Complete minimal surfaces with total curvature - 2π

Chi Cheng Chen

1. Introduction.

In 1964, Osserman [6] showed that the total curvature of each complete, regular and orientable, minimal surface in \mathbb{R}^3 is a multiple of -4π ; and in the case of total curvature -4π , the only possible surfaces are the Enneper's surface and the Catenoid. And in 1967, Chern and Osserman [3] showed that the total curvature of each complete, regular and orientable, minimal surface in \mathbb{R}^n (n > 3) is multiple of -2π .

In this paper, we would like to discuss some geometric properties of those surfaces with total curvature -2π . All surfaces will be assumed to be regular and orientable. The following theorems will be proved.

Theorem 1. Let S be a minimal surface in \mathbb{R}^n , given by the immersion $\vec{x}: M^2 \to \mathbb{R}^n$. If the total curvature of S, $C(S) = -2\pi$, then

- (i) M is simply connected and S is parabolic.
- (ii) the gauss map $g: M \to P^{n-1}(\mathbb{C})$ is injective and degenerate
- (iii) $\vec{x}(M) \subset \mathbb{R}^4$, and \vec{x} is an embedding
- (iv) S does not satisfy the Ricci condition, i.e., S is not locally isometric to any minimal surface in \mathbb{R}^3 .

Theorem 2. Any two complete isometric minimal surfaces in euclidean spaces, with total curvature -2π , are congruent.

Theorem 3. There exists a natural way to describe the set of all non-congruent complete minimal surfaces in euclidean spaces, with total curvature -2π , as the set of all positive real numbers.

2. Notations and basic facts. The second is valued to second is valued to second in value of the second in value o

Let $\vec{x}: M^2 \to \mathbb{R}^n$ be an minimal immersion, where M is an orientable differentiable 2-manifold. In terms of isothermal parameters (ξ_1, ξ_2) the immersion is characterized by the following properties:

$$\sum_{k=1}^{n} \phi_k^2(\zeta) \equiv 0$$

where
$$\zeta = \xi_1 + i\xi_2$$
, $\phi_k(\zeta) = \frac{\partial x_k}{\partial \xi_1} - i\frac{\partial x_k}{\partial \xi_2}$, $\vec{x} = (x_1, ..., x_n)$ and

(2.2)
$$\phi_k(\zeta)$$
's are analytic functions of ζ

(2.3)
$$\sum_{k=1}^{n} |\phi_k(\zeta)|^2 \neq 0 \text{ for all } \zeta, \text{ and}$$

(2.4)
$$\vec{x}(\zeta) = Re \int_{\zeta_0}^{\zeta} \vec{\phi}(\zeta) d\zeta$$

integrated along any path with any fixed initial point, where $\vec{\phi} = (\phi_1, ..., \phi_n)$. Geometrically, (2.1) means the parameters (ξ_1, ξ_2) are isothermal, (2.2) means the immersion is harmonic in terms of isothermal parameters, and (2.3) means the regularity of the surface.

The gauss map $g: M \to P^{n-1}(\mathbb{C})$ is defined by

(2.5)
$$g(\zeta) = \left[\overline{\phi}_1(\zeta), ..., \overline{\phi}_n(\zeta)\right]$$

in terms of homogeneous coordinates. In fact, $g(\zeta)$ represents the oriented tangent plane generated by $\frac{\partial \vec{x}}{\partial \xi_1}(\zeta)$ and $\frac{\partial \vec{x}}{\partial \xi_2}(\zeta)$. For details, see [3].

3. Proof of theorem 1.

(i) Since the surface is orientable, we use isothermal parameters to put a Riemann surface structure on the manifold M. Since S has finite total curvature, it's known [3] that M is conformally equivalent to a compact Riemann surface W punctured at a finite number of points $p_1, ..., p_r, r \ge 1$; and the differentials $\phi_k(\zeta) d\zeta$ are meromorph at each p_i .

Let γ be the genus of W, X the Euler characteristic of M, then $X = 2 - 2\gamma - r$.

By a theorem of Chern and Osserman [3], we have

(3.1)
$$C(S) \le 2\pi(X - r) = 2\pi(2 - 2\gamma - 2r)$$

with $C(S) = -2\pi$. Thus we can conclude that

$$(3.2) \gamma = 0 and r = 1$$

that is M is conformally equivalent to the complex plane \mathbb{C} . Therefore M is simply connected and S is parabolic.

(ii) Since $M = \mathbb{C}$ and the analytic functions $\phi'_k s$ are meromorph at ∞ , $\phi'_k s$ are polynomials. From $C(S) = -2\pi$, we have

$$\max_{k} \text{ degree } \phi_{k} = 1,$$

because the total order of intersection with each hyperplane in $P^{n-1}(\mathbb{C})$, which does not contain the image of the extended gauss map

$$\hat{g}:\hat{\mathbb{C}}\to P^{n-1}(\mathbb{C}),$$

has to be 1.[3]. Accordingly, let

$$\phi_k(\zeta) = a_k \zeta + b_k, \ a_k, b_k \in \mathbb{C}$$

and

$$\vec{a} = (a_1, ..., a_n), \ b = (b_1, ..., b_n)$$

Then we have

$$\vec{\phi}(\zeta) = \zeta \vec{a} + \vec{b}$$

From (2.3), (3.3), (3.6), we can conclude that

(3.7)
$$\vec{a}$$
 and \vec{b} are linearly independent in \mathbb{C}^n

Therefore, from (2.5), (3.6), (3.7), we see that the gauss map g is injective, and degenerate (i.e., the gauss image lies in some hyperplane of the projective space $P^{n-1}(\mathbb{C})$).

(iii) Let's write $a_k = \alpha_k + i\beta_k$, $b_k = u_k + i\nu_k$. Then

(3.8)
$$\vec{a} = \vec{\alpha} + i\vec{\beta}, \ \vec{b} = \vec{u} + i\vec{v}$$

where $\vec{\alpha} = (\alpha_1, ..., \alpha_n)$, $\vec{\beta} = (\beta_1, ..., \beta_n)$, $\vec{u} = (u_1, ..., u_n)$, $\vec{v} = (v_1, ..., v_n)$ are vectors in \mathbb{R}^n .

From (2.1), (3.4), we have

$$\sum_{k=1}^{n} a_k^2 = 0, \ \sum_{k=1}^{n} b_k^2 = 0 \quad \text{and} \quad \sum_{k=1}^{n} a_k b_k = 0$$

i.e.,

$$|\vec{\alpha}| = |\vec{\beta}|, \ \vec{\alpha} \perp \vec{\beta}; \ |\vec{u}| = |\vec{v}|, \ \vec{u} \perp \vec{v}$$
 and

(3.9)
$$\langle \vec{\alpha}, \vec{u} \rangle = \langle \vec{\beta}, \vec{v} \rangle, \ \langle \vec{\alpha}, \vec{v} \rangle = -\langle \vec{\beta}, \vec{u} \rangle$$

From (2.4), (3.6), we have

(3.10)
$$\vec{x}(\zeta) = Re\left(\frac{\zeta^2}{2}\vec{a} + \zeta\vec{b}\right) = \frac{\xi_1^2 - \xi_1^2}{2}\vec{\alpha} - \xi_1\xi_2\vec{\beta} + \xi_1\vec{u} - \xi_2\vec{v};$$

here we assume that $\vec{x}(0) = 0$

From (3.10), we see immediatly that $\vec{x}(M) \subset \mathbb{R}^4$.

Now we want to show that $\vec{\alpha}$, $\vec{\beta}$, \vec{u} , \vec{v} are linearly in dependent in \mathbb{R}^n . Let

(3.11)
$$c_1 \vec{\alpha} + c_2 \vec{\beta} + c_3 \vec{u} + c_4 \vec{v} = 0, \ c_i \in \mathbb{R}$$

be given. By taking inner product with $\vec{\alpha}$, $\vec{\beta}$, \vec{u} , \vec{v} , respectively, we have

(3.12)
$$\begin{cases} c_1 |\vec{\alpha}|^2 + c_3 \langle \vec{\alpha}, \vec{u} \rangle + c_4 \langle \vec{\alpha}, \vec{v} \rangle = 0 \\ c_2 |\vec{\beta}|^2 + c_3 \langle \vec{\beta}, \vec{u} \rangle + c_4 \langle \vec{\beta}, \vec{v} \rangle = 0 \\ c_1 \langle \vec{\alpha}, \vec{u} \rangle + c_2 \langle \vec{\beta}, \vec{u} \rangle + c_3 |u|^2 = 0 \\ c_1 \langle \vec{\alpha}, \vec{v} \rangle + c_2 \langle \vec{\beta}, \vec{v} \rangle + c_4 |\vec{v}|^2 = 0 \end{cases}$$

From (3.9), (3.12), we can show that $-c_2\vec{a} + c_1\vec{\beta} - c_4\vec{u} + c_3\vec{v}$ is orthogonal to $\vec{\alpha}, \vec{\beta}, \vec{u}$ and \vec{v} . Hence we have

(3.13)
$$-c_2\vec{\alpha} + c_1\vec{\beta} - c_4\vec{u} + c_3\vec{v} = 0$$

From (3.11) (3.13), we get phytogog ago aw (3.8) (8.8) (8.8) more

(3.14)
$$(c_1 - ic_2) (\vec{\alpha} + i\vec{\beta}) + (c_3 - ic_4) (\vec{u} + i\vec{v}) = 0$$

From (3.7), (3.8), (3.14), we have $c_1 = c_2 = c_3 = c_4 = 0$, which shows that

(3.15) $\vec{\alpha}, \vec{\beta}, \vec{u}, \vec{v}$ are linearly independent in \mathbb{R}^n

From (3.10), (3.15), we see that $\vec{x}(M)$ is homeomorphic linearly with a graph. Therefore \vec{x} is an embedding.

(iv) A riemannian metric ds² on a surface is said to satisfy the Ricci condition if its Gauss curvature K satisfies K < 0, and if the new metric $d\hat{s}^2 = \sqrt{-K} ds^2$ is flat, i.e., its Gauss curvature \hat{K} satisfies $\hat{K} \equiv 0$.

It's that every metric on a minimal surface in \mathbb{R}^3 satisfies this condition away from the points where K = 0. As a matter of fact, Ricci [1 p. 124] showed that every metric satisfying this condition can be locally realized on a minimal surface in R³. More details can be found in the paper of Lawson [4].

With respect to isothermal parameters $\zeta = \xi_1 + i\xi_2$, the metric induced is given by

$$(3.16) ds^2 = \lambda^2 |d\zeta|^2$$

and the Gauss curvature is given by what award aw.(0.6): (4.5) moral

$$(3.17) \qquad K = -\frac{\Delta \log \lambda}{\lambda^2} = -\frac{\Delta \log \lambda^4}{4\lambda^2}. \quad (3.18)$$

For minimal surface we have [3] 0 = (0)% tada emuses ew end

(3.18)
$$\lambda^2 = \frac{1}{2} |\phi|^2, K = -\frac{4 |\phi \wedge \phi'|^2}{|\phi|^6},$$

where $|\phi \wedge \phi'|^2 = \sum_{1 \le i \le k \le n} |\phi_j \phi'_k - \phi_k \phi'_j|^2$.

Therefore ds² satisfies the Ricci condition if and only if

(3.19)
$$\Delta \log (-K\lambda^4) \equiv 0 \Leftrightarrow \Delta \log \frac{|\phi \wedge \phi'|^2}{|\phi|^2} \equiv 0 \Leftrightarrow \hat{\partial} \bar{\partial} \log \frac{|\phi \wedge \phi'|^2}{|\phi|^2} \equiv 0,$$

$$\partial \bar{\partial} \log \frac{|\phi \wedge \phi'|^2}{|\phi \cdot|^2} = 0,$$

where
$$\partial = \frac{\partial}{\partial \zeta}$$
, $\bar{\partial} = \frac{\partial}{\partial \bar{\zeta}}$.

In our case, from (3.6), (3.7), we have

$$|\phi \wedge \phi'|^2 = \sum_{1 \le j < k \le n} |b_j a_k - a_j b_k| = \text{constant} > 0$$

$$\partial \bar{\partial} \log |\phi|^2 = \frac{1}{|\phi|^4} (|\vec{a}| |\vec{b}|^2 - |\langle \vec{a}, \vec{b} \rangle|^2)$$

which is positive because of the Schwarz inequality. Therefore S does not satisfy the Ricci condition.

Remark. For complete minimal surfaces in \mathbb{R}^3 , $C(S) = -4\pi$ is equivalent to the (1-1)-ness of the gauss map [6]. However, for complete minimal surfaces in \mathbb{R}^n , the (1-1)-ness of the gauss map is just a necessary condition for the total curvature being -2π . As a matter of fact,

$$\vec{x}(\zeta) = \begin{cases} (\zeta^m, \zeta^2, \zeta), & (m \ge 3) \\ (e^{\zeta}, \zeta^2, \zeta) \end{cases} \quad \zeta \in \mathbb{C}$$

are complete minimal surfaces in $\mathbb{C}^3 = \mathbb{R}^6$, with total curvature $-2\pi(m-1)$ -1) and $-\infty$, respectively, and, their gauss maps are injective.

4. Proofs of theorems 2 and 3.

From theorem 1, we may assume all these surfaces lie in \mathbb{R}^4 . Given $\vec{x}: M \to \mathbb{R}^4$; $y: N \to \mathbb{R}^4$, two complete minimal surfaces with total curvature -2π , let $\theta: M \to N$ be an isometry between them, with respect to the induced metrics.

From (3.10), we see that \vec{x} is isometric to the holomorphic curve $\psi: M \to \mathbb{C}^4$, given by

(4.1)
$$\psi(\zeta) = \frac{1}{\sqrt{2}} \left(\frac{\zeta^2}{2} \vec{a} + \zeta \vec{b} \right)$$

which lies fully in a two dimensional complex subspace. After a unitary transformation, we may assume ψ lie in \mathbb{C}^2 , and

(4.2)
$$\vec{a} = (a, 0), \ \vec{b} = (b, c) \text{ with } a \neq 0, \ c \neq 0.$$

Calabi [2] showed that the set $\Gamma(\psi)$ of all non-congruent minimal surfaces which are isometric to ψ , with the same parameter, is naturally described by the set of all 2×2 symmetric complex matrices P with the following properties:

- (i) $I_2 \bar{P}P$ is semi-positive definite
- (ii) ${}^t\psi' \cdot P \cdot \psi'' \equiv 0$

From (4.1) and (4.2), it can be easily checked that this set contains only the zero matrix, i.e., there is only one class of non-congruent minimal surfaces isometric to ψ . Therefore $\vec{y} \circ \theta$ and \vec{x} are congruent and theorem 2 is proved.

From the proof of theorem 2, we see that all these non-congruent surfaces are determined by the holomorphic curves whose tangents are "horizontal lines" in \mathbb{C}^2 of the form $\psi'(\zeta) = \frac{1}{\sqrt{2}}(a\zeta + b, c)$, with $a \neq 0$, $c \neq 0$. And any two such holomorphic curves ψ_1, ψ_2 are isometric if and only if their tangents ψ'_1, ψ'_2 have the same module at the appropriate corresponding points; which holds if and only if the second coordinates c_1, c_2 have the same module. Therefore theorem 3 is proved.

QED.

Bibliography

- [1] W. Blaschke, Einführung in die Differential Geometrie, Springer, Berlin, 1950.
- [2] E. Calabi, Quelques applications l'analyse complexe aux surfaces d'aire minima, Topics in complex manifolsd, Les Presses de L'Université de Montreal, 1968.
- [3] S. S. Chern and R. Osserman, Complete minimal surfaces in euclidiean n-space, J. Analyse Math, 19 (1967), 15-34.
- [4] B. Lawson, Some intrinsic characterization of minimal surfaces, J. Analyse Math. 24 (1971), 151-161.
- [5] B. Lawson, Lectures on minimal submanifolds, monografias de Matemáticas, IMPA, 1973.
- [6] R. Osserman, Global properties of minimal surfaces in E³ and Eⁿ, Ann. of Math. (2) 80 (1964), 340-264.

Instituto de Matemática é Estatística Universidade de São Paulo São Paulo – Brasil