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Group bases of group rings

Héctor A. Merklen

1. Preliminaries.

The isomorphism problem, since first formulated by Thrall almost
40 years ago, has made a very slow progress, even though a great deal of
work has been done considerably improving our knowledge of group
rings (see [5]). The most important case, that of group rings over Z, has
been solved only when the finite group G is abelian (Higman, 1940),
nilpotent of class 2 (Cohn & Livingstone, 1965, and Passman, 1965),
metabelian (A. Whitcomb, 1968), and for some special classes of groups
(P. Sandling, 1972)

It is well known, and has been exploited by several authors, that an
exact sequence of groups, 1 - 4 —» G - G/A — 1, with A abelian (resp.
central) gives good information about ZG as compared with Z(G/A).
This naturally suggests that there would be a way, by induction, of solving
the isomorphism problem for solvable (resp. nilpotent) groups.

In this paper we show that, given such an exact sequence, there is
an exact sequence 1 > 4 - W— V(Z(G/A)) - 1, where W is the group
of normalized units of ZG/AAAG (see Prop. 1). This leads to a generali-
zation of Whitcomb result: if two group bases, G, H, of ZG reduce, modulo
AA, to two bases G, H, of Z(G/A) which are conjugate by a unit of this
ring, then G and H are isomorphic (see Cor. to Prop. 3).

Also we show that, if H is related to G by an automorphim of Z(G/A),
then the group structure of H (as an extension of H by A) can be expli-
citely computed in terms of the structure of G (as an extension of G by A)
(see Prop. 4). The explicit formulas obtained here may be used to test
the possibility of solving the isomorphism problem by induction or,
perhaps, to find counter-examples to the conjecture.

Finally, it is shown throughout that a good amount of our techniques
apply also to the case in which the coefficients ring is the prime field of p
elements, provided that the abelian group A is p-clementary.

Throughout let G be a group and R a commutative ring with 1.
If B is a subgroup of G, AB is the left ideal of the group ring RG generated
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by B-1={b—1/be B}. Hence, if B is normal in G, AB is a two-sided ideal.
In particular, AG is the augmentation ideal, i.e. the kernel of the augmen-
tation map ¢: RG— R. ;

We will denote by 4 an abelian, normal subgroup of G, and bars
will denote objects modulo 4 or modulo AA, depending on the context.

The units of RG have augmentation a unit of R. Those units with
augmentation 1 are called normalized; they form the group V(RG) =
= U(RG) n (1 + AG), which is normal in U(RG) and contains G. In the
sequel, unless otherwise indicated, all units of group rings will be assumed
to be normalized.

A group of units which is an R-basis for a group ring over R will
be called a group basis for that ring.

Most of the time, one of the following hypotheses will be assumed:

H1. R = Z, the ring of rational integers;
H2. R=TF,=7/pZ, and A is p-elementary.

Lemma 1. If B is a normal subgroup of G, the following sequences of
RG-modules are exact.

0 — AB - RG — R(G/B)—0;
0—- AB - AG — A(G/B) - 0.

Proof. See [5], 1.10, and [3], Prop. (7.4).

Lemma 2. Assume H1. The map a — a—1 induces an isomorphism from
A onto AA/(AAAG), so that the following are exact sequences of RG-modules:

RG _

) o han i o o

b i ite;
AG -

§ 1o poizadpll g
TSI

Proof. See [4], lemma 6, and [3], lemma (12.17). Here G (or, also, G) acts
on A by conjugation, because given g in G and a in A4:
=gag~' -1 (mod AAAG).

it

gla =) s glas g

Remarks.

I. Notice that multiplication on the right by an element of augmentation
1 gives the identity operator on A4 modulo AAAG.

2. Observe that the second sequence in lemma 2 is naturally an exact
sequence of RG-modules.
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3. Let R=7 and A be p-clementary (that is a” = 1 for each a in A4), then
lemma 2 implies that pAA < AAAG. It follows that lemma 2 is also valid
under H2.

4. Define X = RG/AAAG, Y= AG/AAAG. The ring X will play a significant
role in what follows.

Proposition 1. Assume either H1 or H2. Let € be the map X — R induced
by the argmentation map ¢, and let W be the group of normalized units of
X (i.e., units of X with augmentation 1).

Then

(i) Define W= {xe X/

ad + x is invertible in ,then W= W,

X
AAAG AA/AAAG}
(i1) There is an exact sequence of groups:

1 LH iy SV IRGYS 1.

Proof. The canonical map RG — RG induces an epimorphism of semi-
groups: 1+ AG— 1+ AG. The commutative diagram

0 0 0
! ! !
AAAG  AAAG 0
d ! {4
0—- A4 - AG ->AG-0
l la g
AA AG AG
(> — - ——30
AAAG AAAG AA
! i !
0 0 0

where o is the canonical epimorphism RG — X, induces then an exact,
commutative diagram in the category of semigroups:

1 1| 1
! 4 !
1 -1+ AAAG = 1+ AAAG - 1 -1
! 4 L
1> 1+4A4A - 1+AG - 14+AG~-1
3 ! e
1 - T — S - 14+AG
A l !
1 il 1

where S, T, are, respectively, the images under a of 1 + AG, 1 + AA. As
it is easily seen, T is isomorphic to A.
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The pull-back construction gives the following exact, commutative
diagram:

1> T—>W- V(RG) - 1

(B

1> T-> S 514+AG- |

It is clear that the group of normalized units in X is contained in the
semigroup Wbut, since both 4 and V(RG) are groups, Witself is a group
and hence equal to the group of normalized units. Since Tis isomorphic
to A, the proof is complete.

Q.E.D.

Remark. For the sake of clarity, the group 4 will be identified only to the
ideal A4/(AAAG) of X. Despiste the statement of Prop. 1, T will not be
replaced by A in what follows.

2. The classification of group bases.

Proposition 2. Assume H1 and that G is a finite group.

(i) If H is a finite subgroup of V(ZG), H is Z-free;

(i) If H is a finite subgroup of V(ZG), ZH is purely embedded in ZG, as
Z-modules.

(iii) A group of normalized units in ZG is a group basis if and only if its
order is equal to the order of G. ]

(iv) A finite subgroup H of V(ZG) is Z-free if and only if —1¢H. If —1
is in H, then H={1, —1} x (H ~ V(ZG)).

Proof. Almost all the above is an easy consequence of a well-known

result of Berman’s (see [1]) and [3], (11.2)): if h = Y. 2,9, then either

geG
a,=0o0r h= + 1.
For the proof of (i) see [3], (12.3).

In order to prove (ii), let x be a torsion element of ZG modulo ZH. It
may be assumed that there is a prime p such that px is in ZH. In other
words, if ZH is not purely embedded in ZG, there exists a relation of the
form Zu, h € pZG, where not all the integers «, are divisible by p. This again
leads to a contradiction with Berman’s Theorem.

Part (iii) is a direct consequence of (i) and (ii).

Finally, let H be any finite group of units (not necessary normalized).
The mapping x —&(x)x defines a homomorphism of H onto a group
of normalized units, K, with kernel {1, —1} n H. When —1 lies outside
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H, then H is isomorphic to the Z-free group K and generates the same
group ring. Therefore, H is Z-free in this case. The last assertion follows
from the fact that, when —1 lies in H, then K is a normal subgroup of H.

Q.E.D.

Remark. This proposition allows one to give a good description of homo-
morphisms of integral group rings.

Let E be a finite group and f :ZG — ZE a homomorphism. Let H
be the image of G under f.

If H does not contain — 1, f can be factored thus:

76 L 76
¢ | il
PG SATH

Where the arrow upwards is the natural injection, the bottom arrow is
induced by the canonical isomorphism G/ker(f | G) — f(G) and ¢ is
induced by the natural epimorphism G — G/ker(f|G) = :G. Hence,
this first kind of homomorphisms are essentially the epimorphisms in-
duced on group rings by epimorphisms of the groups.

If H does contain —1, one has a little more complicated kind of
homomorphism. In this case, one writes: H = {1, -1} x K, as in Prop.
2, (iv), and calling ¢’ the augmentation map of ZE, one obtains that flG
is the product of o f :G— {1, — 1} and f, =(eo f) f : G— K, which is
a homomorphism of the first kind discussed above.

The following facts are well known, at least for the case of integral
group rings, but the author does not know a good reference. Hence, the
proof is given.

Proposition 3.Let G be afinite group. Assume H1. The natural mapa:RG—X
(¢f- proof of Prop. 1) embeds each group basis H onto some subgroup of W.
Two group bases having the same image in W are isomorphic. The same is
also true under H2 if it is assumed further that H is a group basis of RG.
Proof. Given the group basis H, H n (1 + AA) is an abelian, normal
subgroup A’, of H such that AA’ = AA..This shows that there is no loss
of generality in assuming that the group basis is G (for the first assertion)
and that one of the group bases is G (for the second assertion). Since the
kernel of o« : U(RG) — Wis contained in 1 + AAAG and since, by Lemma 2,
G N (1 + AAAG) = {1}, the first assertion follows. :

Assume now that G = H(mod 1 + AAAG) (multiplicative congruence).
Then, for each g in G there is-exactly one h in H which is additively con-
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gruent to g modulo AAAG. This defines a bijection g — h which is an
isomorphism.
Q.E.D.

Remark. By one of the basic isomorphism theorems, each subgroup of
W containing T'is determined by its image in RG, and this is a one-to-one
correspondence.

Hence, by Prop. 3, each group basis of ZG is determined, up to iso-
morphism, by its image in ZG (which, of course, is again a group basis
of this group ring). These facts suggest the following questions:

Ql. To determine all groups H in W which contain T and map onto
group bases of RG.

Q2. To classify those groups H of Q1 into isomorphism classes.

Q3. To determine the groups H of Q1 which correspond to group bases
of RG.

Prop. 4 below gives a fairly satisfactory answer to Q1, while Prop. 5 is a
partial answer to Q2.

Corollary. If, under the assumptions of Prop. 3, G and H are group bases of
RG such that G, H, are conjugated by a unit of RG, then G is isomorphic to H.
In order to state Prop. 4, G is presented by a short exact sequence.

' 154->G-G-1

where the action of G on A is denoted by g :a — a° (with g in G and a
in A). This action makes A4 into an RG-module. The extension G is deter-
mined by a factor system

f:Gx G- A
which is associated to a choice of representatives, ao(g), of the g in G:

o(g)o(g,) = f(g,91)0(99,).

For the sake of simplicity, G will be identified with its natural image in
W, so that A is identified with T

An augmented automorphism, w, of RG is represented by its matrix

with respect to the basis G:
w:ig->Zo,t (t in G)
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The image w(G) will be denoted by H, and its representative in W (see
Remark above) by H. Then H, as well as G, is an extension:

I ToHSHS 1,

This extension is determined by choosing a set of representatives, t(h),
of the elements of H and giving the action of t(h) on Tand the factor sys-
tem /' defined by:

t(h)yr(hy) = f'(h, hy)t(hh,).
In what follows these representatives are fixed as follows:
t(w(g)) = L w, o(1). (t in G).

WARNING. The sums or products which appear below are assumed
to be extended to all letters which appear twice in the formula, these
letters varying over G.

Proposition 4. LetG be a finite group. Assume either H1 or H2 and use the
notations explained above. To each augmented automorphism w of RG
there is a unique subgroup H of W, containing T, mapping onto o(G). It is
an extension

1 T H >IH > 1

where each w(g) in H operates on T(~ A) thus:

g,t*

w(g) :a - Ia
and the factor system f' is given by
f(g), wlgy) = TLf(t, ;)"0 @,

Proof. 1t is only a straight forward computation. (The letter g, stands here
for gg,.)
[ (@(g), wlgy) = t(wg@)(wl(g))(wlg,) ! =
=Zw, 0(t)o,, ,,0(t,)r(wg,) ™" =
=X, @, [t t)o(tt)(o(g,) ™! =
= L, 0, ,0(tt)r(e(g,))”" +
+Zw, 0y, (f(tt)) — Dolet,)e(w(g,) ™"
Since w is an automorphism, the first sum is equal to 1. Since f(t,t,)— 1
is in AA/AAAG), and since normalized units operate trivially on the right

on this submodule (see Remark 1, after Lemma 2), the following equality
is proved:

fl(w(g)9 w(gl)) e z wg,twgl,uf(t’ tl)'
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This is an equality in X. After translation to the multiplicative notation
of T(or A) it becomes the formula of the proposition.
Q.E.D.

Corollary. If; furthermore, G is a split extension of A, then the same is true

for every group basis H such that H is isomorphic to G.

Remark. In recent works of Gruenberg and Roggenkamp (see [2]), a
great deal of attention has been paid to the second of the exact sequences
of Lemma 2 instead of the first one. As a matter of fact, their results demons-
trate very clearly the advantages of this second exact sequence.

It seems to be pertinent to show how one can replace the module X
in the results above by the RG-module Y= AG/(AAAG). This is very
easily done because there is a natural way of representing any normalized
unit in Y. In fact, every element of augmentation 1 is naturally represented
in Yvia the application x — x — 1. In this way, a group basis H is repre-
sented by a set H contained in Y,

It is interesting that as H is represented in X via a pull-back cons-

truction: "
1-T->S—>1+AG-1

] ’
H > H,
H too is obtained via a pull-back, as illustrated in the following diagram:

l15A->Y->AG-0
bt
H-H-—1,
where the embedding on the right is, obviously, h - h — 1, Hence, there
is again a commutative diagram with exact rows:

1545 Y>AG >0

ek
1»A4—H-H-1.

Also, the multiplication on H which corresponds to the multiplication
on H may be computed directly, and it is found that it is given by the follo-
wing “circle” operation:

Xey=x+x+ 1y. (x, yin H)

In order to state Prop. 5, observe that each automorphism  of RG
defines a new RG-module structure on Y. It is obtained in the usual way
by saying that the new action of a g of G is given by y — w(g)y (for yin Y).
This module structure will be denoted by Y,.
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Proposition 5.Let G be a finite group. Assume either H1 or H2:

() Each isomorphisms Y :G— H between group bases of RG leaving AA
invariant induces an isomorphism ¥ : G — H such that the G-modules
Y and Yy are isomorphic.

(i) If w is an augmented automorphism of RG such that there is a G-iso-
morphism Y : Y — Y, verifving Y = w, then the group H, which cor-
responds to w(G) in W according to Prop. 4, is isomorphic to G.

Proof.
(1) ¥ defines an automorphism of RG which induces an additive per-.
mutation of Y which is still denoted by . It verifies:

Y(@g,(g, — 1)2 = Ylg,lg, — 1)) = Yl Wi, — 1) =
=Yg, W(g, — 1). 91> g, in G)

This means that y : Y- Y; is a G-isomorphism.
(i) Since Y(G — 1) =y(G)— 1 =(G) — 1, it is clear that Y(G)=H. On
the other hand, ¥ is multiplicative because:

Vg, —1+4g,9,— 1) = ¥(g, — 1)+ (g, W(g, — ).
QE.D.
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