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SK, R[X, Y]/(X? + Y2 — 1): Remarks on an
example of Bass and Milnor

Leslie G. Roberts

In [1] pages 338 and 714 it is proved that SK, R[X, Y]/(X? +
+ Y? — 1) = Z/2Z (R = real numbers, Z = integers). This example
is mentioned also in [3] and [4]. Here I give a new proof, which uses
Quillen’s exact sequence of localization and basic facts about the projective
line over a field (or ring). Granted these tools it is simpler than the methods
in [1] and yields information for other rings besides R, as well as about
higher K;.

1. K-Theoretic preliminaries. A good account of the functors K, and K,
(including some historical notes) can be found in [3]. This paper is chiefly
concerned with K, which I will now define. Let A be a ring with 1 and
let GL,(A) be the group of n x n invertible matrices over 4. Let e;{A)
(i # j) be the matrix with I's down the diagonal, 2 at the ij position, and
0’s elsewhere. Let E,(A4) be the subgroup of GL,(A) generated by e;{A),
A€A, 1 <i# j<n We can think of GL,(4) as a subgroup of GL,4(A)
by identifying M € GL,(4) with

(0 9)etLuita

Let GL(A) = () GL,(A). Under the above identification EANCE L ()
n=1

so we can also form E(4) = () E(A). It turns out that E(A) is a

n=1

normal subgroup of GL(A) and that the quotient GL(A)/E(A) is an abelian
group, which we define to be K,(A4). Now assume that A4 is commutative,
and let U(A) be the units of A. Then the determinant defines a homo-
morphism det: K,(A4) - U(A) which is split by sending A€ U(A) to the
matrix A€ GL,(A). The kernel of det is defined to be SK 1(4). Thus we
have a direct sum decomposition K(4) = U(A) ® SK (A).

If A is a field (or even a local ring) then elementary row and column
operations show that SK,(4) =0. One of the most easily computed
non-trivial SK,’s is SK; R[X, Y]/(X?+ Y2 — 1), or more generally
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SK, k[X,Y]/(X? + Y?> — 1), k a field. Even in this simplest case the
computation seems to require a fair bit of algebraic geometry, algebraic
number theory, or algebraic topology, as well as tools from algebraic
K-theory. I will give references for the latter as I need them. Here I will
remark only that Milnor in [4] defined groups K,(A4), and more recently
Quillen defined groups K(X), i >0, X a scheme (which agree with the
previously defined groups if i <2 and X is affine). These groups have
certain functorial properties, and the different K, are related by exact
sequiences.

Computations of K, have found arithmetical and topological appli-
cations (see [3] p 359 and 362 respectively).

2. Quillen’s exact sequence.Let A = k[T,, T,]/(aT2 + bT2 — 1) where k
is a field of characteristic #2, a, be k and aT2 + bT? = 0 has no solutions
in k. Suppose that aTg +bT7 — T3 has solutions in k. Any conic in P2
(projective space of dimension 2 over k) that contains a k-rational point
is isomorphic to P, ([6] p6). Thus Spec 4 has been obtained from o
by removing a non-rational point Y = Spec K of degree 2 (K = k(\/w))
where « = — b/a.

We remark that Y, P;, and Spec A4 are all regular schemes, hence
coherent sheaves and vector bundles yield the same Quillen K-theory,
which we denote K;. By proposition 3.2 p 127 of [5] (applied to P} and
the closed subscheme Y) we have an exact sequence

; *
.~ Ki(Y) 25 kP L K4y K (1) > ..

I I

Ki(K) Ki—l(K)

where i, and J* are induced by extension of sheaves by zero and restriction
to an open subset respectively (both exact functors). It is known that
K(Py) = Z ® Z. The most natural choice of basis is the classes of O and
O’ — O(—1) respectively. The first copy of Z gives the rank of a coherent
sheaf. If P is a k-rational point of P} there is an exact sequence

0—0(—1)> 0 0p — 0.

Thus the class of ® — O(—1) corresponds to Spec k = structure sheaf
of any closed k-rational point. Furthermore K(P;) ~ K (k) @ K (k).
This isomorphism is K (P;) ® ., K;(k) 5 K,(P!) given byy ®x - yf*(x)
where f : P, — Spec k is the structure morphism (Proposition 4.3 pl29
of [5]). These observations suggest that K;(Y)Ss K;(P}) ought to be
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the restriction of scalars map K(K)— K k) followed by inclusion into
the second copy of K(k). In the next section I show that this is indeed
the case.

3. Projection onto direct summands. In this section it is more conve-
nient to take the classes of (—1) and ¢ — (’/(— 1) as the basis of K(P;}).
Consider the homomorphism f, :K{(P})— K{k). If i =0 this sends F
to ¥(F)e Z = Ky(k). (F a coherent sheaf on X). By the Riemann-Roch
Theorem x()(—1) = 0 and x(C) = 1 so f, on the i = 0 level is projection
onto the second copy of Z. By the projection formula (proposition 2.10
p 126 of [5]) f, is also projection onto the second summand for i > 0.

Let U = A, be the affine subscheme obtained by removing any
k-rational point, and j: U — P} be the inclusion. From the definition of
Kg-action (p 124 of [5]) we have j*(((— 1) f*(x)) = j*((— 1)j*f*(x) =
= j*¥*(x) and j*((O — O(— 1)) f*(x)) =j*(© — O(— 1)) j*(*(x) = 0. But
j** is an isomorphism. (x € K;(k)). Thus j*: K,(}) = K;(U) = K;(k) is
projection onto the first copy of K;(k).

We now examine how image i, behaves under these two projections.
There is a commutative diagram of proper morphisms

Y = Spec K -5 P}

B\,

Spec k

(m corresponding to the inclusion k — K) so f,i, = m, (as maps on K)).
“There is a commutative diagram of schemes

v45 U 4 pl

N/

Spec k

where V'is the affine scheme U — Y, { is the inclusion, and g, h are the
structure morphisms. At the coherent sheaf level j*, £*,/* g* h* and i,
are all exact functors so the corresponding maps on the K, level are induced
by these exact functors. As a functor from coherent sheaves on Y to cohe-
rent sheaves on V¢*j*i, = 0.The induced maps on K; then satisfy ¢*j*i, =0.
But {*g* = h* is an inclusion and g* is an isomorphism. Thus ¢* is an
inclusion so j*i, = 0.
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Thus we have determined j*i, and f,i, (as maps on K,), and i, does
indeed have the desired form.

4. Completion of the computation. We now have an exact sequence
.= K;(K) 5 K;(k) ® Ki(k)l_*’ K;(4) - K;_,(K) £ K;_ (k) ® K;_,(k) »

The inclusion k — A induces a homomorphism K (k) - K{A), which
can also be thought of as e* where e: Spec 4 — Spec k is the structure
morphism (note that we are in this section reverting the usual basis of
Ky(P:) — ie. © and @ — ((—1).) This is. split by the inclusion of any
k-rational point. Let K{(4) = K (k) ® K/(A) be the resulting direct sum
decomposition (i.e. K;(4) = ker I* : K;(A) - K;(k)where I : Spec k — Spec
A is the inclusion of some k-rational point.) This direct sum decomposition
is not claimed to be independent of the choice of k-rational point (except
for K,, and K,).

I claim that J* respects the direct sum decompositions of K(P})
and K{A) and is an isomorphism on the first summand. This follows
from the commutative diagrams

Spec A 5 P} Spec k
e / f and / \I\’
Spec k Spec 4 5 P}

since image f* and ker (I')* are the two copies of K;(k) in the direct sum
decomposition of K/(P}).
Thus we have exact sequence
K(K) 7z Ki(k) > K{A) = K;_(K) 2 K;_, (k)
or
0 — K(k)/m,K{(K) — K{A) > ker [n, : K;_,(K) = K,_,(k)] - 0,

where n: Spec K — Spec k is restriction of scalars (corresponding to the
inclusion k < K).

Let us now examine the case i = 1. Here Z = K, (K)-=K;,_(k=2Z
is just multiplication by 2, so

SK,(A) = K,(A) = k*/ NK*

where N : K* — k* is the norm map. If k = R, K = C, then NC* = po-
sitive real numbers so SK, R[T,, T,J(T2 + T2 = 1) = Z]2Z. If k = 0
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and K = Q(\/—_l) then ae Q lies in NK* if and only if @ > 0 and all
primes congruent to 3 mod 4 have even power in the factorization of a.
Half the primes are congruent to 3 mod 4 so Q*/NK* is the countable
direct sum of copies of Z/2Z. Thus SK, Q[ Ty, T,]/(T# + T2 — 1) is the
direct sum of a countable number of copies of Z/2Z. (M.P. Murthy showed
me a different proof of this). If K = Q(\/E) (d square free) the condition
for being a norm is somewhat more complicated (see for example [7] 6-6).
For ae Q* to lie in NK* it is necessary that all primes at which d is a
quadratic non-residue have even power in the factorization of a. Thus
SK, Q[ To, T,]/(T§ — dT{ — 1) is also the countable direct sum of copies
of Z/2Z.
For i =2 we get an exact sequence

0 — K,(k)/n,K,(K) = K,(A) = ker(K* % k*) - 0

In particular if k = R then K,(R) = Z/2Z @ D where D is divisible. Two
times any element of D lies in the image of 7,. Thus D < image n,. But
K ,(€) is divisible so cannot map onto Z/2Z. Thus K,(R)/n, K,(C) = Z/2Z.
Also ker(C* — R*) is the multiplicative group of complex numbers of
norm 1, ie the circle group S'. Thus we have an exact sequence
(for A =R[T,, T,]/T§ + T2 - 1)

0— Z/2Z —» K,(4) » S* - 0.

I was not able to decide myself whether this sequence splits. However D.
Grayson and C. Weibel have been able to show by using the transfer map
K,(A®;C) - K,(A) that the sequence does not split, and that K,(4)=S".
Grayson also points out that the non-trivial element of Z/2Z maps to

the element (—1) [;:0] mentioned on page 129 of [4].
1

S. Other ground rings. If one is sufficiently carefull the ground ring k
need not be a field. Define the scheme P} to be Proj k[T;, T,] and let Y
be the subscheme defined by T;? + aT2 = f. Then as in [2] P — Y =Spec A4,
where A = degree zero part of k[T,, T,] e P 1o, T+
+aT] — D)= k[U, VWU +aV -1, UV - W?) o k[V,w](w? —
— VA —aV) =k[V,W]/(W? + aV? — V). if 2a is a unit in k, we can
change variables so that the polynomial is W? + a(V')? — 1/4a. Otherwise
leave A in the form 4 = k[V, W]/(W? + aV? — V). The subscheme Y is
Proj k[To, T,J(T} + aT3) = D, (T,) = Spec k [To/ T, J(To/T,)* + a) =
= k(\/ —a). Let K = k(\/ — a). Assume 2 # 0 in k, and that k and K
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~are both regular. Then the above proof goes through unchanged and
we get exact sequences

0 = K{K)/i,K{(K) = Ri(4) > ker i, : (K,_,(K) » K;_,(k)) » 0

where i, : K(K) — K (k) is induced by restriction of scalars, and K{A) =
= coker (K (k) — K(A)) (The inclusion k - A4 is split by V— 0, W— 0
so K{A) is a direct summand of A).

To give a specific example let k = Z,a = 1, K = Z[i]. Here K(K) —
— K,(k) is multiplication by 2 which is an inclusion. Also SK,(K) =
= SK(Z) = 0 so K,(k) = {* 1}. The units of K,(K) all have norm 1 so
K,(A) = SK,(A) = Z/2Z: On the other hand if ¢ = — 2 then K = Z[,/2]
and (1-./2)(1+./2)=1—-2= —1. Some units have norm —1 so
K (4) = SK,(A) = 0.
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