — 1.22266E — 3
4.20000E + 0 —2.00708E — 3 — 1.10910E — 1 —236324E -5 —1.20292E -3
4.40000E + 0 —1.21681E -3 — 1.13545E — 1 —2.37670E — 5 — 1.19070E — 3
4.60000E + 0 —6.97354E -5 —2.78194E — 2 —2.37398E -5 — 1.40584E — 3
4.80000E + 0 1.09830E — 3 1.02486E — 1 —2.46635E -5 — 1.36288E — 3
5.00000E + 0 —194127E < 3 — 1.10764E — 1 —2.53639E -5 —1.33345E -3
5.20000E + 0 —222242E-3 — 1.11340E — 1 —2.58298E — 5 —1.31477E -3
5.40000E + 0 — 1.86095E — 3 —1.10203E -1 - 2.605'}6E -5 —1.30525E-3
5.60000E + 0 —9.62307E - 4 — 1.13006E — 1 —2.60315E -5 —1.30415E -3
5.80000E + 0 —2.18563E -4 — 3.04894E + 3 —257634E -5 —1.31140E -3
6.00000E + 0 — 1.34044E - 3 — 1.14024E — 1 —2.52532E-5 —1.32764E - 3
6.20000E + 0 —207177E-3 —L11412E-1 —249219E-5 — 1.26856E — 3
6.40000E + 0 —2.19801E -3 —1.11882E -1 — 2.52406E - 5 — 1.26452E -3
6.60000E + 0 1.68889E — 3 1.15841E — | —2.53135E-5 —1.26817E -3
6.80000E + 0 —6.95768E — 4 - 1.12579E - | —2.51405E -5 —1.27969E - 3
7.00000E + 0 - 5.02552E—4 — 1.01038E— 1 —247255E-5 — 1.29989E - 3
7.20000E + 0 — 1.55492E -3 - 1.13572E-1 —240758E -5 — 1.33040E - 3
7.40000E + 0 2.15954E - 3 1.11479E - 1 —2.32026E — S —1.37402E - 3
7.60000E +0 2.13918E-3 1.12464E — | —221205E -5 — 1.43544E - 3
7.80000E + 0 — 1.49479E - 3 - 1.17253E -1 2.16218E -5 1.10058E — 3
8.00000E + 0 -421132E—-4 - 1.68011E -1 —2.12820E-5 — 1.11886E — 3
8.20000E + 0 - 7.77702E - 4 - 1.05628E — | —2.07106E - 5 — 1.14445E - 3
8.40000E + 0 1.74201E - 3 1.13041E — 1 —1.99165E -5 —1.17943E - 3
8.60000E + 0 2.20927E -3 LLI1341E -1 - 1.89145E -5 - 1.22739E-3
8.80000E +0 —2.03705E -3 — 1.12566E — 1 - 1.77222E -5 — 1.29445E - 3
9.00000E + 0 —1.27459E - 3 — 1.18938E - | ~ 1.6360SE -5 -1.39171E-3
9.20000E + 0 - 1.38168E — 4 - 1.10013E-1 1.54129E -5 8.51705E - 4
9.40000E + 0 1.03990E - 3 1.07928E — | 1.46538E - 5 8.67780E — 4
9.60000E + 0 1.90867E — 3 1.08904E — 1 1.36884E — 5 8.88270E — 4
9.80000E + 0 —222473E-3 - 1.11236E - | 1.25435E -5 9.83928E -4
1.00000E + 1 1.13383E-5 1.05802E - 3

- 1.90102E -3 - 1.12576E - 1

67
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Table 2
Maximum Absolute Error
At = 1/15 At = 1)25
h=1/10 = 1/20
Time Algorithm 1 Algorithm 2 Algorithm 1 Algorithm 2
0.00000E + 0 —4.51652E -6 —4.51652E-6 —2.76795E -1 —2.7679SE -7
6.66666E — 2 4.49580E - 5 4.49580E - 5 9.40378E — 6 9.40378E -6
1.33333E-1 —8.52266E - 5 1.73508E — 4 — 1.86729E -5 —3.81426E -5
2.00000E - 1 —1.27154E - 4 —3.04737E-4 2.77060E — 5§ —6.65822E -5
2.66666E — 1 — 1.58268E —4 —4.16813E — 4 — 3.64292E -5 — 9.40829E -5
3.33333E-1 —1.92236E -4 —5.23510E-4 —447531E-5 —1.20707E - 4
4.00000E — 1 —2.15404E — 4 —6.10108E — 4 — 5.24396E — 5 —1.45522E -4
4.66666E — 1 —2.28858E — 4 —6.69713E—-4 —597207E-5 — 1.69130E — 4
5.33333E-1 —242922E-4 —721818E—-4 —6.59036E — 5 — 1.90063E — 4
6.00000E — 1 —2.38599E - 4 —7.34975E -4 — 7.18487E — 5 —2.09551E—-4
6.66666E — 1 —235313E—-4 —7.33629E -4 —7.62094E — 5 —2.25667E — 4
7.33333E-1 —221221E-4 — 7.07349E —4 — 8.05566E — 5 — 2.39946E — 4
8.00000E — 1 1.95034E — 4 —6.49299E — 4 —8.30827E-5 —2.50656E — 4
8.66666E — 1 1.71499E — 4 —5.82976E — 4 —8.53605E — 5 —2.58987E — 4
9.33333E-1 1.34516E — 4 —4.86409E — 4 — 8.60595E — 5 —2.63813E—4
1.00000E + 0 9.81930E — S —3.79377E -4 —86105S1E—5 —2.65705E — 4
1.06666E + 0 —5.66962E — 5 —2.59177E -4 —849471E -5 —2.64462E — 4
1.13333E+0 —1.41062E — 5 1.27942E — 4 — 8.26968E — 5 —2.59823E -4
1.20000E + 0 —3.19312E-5 —8.34261E—-6 —797302E -5 —2.52568E — 4
1.26666E + 0 — 7.60889E — 5 1.40580E — 4 —7.53927E-5 —2.41659E — 4
1.33333E+0 —1.13227E -4 2.65305E — 4 —7.07340E - 5 —2.28641E—4
1.40000E + 0 — 1.52850E — 4 3.88821E — 4 6.45506E — 5 —2.12074E -4
1.46666E + 0 — 1.83740E — 4 4.95509E — 4 5.83404E — 5 —193744E — 4
1.53333E+0 — 2.06849E — 4 —581897E—-4 S5.07851E -5 — 1.72463E — 4
1.60000E + 0 —2.29684E — 4 —6.61452E — 4 431754E -5 — 1.49660E — 4
1.66666E + 0 —2.35057E -4 —7.04752E -4 3.46342E -5 — 1.24666E — 4
1.73333E+0 2.42746E — 4 —7.35451E—4 —2.59700E - 5 —9.84673E-5
1.80000E + 0 2.38052E -4 — 7.40340E — 4 — 1.68030E — 5 —7.09131E-5
1.86666E + 0 221710E—4 —7.11853E-4 — 7.59468E — 6 427233E-5
1.93333E+0 2.07091E -4 —6.74214E -4 —197956E — 6 1.39503E - 5§
2.00000E +0 1.76644E — 4 —6.01854E — 4 —1.12661E -5 1.51641E -5
2.06666E + 0 — 1.46643E — 4 —S5.15661E — 4 —2.06105SE -5 4.40619E - 5
2.13333E+0 — 1.09601E — 4 —4.12950E - 4 —294782E - § 7.21867E - 5
2.20000E + 0 —6.77359E -5 291440E -4 —382811E-5 9.97091E -5
2.26666E + 0 —2.65010E -5 1.68823E — 4 —4.63416E -5 1.25778E - 4
2.33333E+0 —2.11495E -5 3.41982E-5 —5.40788E - § 1.50522E - 4
2.40000E +0 — 6.24694E — 5 1.01258E —4 —6.10285E -5 1.73395E -4
2.46666E + 0 — 1.04961E — 4 2.33613E-4 —6.72790E - § 1.94067E — 4
2.53333E+0 —1.42216E -4 3.55822E -4 —7.28392E -5 —2.12867E - 4
2.60000E + 0 —1.73351E-4 463143E—4 —7.72080E — 5 —2.28604E — 4
2.66666E + 0 —2.03964E — 4 —5.65220E -4 —8.11559F -5 —2.42438E -4
2.73333E+ 0 2.19078E — 4 —6.36232E -4 —8.84502E -5 —2.52493E -4
2.80000E + 0 2.37388E—4 — 6.98082E — 4 —8.56284E — 5 —2.60517E—4
2.86666E + 0 2.42468E — 4 —732711E-4 — 8.58546E — 5 — 2.64466E — 4
293333E+0 2.36395E—4 —7.35817E-4 8.60043E — 5 —266141E—4
3.00000E + 0 2.31433E-4 — 7.28686E — 4 8.43683E - 5 ~263913E-4
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