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Complete minimal surfaces with total curvature - 27
Chi Cheng Chen

1. Introduction.

In 1964, Osserman [6] showed that the total curvature of each com-
plete, regular and orientable, minimal surface in R* is a multiple of —47;
and in the case of total curvature —4n, the only possible surfaces are the
Enneper’s surface and the Catenoid. And in 1967, Chern and Osserman
[3] showed that the total curvature of each complete, regular and orien-
table, minimal surface in R" (n > 3) is multiple of —2x.

In this paper, we would like to discuss some geometric properties
of those surfaces with total curvature —2n. All surfaces will be assumed
to be regular and orientable. The following theorems will be proved.

Theorem 1. Let S be a minimal surface in R", given by the immersion

X :M? > R". If the total curvature of S, C(S) = —2m, then

(1) M is simply connected and S is parabolic.

(ii) the gauss map g : M — P"~}(C) is injective and degenerate

(iii) X(M) = R%, and % is an embedding

(iv) S does not satisfy the Ricci condition, i.e., S is not locally isometric
to any minimal surface in R3.

Theorem 2. Any two complete isometric minimal surfaces in euclidean
spaces, with total curvature —2m, are congruent.

Theorem 3. There exists a natural way to describe the set of all non-con-
gruent complete minimal surfaces in euclidean spaces, with total curvature
—2m, as the set of all positive real numbers.

2. Notations and basic facts.

Let X : M? —» R" be an minimal immersion, where M is an orientable
differentiable 2-manifold. In terms of isothermal parameters (¢,,¢,)
the immersion is characterized by the following properties:
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@.1) 3 o0 =0
where { =&, + i&,, ¢ (0) = ng:‘ - i%, X = (x;,...,x,) and
(2.2) _ ¢({)'s are analytic functions of
2.3) Y |40 %0 for all {, and
k=1
4
(24) X() = Re cﬂS(C) d¢

integrated along any path with any fixed initial point, where ¢ =(¢y, ....0,)
Geometrically, (2.1) means the parameters (¢,,&,) are isothermal,
(2.2) means the immersion is harmonic in terms of isothermal parameters,
and (2.3) means the regularity of the surface.
The gauss map g: M — P"~1(C) is defined by

2.5) 9@) = [¢,(0), ..., .(0)]

in terms of homogeneous coordinates. In fact, g({) represents the oriented

a—x(C). For details, .see [3].

tangent plane generated by %—(L’) and
o0&, ¢,

3. Proof of theorem 1.

(1) Since the surface is orientable, we use isothermal parameters to put a
Riemann surface structure on the manifold M. Since S has finite total
curvature, it's known [3] that M is conformally equivalent to a compact
Riemann surface Wpunctured at a finite number of points p,, ...,p,,r >1;
and the differentials ¢,()d{ are meromorph at each p;.

Let y be the genus of W, X the Euler characteristic of M, then
X=2-2y—r.

By a theorem of Chern and Osserman [3], we have

(3.1) C(S) < 2n(X —r) = 27(2 — 2y — 2r)
with C(S) = —2n. Thus we can conclude that
(3.2 y=0 and r=1

that is M is conformally equivalent to the complex plane C. Therefore
M is simply connected and S is parabolic.
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(ii) Since M = C and the analytic functions &s are meromorph at oo, ¢;s :
are polynomials. From C(S) = —2n, we have

(3.3) max degree ¢, =1,

- because the total order of intersection with each hyperplane in P"~!(C),

which does not contain the image of the extended gauss map
g:C— PO,
has to be 1.[3]. Accordingly, let

34 ol = al + by, a, b, eC

and

(3.5) G = (ay;5 a0 b = (byy.sn, by)
Then we have

(36) $O =ta+b

From (2.3), (3.3), (3.6), we can conclude that

(3.7) @ and b are linearly independent in C"

Therefore, from (2.5), (3.6), (3.7), we see that the gauss map g is injective, and
degenerate (i.e., the gauss image lies in some hyperplane of the projective
space P"~!(C)).

(i) Let’s write a, = o, + ify, by = u, + iv,. Then

(3.8) A=%+ip, b=%+ iV

where @ = (a;, ..., a,), E =By, Bd =(ug . u), ¥ =y, ..., v,) are
vectors in R".

From (2.1), (3.4), we have
2 a=0%b=0 and Y ab =0
k=1 k=1 k=1
ie., = 9
la| =|B]|, & LB; |@|=|v|,# LV and
(39) @@y =B,V (@,9) = - (Bu)
From (2.4), (3.6),we have

3 Kot HENT igriies L
(3.10) x(C)=Re<?a+Cb>= SN &’—flézﬂ+élu—€zi";

here we assume that X(0) = 0
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From (3.10), we see immediatly that ¥(M) = R
Now we want to show that @, §, ii, ¥ are linearly in dependent in R".
Let

(3.11) 1@+ coff + s + ¢,V =0, c;eR

be given. By taking inner product with &, B, ii, ¥, respectively, we have

ey |8 + c3 @@ + ¢, (@) =0
c2|BI? + s Bty + e, (B¥) =0
¢, @iy + ¢, (B, i) + c;|ul =0
¢ &V) + ¢, (BV) + ¢ [F* =0

(3.12)

From (3.9), (3.12), we can show that —c,d + C,B ~Cgll + cV 18
orthogonal to @, f,u# and V. Hence we have

(3.13) —c@ + ¢,f— cqfi + ¢V =0
From (3.11) (3.13), we get
(3.14) (¢, —icy) @+ iB) + (c5—icy) (@ + W) =0

From (3.7), (3.8), (3.14), we have ¢, =c, =c; =c, =0, which shows that

(3.15) a, B, i,V are linearly independent in R"

From (3.10), (3.15), we see that X(M) is homeomorphic linearly with
a graph. Therefore X is an embedding.
(iv) A riemannian metric ds* on a surface is said to satisfy the Ricci con-
dition if its Gauss curvature K satisfies K < 0, and if the new metric
ds? = /—Kds? is flat, ie., its Gauss curvature K satisfies K = 0.

It’s that every metric on a minimal surface in R? satisfies this condition
away from the points where K = 0. As a matter of fact, Ricci [1 p. 124]
showed that every metric satisfying this condition can be locally realized
on a minimal surface in R3. More details can be found in the paper of
Lawson [4].

With respect to isothermal parameters (=¢&, + i&,, the metric
induced is given by

(3.16) ds* = 22| dl |?
and the Gauss curvature is given by

_ Alogi _ Alogi*
(3.17) K= 2 (3 T i |

For minimal surface we have [3]
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I 4| A @' |?
24 5N 2 i i | il
(3.18) 2 =56k K e
where | ¢ A ¢ |? ) ZK | 01— 0’|
<j<k<n

Therefore ds? satisfies the Ricci condition if and only if

(3.19) Alos (KA =0 2 Adeg @T;T‘Ei Ly

2
65]0g|¢A¢| =0,

e 18TEnd b

where 0 =i, 0 =i.
a¢ oC
In our case, from (3.6), (3.7), we have
o Ad'|? = Y |ba,—apb,| = constant >0
1<j<k<n

and
20 tog |9 [* = e (a] [BF = [<aBy )

which is positive because of the Schwarz inequality. Therefore S does
not satisfy the Ricci condition.
Q.E.D.

Remark. For complete minimal surfaces in R? C(S) = — 4n is equi-
valent to the (I — 1)-ness of the gauss map [6]. However, for complete
minimal surfaces in R”, the (1 — 1)-ness of the gauss map is just a necessary
condition for the total curvature being —2n. As a matter of fact,

m ¥2

are complete minimal surfaces in C* = R®, with total curvature — 27n(m —
— 1) and — oo, respectively, and, their gauss maps are injective.

4. Proofs of theorems 2 and 3.

From theorem 1, we may assume all these surfaces lie in R*. Given
X:M - R* y:N - R* two complete minimal surfaces with total cur-
vature —2m, let 6 : M — N be an isometry between them, with respect
to the induced metrics.

From (3.10), we see that X is isometric to the holomorphic curve
Y : M — C* given by
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Y -
4.1 O=—(=d+ (b
@) Ho =5 (Fa+ )
which lies fully in a two dimensional complex subspace. After a unitary
transformation, we may assume ¥ lie in C2 and

4.2) @ =(a,0), b=(bc) with a0, ¢ 0.

Calabi [2] showed that the set T'(y) of all non-congruent minimal
surfaces which are isometric to y, with the same parameter, is naturally
described by the set of all 2 x 2 symmetric complex matrices P with the
following properties:

(i) I, — PP is semi-positive definite
(i) Y Py =0

From (4.1) and (4.2), it can be easily checked that this set contains
only the zero matrix, i.e., there is only one class of non-congruent minimal
surfaces isometric to y. Therefore y o 6 and X are congruent and theorem
2 is proved.

From the proof of theorem 2, we see that.all these non-congruent
surfaces are determined by the holomorphic curves whose tangents are

“horizontal lines” in C? of the form Y = %(a{—l— b, ¢), with a # 0,

¢ #0. And any two such holomorphic curves ¥y, ¥, are isometric if
and only if their tangents ¥, y/, have the same module at the appopriate
corresponding points; which holds if and only if the second coordinates
¢y, ¢, have the same module. Therefore theorem 3 is proved.

QED.
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