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Non embedding in sphere bundles

Antonio Carlos do Patrocinio

Abstract. In order to get results of non-embedding of flag-manifolds in
the total space of sphere bundles we consider algebraic properties of
these two families of manifolds.

The main theorem (2.3) gives a general a non-embedding result in
terms of algebraic invariants and this theorem is applied to the case of
the flag-manifolds.

- 0. Introduction.

A flag-manifold is defined as the quotient of the group U(n) by the
subgroup U(n,)x ... xU(n,) where n, + n, ... n,=n. This family includes
the complex projective spaces and the complex Grassmann manifolds.

In this paper we use those manifolds in order to get results of non-
-embedding in the total space of sphere bundles. The following theorem,
concerning the Chern caracter is proved:

1.8. Theorem. If ¢ =(E,n,S") is a (p+ 1)-vector bundle over S" with p
and n odd numbers (n > 1) and ue H,, (S(¢); Z) is the fundamental class of
S(S) then, for all ae K(S(&)) we have that {ch(x), u) is an integer.

Applying this theorem and using group representation theory [4] we
prove our main theorem:

2.3. Theorem. Let ¢ be a (p+ l)wector bundle over S"(n>1) with p
and n odd numbers. Let M>™ be a closed, connected, oriented manifold of
even dimension 2m. If M embeds in S(£) with orientable normal bundle v** then,
for all 8 e K(M) we have that (2"~ ch(0)B(v), [M]) is an integer number.

The application of this theorem to the case of the flag-manifolds gives,
after long computations, the following results:
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3.8. Let & be a (p + 1)-vector bundle over S", with p and n odd numbers
and such that 7S" @ ¢ is trivial. If L=p+ n=dim S(¢) then:

(1) F(2,2) does not embed in S(&¢) if L = 12
(2) F(2,3) does not embed inm vS(8)if L =20
(3) Fi2,4)  does not embed in  S(F) if L = 28
(4) F(@2,1,1) does not embed in 'S(¢) if L = 12
(5):F(2,1;1) 'does not embed in' S(£)if L = 20,

In particular, if ¢ is the (p + 1)-trivial vector bundle over S, then
S(€)=S"x S” and we have results of non-embedding in products of
spheres.

The results presented in this paper are part of my thesis. I would
like to express my gratitude to my adviser Prof. Antonio Conde for his
guidance, help and encouragement.

1. Sphere bundles.

L.1. Definition. A differentiable manifold M is a n-manifold if T™ @ 1
is a trivial bundle.

1.2. Remark. Every n-manifold is orientable.

1.3. Theorem. If M™ is a n-manifold with even dimension m and Euler class
X(M)=0 then M is parallelizable.

Proof. Let f: M — BSO(m) classify tM and let p: BSO(m)— BSO(m + 1)
be the canonical fibration with S™ as fiber. The map po f: M — BSO(m + 1)
classifies tM @ 1 and then is homotopic to a constant map.

By the “homotopy lifting property” we can assume that f takes values
in S™; the restriction of the universal bundle y™ over BSO(m) to S™ gives
©S™. Then we have a fiber map : T(f) : T(M)— T(S™).

Therefore, f*X(S™)= X(M)=0; but m even implies X(S™) = 2a,
where « is the generator of H™(M). Since M is orientable, H™(M) is torsion
free and then f*(x) =0, that is /* =0. Now, since f takes values in S™
we have that fis homotopic to a constant map. Hence, tM is a trivial bundle.

1.4. Remark. Given a vector bundle &, we will denote by S(¢) the associated
sphere bundle. We assume metric on bundles whenever we need without
explicit mention since our base spaces are always paracompact.
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LS. Corollary. Let B be a differentiable manifold, orientable and with
Euler class X(B)=0. Let & be a vector bundle over B such that 1B P&
is trivial. If the dimension of the manifold S(¢) is even then it is parallelizable.
Proof. Let E be the total space of ¢ and =n the projection. Then
rEi=igiirB' @ &),

Since S(¢) embeds in E with trivial normal bundle 1, we have:

S(8) @ 1 =TE/S(§) = (n/S(¢))'(zB @ &)
This last bundle is trivial and then S(¢) is n-manifold; the proposition
7.6. in [3] gives:
t8(¢) = (n/S(&))' (tB) @ 14

where 7, denotes the “tangent bundle along the fiber of S(¢)”. This implies
that: '

X(S(E) = [(x/SE)*X(B)] X(zf) =0,

and then we are done.

1.6. Examples.

A. Let B=5" and ¢ the (p + 1)-trivial vector bundle over B, with p ‘and
n odd numbers. Then we have the following:
(a) X(B)=0
(b) S(&) = S" x SP and dim S(¢) = n + p, which is even
"D+ )=n+p+1

Consequently, M = S§" x S” is parallelizable.

B. Let B=5" with n odd and n# 1 (mod. 8).
Then X(S")=0 and tS" @ ¢ is trivial for all vector bundle ¢ over B.
If the dimension of S(¢) is even then it is parallelizable.

C. Let £(n) denote the number of linearly independent vector fields over
S". If n is odd, A(n) > 1 and let us consider the manifold M ¢ = S(&), where
the bundle ¢ is such that

" =@ (Mn) — 1).

We observe that the dimension of M ¢ 18 2n — A(n), the Euler class
X(8") =0 and tS" @ ¢ is trivial. If A(n) is even, we have as a consequence
of 1.5. that the manifold M, is parallelizable.
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1.7. Theorem. Let & be u(p + 1)-vector bundle over S" withn > 1.Ifn# p + 1,
then the cohomology of S(&) is given by:

H*S(E):; 2)=Z@Z@ZDZ.

Proof. For n>1 ¢ is orientable and for n# p + 1, X(¢) = 0. The conclu-
sion then follows from the Gysin sequence associated to the bundle ¢&.

1.8. Theorem. If ¢ =(E, n, S") is a (p + 1)-vector bundle over S" with p and
n odd numbers (n>1) and pe H,, (S(C); Z) is the fundamental class of
S(&) then, for all xe K(S(£)) we have that {ch(&), u) is an integer.

Proof. The manifold S(¢) has the property that HY(S(¢); Q) =0 for
i #0, pn,n + p. Since p and n are odd it follows that ch{n) =0 for
0<i<p+n To conclude the proof we will use the following lemma,
which is in [1]:

1.9. Lemma. Ifn e K(X) is such that ch,(n)=0for 0 < p <r and H¥X; Z)
is torsion free then ch(n)e H'(X;Z) <« H'(X; Q).

1.10. Remark. Theorem 1.8. is a generalization of a Bott’s theorem for
even dimensional spheres [2]. This theorem is essential in the proof of
the non-embedding theorem 2.3.

1.11. Example. If A(n) > 1 then theorem 1.8. apllies to the manifolds M,
of 1.6. A.

2. Non-embedding in sphere bundles.

2.1. Definition. Let us consider the power series f(t)=senh \/;/ \/? =

=14 %t + %tl + ... This series defines a multiplicative sequence

B=1+ B, + B, + By + ... (see [6]).Given a real oriented vector bundle
n, we define the B-class of 7, by:

B(n) = 1 + By(py) + By(py,p2) + ...

where p,, p,, ps, ... are the Pontriagin classes of the bundle n. Then we
have:

1
B,(p,) = ?Pl
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1 1 .
B,(py, p3) = 3’6'P2 +F 120 (P% = 2p,py)

1 I 1
By(p1.p2:p3) = 5 2 Pa+ o5 (P1p2 = 3p3) + o (pi — 3p,p, + 3p3)

To compute B(y) it is enough to know the Pontriagin classes of .

2.2. Definition. Let X and Y be compact, connected, oriented manifolds
with fundamental classes [ X] and [ Y] respectively. Givenamap f : X - Y,
the Gysin homomorphism: fg : H¥*(X) — H*(Y) associated to f is defined
by fel@) N [Y]=fula N [X]).

We have the following commutative diagram:
H(X) L6 B ,(v)

il X s mlY]

H*x) 12 Hy(y)
The Gysin homomorphism has the following properties:
A fof*@)uw) =zuU fg(w)
B [0 ax)

2.3. Theorem. Let EP*! be a (p + 1)-vector bundle over S"(n > 1) with p
and n odd numbers. Let M>™ be a closed, connected oriented manifold of
even dimension 2m. If M embeds in S(£) with orientable normal bundle v
then, for all 6 € K(M) we have that (2*~'ch(6)B(v), [M]) is an integer
number.

To prove this theorem we will make use of the following lemmas:

24. Lemma. Let I be the Kernel of the restriction map
i' : R(SO(2k)) = R(SO(2k — 1))

and let f : M — S(&) be an embedding with orientable normal bundle v**
Then, for all representations v € I, there is a map: f, : K(M) - K(S(&)) such
that the following conditions hold:

A. [ £(6) = 0-o(v)
B. ch(f(0)) = fa(ch(0) ch(v)/e)
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where “e” denotes the Euler class of the normal bundle.

Proof. Let us define f, and show property 4. Details, as well as property
B are given in [4]. As a simplication we shall assume that f is the inclu-
sion map; the disc bundle associated to the normal bundle v can be rea-
lized as a tubular neighborhood D of M in S(¢). The sphere bundle 4 - M
associated to the normal bundle v is isomorphic to the bundle
E/SOQ2k — 1) =4 M, where E —% M is the SO(2k)-principal bundle
over M associated to the normal bundle. For each ve Tit is possible to
construct an element a(v) € K(M) and this can be extended to e K(D, A)
by the difference construction [4]. Define f,:K(M)— K(S(¢)) by the
following commutative diagram:

KD, 4) - K(s(0), 5(¢) - D°)
%) ¢j!
i
kM Lo kse)

where ( is defined by @(0) = 0., the map h is the isomorphism given
by excision and j! is induced by inclusion.

To prove property A. we have only to observe that £,(6) is defined
by extending 6+ a(v) from M to D and after to S(¢)-this is possible because
0+ B is zero over A. Hence, when we restrict f,(6) to M by f we get 0+ a(v),
that is:

S £46) = 0+ av)

2.5. Lemma. Let M be as in theorem 2.3. embedded in S(¢). Then for all
0 € K(M) and all vel we have that {ch(6) ch(v)/e,[M]) is an integer.
Proof. By theorem 1.8. ch(0)[S(¢)] € Z, for all 8 € K(S(¢)) and by property
B in 2.4. we have: ch(f,(0)) = fg(ch(0) ch(v)/e). By property B of the Gysin
homomorphism we get: ch(f(0)) [S(6)] = (ch(6) ch(v)/e) [M]. Since
SA0) € K(S(£)) the left side is an integer and the lemma follows.

2.6. Lemma. If M embeds in S(¢) with orientable normal bundle v then
there is a representation p €l such-that ch(u)/e =21 B(v).

The proof given in [4] applies because the Euler class of the normal
bundle of an embedding in S(¢) is zero.
Using now these lemmas we have that
(2*"1ch(6) B(v), [M]) = {ch(B) ch(w)/e, [M])
which is an integer by 2.5. Therefore our main theorem 2.3 is proved.
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3. Applications.

3.1. Definition. The complex flag-manifold F(ny, n,, ..., n,) is the quotient
of the group U(n) by the subgroup U(ny) x U(n,) x ... x U(n,), where
ny+n;+ ...+ n,=n Apointin F(n,, n,, ..., n,) consists of £ orthonormal
subspaces of C" with dimensions sy n

This family of manifolds includes the complex projective spaces:
CP"=F(n,1)= U(n + 1)/U(n) x U(1) and the complex Grassmann mani-
folds F(m,n)= U(m + n)/U(m) x U(n).

The dimension of F(ny,n,,...,n,) is n*> — [n + ... + n?].

3.2. Remark. In order to get non-embedding results by applying theorem
2.3. we have to know the cohomology of M, the K-theory of M, the stable
normal bundle of M and the B-class of the normal bundle. Let us describe
one method to find each one of these elements, specially in the case
when M = F(n,n,, ...,n,).

3.3. Cohomology of the flag-manifolds. Let us denote by G the Lie
group U(n) and by H the subgroup U(n,) x U(n,) x ... x U(n,). The

fibration G/H ek sipy ~lyipg gives in cohomology the sequence:

v v
H*(BG; Z) L— H*(BH; z) > H*G/H; 2)

The following results are known:

A. HXBG;Z)=Z[c, ¢y, ..., c,), Where ;e H*(BG; Z) are the uni-
versal Chern classes.

B. HXBH;Z)=Z[a}, ..., a} 1®...® Z[a}, ..., 4

C. The cohomology of G/H is given by the quotient of H*BH; Z)
by the ideal generated by:

JMep)=Z2a,®...@d,where r+ ...+ t=p,1<r<n,, .. l<r<n
andiin =il 20yl

The proof of this last result is in [5].

3.4. Examples.
3.4.1. The complex projective space CP".

H*B(U(n) x U(1); Z) = Z[ay, ..., a,] ® Z[b,]
H*(BU(I’! i 1)’ Z) = Z[Cx:cz, ) Cn+1]
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The relations are the following:
e =g, 18, =0
Ple) =us' taby'=0

.j*((‘rh‘l) = unhl T 0

Thet Wi have: b ="~ il ~ e 8 =3 € g, = 0%and so, the
cohomology of CP"is given by only one generator x, = i*(a,) € HXCP", Z).
The monomials 1, x,, xi, ..., x| give an additive basis for H*(CP", Z).

3.4.2. The Grassmann manifold F(2,2)
H*(BLU2) % UQ2); Z) =Z[aas] ® Z[b{ibi]
HMBU: 7)) = Zl¢ .Chiets]
The relations are the followings:
®e) =y + by =0 J*(c3) = ay +a;by + b, =0
Ples) =labyssagby =1 @) = s =0
Then, the cohomology of F(2,2) is given by the generators
x, = i*(u,)e H* and x, = i*(a,)e H*. An additive basis for this cohomo-
logy 16" o vl e 0 i

3.4.3. The flag-manifold F(2,2,1)

Let H*B(UR)x UR)x U(l); Z)=Z[ay,dy] ® Z[by, b,] ® Z[d,]
and let HMBUG), Zy=Zle e cietnids]

We have the following relations:

jHMcey)=a,+b+c,=0 j*cy)=ay+by+aby+bici+ad, =0

j¥(c3) = aby + aby + aydy + bydy +abycy, =0

j*(cy) = azby + absd, + asbydy =0

J¥(cs) = azb,d; =0

The cohomology is additively generated by the monomials:

1, %2 My 2 23 xanbin netiepona

x,25, 23, 00 RS, R a2t

xy2%, x}xy24, X1X52%, %23, xiz3, xix,z3,

XyX,23, XoBi ote ) win, A IR X5 ok el e

x, = i*(a,)€ H? z,=i*d,)e H* and x,=i*a,)eH*
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3.5. The B-class of the normal bundle to G/H.

Let G=U(n)and H= U(n,) x ... x U(n,) with n, + n, + ... + n, = n.
Let ¢ be a (p + 1)-vector bundle over S" such that 7" @ ¢& is trivial. If p
and n are odd then S(¢) is a parallelizable manifold (by corollary 1.5)
and the normal bundle to G/H in S(¢) is classified by the map:

GiE L Br L Byl dio i

where f is induced by the adjoint representation: Ad : H — SO(dimH).
The proof of this result is given in [4] where we can also find the
following:

A. The map f induces in cohomology the homomorphism
f* :H(BSO(n} + ... + n}); Q) » HXBH; Q)
and p,(v) = i**(p,), where p, are the universal Pontriagin classes.
B. The map f* factors through the maps:
fi* i H¥BSO(n}); Q) — H*(BU(n); Q)
and o) =210 )% ... ® LelB)), P+ =k,

Each one of the factors f;*, 1 <i<¢, which we will denote simply
by f*, reduces to a map

f* :HXBSO(n* — n+ 1); Q) > H*BU(n); Q)
and f*(p,) is given by the following:

“We take the k—th elementary symmetric function on (t;—1))?
1 <i<j<n and express it in terms of the Chern classes — these are

elementary symmetric functions on t;s”.
In case n=2 we have:

J* :H*(BSOQ); Q) —» HXBU(2); Q).

By 2.15 of [4] we have H¥(BSO(3); Q)= Q[p,] and we know that
H*BU(2); Q)=0Qla,,a,] then:

f¥p) =ty — 1,2 =(t, +t,)* — dtyt,=a? =da,,

3.5.1. For the Grassmann manifold F(2,2) let us denote by q, = f*(p,)
the class which corresponds to the first factor U(2) and by q{ = f¥(p,)
the class corresponding to the second factor then:
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p1(v) = i*(q,) + i*(q}) = —2x}
p2(v) = i*(q,) i*(qy) = —6xix,
pv)=0if k>3

1
By(py) = — 5 x} and Bypy,ps,.p) =0 se k 22
Bv)=1— %—x%

3.5.2. The manifold F(2,3) has the following classes:
p,(v) = —3x? + 2x,
p,v) = 10xix, — 15x3
ps(v) = — 30x3
pv)=0if K>4
1 1
B,(p,) = 5 g 3 %2

103 5
By(py, p;) = 360 xfxz LY x%

4
B3(P1ap2,P3)= —4‘5xfx§
Bk(pl’pzs ""pk) =0 e

3.5.3. The manifold F(2,2,1) has dimension 16 and the classes are:

p1(v) = iMa,) + i*(qy) = —2x} — 322 — 2x,z,
p,(v) = i*(q,)i*(q}) = —6x3x, — 9xyx,2, — 3x22f I xfzf i

+ 2x,z3 + 15z%
p(v)=0 if k>3

il
B,(p,) = T [—fo Fivt 32% 2%z

1% 1 5
BZ(pl’pz) - EX‘,%Z% -+ Exlz? it BZ‘:

3.6. K-theory and Chern character for the flag-manifolds.

We give here one short description of the K-theory for the flag-
manifolds and one method to compute the Chern character of an additive
basis for this K-theory; the details are in [4] and [5].
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Given the principal H-bundle: H - G G/H we have a homomor-
phism o, : RH — K(G/H) where RH denote the ring of complex representa-
tions of the group H; in our case G = U(n) and H = U(ny) x ... x U(n,). We
will consider only the cases H = U(2) x U(2) and H = U(2) x U(2) x U(1).
Let z,,z,,2; and z, denote the elementary representations of the torus
T@4)< U(4) and let:

Y = oz, — bapre biza et Bz )idei 12, 304
be the elementary symmetric functions, and:
o =olzy— 1,2, = 1VeRU(2), i=1,2
Bi=0lz; — 1,2, — DeRU(Q), i = 12
¢ =afa)e K(FQ2,2), i=1,2.
By definition, ch(¢,) =ch(x;) =o' — 1, ¢ — 1), and then ch(£) =x, +

+ higher order terms.
The following theorem is proved in [5]:

3.6.1. Theorem. The K-theory K(F(2,2)) has as an additive basis the mo-
nomials 1’ él’ 52’ €f9 6162’ é%éz

The multiplicative structure is similar to the multiplicative structure
for the cohomology and the relations are the same. To compute the Chern
characters of an additive basis we compute ch(¢,), ch(¢ ,) and then we make
use of the multiplicative property of ch. We have:

chéf) = ale! — 1, e+~ )=zl 4 2 -1 £

1
=t +1t, +—é—(tf +13) + —g—(t? el

1 1

ch(E;) = oyfe" — 1, — 1) = (¢ — 1) (2 — 1) =
= Lits +%(rlr§ + t,13) + %(rltg + t,6385 + ‘thftg e
C e g L
el 2 D ) 1 1-*2
Let us consider now the flag-manifold F(2, 2, 1); let z,, z,, z5, z,, z5 be
the elementary representations of T(5) = U(5) and let:

di= O-i(Zl i 1,22 o 1)9 i = 192
Bi=o0fz3 — 1,24~ 1), i=1,2
M=o0yzs— 1), §=aa) i=12 A= An(44)
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3.6.2. Theorem.The monomials

1’ 61’ j-9 é%, 512-, j~2’ 52’ 61527 /1623 é%ia
51121 13, é%éz’ éf/lze 61135 6162/1’ 62’12’ /14,
Lo B0, Ch Gkl
S e R TS SN Y R (Y b

give an additive basis for K(F(2,2,1)); the multiplicative structure and the
relations are similar to those for the cohomology.

The proof of this theorem is in [ 5] and, to compute the Chern character
for the basis we make use of the following formulas:

Sxwxa s 0. 0)
n!

ch(Ey) = e — 1 — ch(¢,) ch(d) = e — 1.
It is possible to show that S{(x,, x,,0,...,0)=0if i > 5, and then:

Ch(fl)=Z » = 132’3

1 1
eh(&)=08 () &t 5”32("1’)‘2) -+ ngs(xl,xz,O) +

1

1 1
-+ FS“(xl,xz,O,O) — 6, Ef(xf — 2x,) + -v6~(—x1x2 +

1
i Boag
Xp2, — X3z — xy23 — 23) + ﬁ(xlxzz1 o o)

1 1 1
ch(§y) = x; + xlzxz % Exfxz A Redig '1“2"3‘22% i
)P e i
+ ﬁzl + g{Xy + axl.
ol o el bt g
c()—zl+?zl+€zl+4!zl.

3.7. Computations.

3.7.1. Let us denote by [F(2,2)] the fundamental class of F(2,2) and by
A; the number {ch(¢)B(v), [(F(2,2)]) where £ is an element of the additive
basis for K(F(2,2)) in the order given in theorem 3.6.1. The results are
the following:

Ay ='Ag= A, =01 A, s SdyE =
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1 f
52 this shows that

(2'ch(&,)B(v), [F(2.2)]) ¢ Z and then we take K — | = 1 to conclude that
F(2,2) does not embed in S(3) if L = dim S(&) = 12 and & is a (p + 1)-vector
bundle over §" with p and n odd numbers and tS" @ & trivial.

Then, the best result is given by 4, = —

3.7.2. Let 4; denote {ch($)B(v), [F(2,2,1]) where ¢ is an element of the
additive basis for K(F(2,2, 1)) in the order given in theorem 3.6.2., so that
i=1,2,...,30. The computation shows the following:

Ai=A,=...=A,,=4,,=0
1 1
A21=4' Al Asnatii =
1 1
A23=A24=A27:_2 Azszz' Agp =il

The best result is given by A4,, = ‘14 and then we take K — 1=1

to conclude that F(2,2, 1) does not embed in S(¢) if L = dim S(¢) = 16 + 4
and ¢ as before.

3.7.3. A similar computation for the manifold F(2, 1, 1) gives the following
result: this manifold does not embed in S(¢) if dim S(E)=12 and & as
before.

3.7.4. The computations in [4] for the Grassmann manifolds allow us to
conclude that:

F(2,3) does not embed in S(¢), if dim S(¢) = 20
F(2,4) does not embed in S(¢), if dim S(¢) = 28

Finally, let us group these results together the following may:

3.8. Let £ be a (p + 1)-vector bundle over S" with p and n odd numbers
and such that 18" @ ¢ is trivial (see 1.6. B); let L=p+ n=dim S(&).
Then:

-

(2,2) does not embed in S(¢) if L = 12
(2,3) does not embed in S(¢) if L = 20
(2,4) does not embed in S(¢) if L = 28
2l
2

=5l 2sf 2]

(2,1,1) does not embed in S(¢) if L = 12
(5) F(2,2,1) does not embed in S(¢) if L = 20

3.8.1. Remark.If £ =6°*! is the trivial (p + 1)-vector bundle over SEp
and n odd numbers, then S({)=S" x S* and we have non-embedding
results in products of spheres of odd dimensions.
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