A remark on polynomial functions over finite commutative rings with identity

Günther Eigenthaler and Winfried B. Müller

Abstract. In the present paper, the degree of polynomial functions on a finite commutative ring R with identity is investigated. An upper bound for the degree is given (Theorem 3) with the help of a reduction formula for powers (Theorem 1).

1. Let R be a commutative ring with identity, $R[x_1, ..., x_k]$ the polynomial ring in k indeterminates $x_1, ..., x_k$ over R, $F_k(R)$ the full k-place function ring over R and $P_k(R)$ the ring of k-place polynomial functions on R. (For the basic notions and results of algebra used here and in the following see e.g. Lausch-Nöbauer (1973) and Atiyah-Macdonald (1969).

There exists a surjective homomorphism σ from $R[x_1, ..., x_k]$ onto $P_k(R)$, which assigns to each polynomial

$$f = \sum a_{i_1 \dots i_k} x_1^{i_1} \dots x_k^{i_k} \in R[x_1, \dots, x_k]$$

a polynomial function $\sigma f \in P_k(R)$ defined by

$$(\sigma f)(b_1,...,b_k) = \sum a_{i_1...i_k} b_1^{i_1} ... b_k^{i_k}, (b_1,...,b_k) \in \mathbb{R}^k.$$

(See Lausch-Nöbauer (1973), ch. 1, § 6.) For $\psi \in P_k(R)$ let the degree $\|\psi\|$ of ψ be the minimum of the degrees of the polynomials $f \in R[x_1, ..., x_k]$ with $\sigma f = \psi$.

R is said to be *primary* if every zero divisor of R is nilpotent. Every finite commutative ring R with identity is (unique up to isomorphism) a finite direct sum of finite primary rings (cf. Atiyah-Macdonald (1969), ch. 8, Th.8.7).

2. Now we prove the reduction formula for powers. For a finite group G, exp G denotes the *exponent of* G, i.e. the least common multiple of the orders of the elements of G. U(R) denotes the group of units of R. Furthermore, we shall write |M| for the cardinality of a set M, and $[r_1, ..., r_n]$ for the least cammom multiple of the integers $r_1, ..., r_n$.

Theorem 1. Let the finite commutative ring R with identity be the direct sum $R_1 \oplus ... \oplus R_s$ of the primary rings R_i , $n(R_i)$ be the least positive integer e such that $a_i^e = 0$ for all $a_i \in R_i - U(R_i)$ and $n(R) = max (n(R_1), ..., n(R_s))$. Then for any positive integer m, the equation

$$a^{m+n(R)} = a^{n(R)}$$

holds in R iff $\exp U(R) = [\exp U(R_1), ..., \exp U(R_s)]$ divides m.

Proof. i) Suppose that $\exp U(R)$ divides m and let $a=a_1+\ldots+a_s\in R$ where $a_i\in R_i$. If $a_i\in U(R_i)$, then $a_i^{\exp U(R)}=1$ and, therefore, $a_i^m=1$. If $a_i\in R_i-U(R_i)$, then $a_i^{n(R)}=0$. Thus, in both cases $a_i^{m+n(R)}=a_i^{n(R)}$ showing that $a_i^{m+n(R)}=a_i^{n(R)}$.

ii) Suppose that $a^{m+n(R)} = a^{n(R)}$ for all $a \in R$, then $a^m = 1$ for all $a \in U(R)$, which implies that $\exp U(R)$ divides m.

Lemma 2. Let R be a commutative ring with identity which is a finite direct sum, say $R = R_1 \oplus ... \oplus R_s$, and for every i = 1, ..., s let J_i be a set of k-tuples of non-negative integers such that for every $\psi \in P_k(R_i)$ there exists a polynomial $f \in R_i[x_1, ..., x_k]$ with

$$f = \sum_{(i_0, \dots, i_k) \in J_i} a_{i_1 \dots i_k} x_1^{i_1} \dots x_k^{i_k}$$

and $\sigma f = \psi$. Then for every $\psi \in P_k(R)$ there exists an $f \in R[x_1, ..., x_k]$ with

$$f = \sum_{(i_1, \dots, i_k) \in J_1, \dots, J_s} a_{i_1 \dots i_k} x_1^{i_1} \dots x_k^{i_k} \text{ and } \sigma f = \psi.$$

Proof. Straightforward (cf. also Lausch-Nöbauer (1973), ch.3, Th.3.61).

If R_i is primary, by Theorem 1 we can take in Lemma 2 $J_i = \{0, 1, ..., n(R_i) + \exp U(R_i) - 1\}^k$. Therefore, we get the following.

Theorem 3. Let R be as in Theorem 1, then for every $\psi \in P_k(R)$ there exists an $f \in R[x_1, ..., x_k]$ with

$$f = \sum_{(i_1, \dots, i_k) \in J} a_{i_1 \dots i_1} x_1^{i_1} \dots x_k^{i_k} \text{ and } \sigma f = \psi, \text{ where}$$

$$J = \{0, 1, \dots, \max(n(R_i) + \exp(U(R_i))) - 1\}^k.$$

Thus $\|\psi\| \le k (max (n(R_i) + exp U(R_i)) - 1)$ for all $\psi \in P_k(R)$.

Furthermore, we get from Theorem 3 and the fact that $P_k(R_1 \oplus ... \oplus R_s)$ is isomorphic to $P_k(R_1) \oplus ... \oplus P_k(R_s)$ (see Lausch-Nobauer (1973), ch.3, Th.3.61) the following.

Corollary 4. Let R be as in Theorem 1, then

$$|P_k(R)| \le |R_1|^{(n(R_1) + expU(R_1))^k} \cdot \dots \cdot |R_s|^{(n(R_s) + expU(R_s))^k}$$

Remark. In case that $|R|^{(max(n(R_j) + expU(R_j)))^k} >$ > $|R_1|^{(n(R_1) + expU(R_1))^k}$ $|R_s|^{(n(R_s) + expU(R_s))^k}$ (under the assumption that $|R_i| > 1$ for all i, this holds iff max $(n(R_j) + \exp U(R_j)) > \min_j (n(R_j) + \exp U(R_j))$) the representation of the functions $\psi \in P_k(R)$ by polynomials with the form given in Theorem 3 is not unique, as is easily seen. The converse does not hold (an example is given by $R = Z_9$, the residue class ring of the integers modulo 9; see later).

3. We apply the above results to the case $R = Z_n$, the residue class ring of the ring Z of integers modulo n with n > 1. Let $n = p_1^{e_1}, \ldots, p_s^{e_s}$ be the canonical decomposition of n, then Z_n is isomorphic to $Z_{p_1^{e_1}} \oplus \ldots \oplus Z_{p_s^{e_s}}$, and the $Z_{p_1^{e_1}}$ are primary. For a positive prime p and a positive integer e, let

$$m(p^e) = \begin{cases} \frac{1}{2} \varphi(p^e), & \text{if } p = 2 \text{ and } e \ge 3\\ \varphi(p^e), & \text{otherwise} \end{cases}$$

where φ is the Euler φ -function. Then $m(p^e) = \exp U(Z_{p^e})$ and furthermore $n(Z_{p^e}) = e$. Let n be as above, then $\exp U(Z_n)$ is the least common multiple of the $m(p_i^{e_j})$ and $n(Z_n) = \max (e_1, ..., e_s)$. Since, for any positive integers m, e

$$p_i^{m+e} \equiv p_i^e \mod n$$

implies that $e_i \le e$, we get from Theorem 1 the following result, which is contained in Singmaster (1966) and is a generalization of Nöbauer (1954) (§1):

Corollary 5. Let n be as above, then for any positive integers m, e

$$a^{m+e} \equiv a^e \mod n$$

holds for all $a \in Z$ iff $[m(p_1^{e_1}), ..., m(p_s^{e_s})]$ divides m and $\max (e_1, ..., e_s) \leq e$.

In a similar way, Theorem 3 can be specialized for $R = Z_n$ (cf. also Nöbauer (1955), Hilfssatz 7).

For n = 9 and k = 1, by Hilfssatz 7 of Nöbauer (1955) $|P_k(Z_n)| = 3^9$. whereas the number of polynomials with the form given in Theorem 3 is equal to 3^{16} . This yields the example announced in the Remark after Corollary 4 (other examples are given by $R = Z_4$ and $R = Z_8$).

For another application of Theorem 1 take $R_i = GF(p_i^{e_i})$, the Galois field of order $p_i^{e_i}$ (p_i is a prime). Then $\exp U(R_i) = p_i^{e_i} - 1$ and $n(R_i) = 1$. This yields the following result of Mrkwiczka (1973) (§7):

Corollary 6. $a^{m+1} = a$ for all $a \in GF(p_1^{e_1}) \oplus ... \oplus GF(p_s^{e_s})$ iff $[p_1^{e_1} - 1, ..., p_s^{e_s} - 1]$ divides m.

References

- [1] M. F. Atiyah I. G. Macdonald (1969), Introduction to Commutative Algebra (Addison-Welsley Publ. Comp., Reading (Massachusetts) London, 1969).
- [2] H. Lausch W. Nöbauer (1973), Algebra of Polynomials (North Holland Publ. Comp., Amsterdam-London, 1973).
- [3] G. Mrkwiczka (1973), Über Gruppen von durch Potenzen oder durch Formenvektoren erzeugten Polynompermutationen, Diss. Univ Wien, 1973.
- [4] W. Nöbauer (1954), Über eine Gruppe der Zahlentheorie, Monatsh. Math. 58, 181-192.
- [5] W. Nöbauer (1955), Gruppen von Restklassen nach Restpolynomidealen in mehreren Unbestimmten, Monatsh. Math. 59, 118-145.
- [6] D. Singmaster (1966), A maximal generalization of Fermat's theorem, Math. Mag. 39, 103-107.

Günther Eigenthaler Institut für Algebra u. Math. Strukturtheorie Technische Universität Wien Karlsplatz 13 A-1040 Wien Austria Winfried B. Müller Institut für Mathematik Universität für Bildungswissenschaften Universitätsstr. 65 A-9010 Klagenfurt Austria