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The zeta function of a birational Severi-Brauer scheme

Stuart Turner

§1. Introduction.

Let k be a field and V be an algebraic k-scheme of dimension n — 1.
V is called a Severi-Brauer k-scheme if there exists a separable algebraic
extension L/k such that Vx, L and P,_,(L)= Proj L [X,,... X,] are
isomorphic as L-schemes ([11], p. 168). V' is said to be split by L/k. V is
called a trivial Severi-Brauer k-scheme if V' and P,_,(k) are isomorphic
as k-schemes.

Let K/k be a finite Galois extension and let G = Gal (K/k). The
isomorphism classes (as k-schemes) of Severi-Brauer k-schemes of di-
mension n — | which are split by K/k are in canonical one-one corres-
pondence with the elements of the cohomology set H'(G, PGL(n, K))
([1,1], loc. cit.). The exact sequence | — K*— GL(n, K)— PGL(n, K)— 1
induces a map A: HY(G, PGL(n, K))— H*(G, K*). A is injective and Im
A is described as follows: let y € H*(G, K*) and let D(y) denote the central
division algebra over k defined by y, let [D(y): k] = d?, then yeIm A if
and only if d|n ([10]). Assume now that yeImA and let f=A""'(y),
then the Severi-Brauer k-scheme V(f) defined by f is isomorphic as a
k-scheme to the Grassmann variety of left ideals of rank » in the matrix
algebra A =M, ,(D(y)). Actually, 4 does not depend on K but only on
n and the image of 7 in Br(k), the Brauer group of k. It was Chatelet ([6])
who first defined Severi-Brauer varieties and established their basic pro-
perties over fields of characteristic zero. In particular, he determined the
function field, K(V(f)), of V(f). Amitsur ([2]) interpreted Chatelet’s work
from another point of view, obtained new results, and extended Chatelet’s
theorems to fields of arbitrary characteristic. Today, his determination
of K(V(f)) is more accessible than Chatelet’s. The defining relations for
K(V(f)) are simplest when A is a cyclic algebra ([1,7]) ie. there exists
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a cyclic splitting field k'/k for A with [k’ :k] = n. In this case, let ze k’ such
that k= k(z). Chatelet and Amitsur proved that there exists a 0 e k*
such that K(V(p)) is k-isomorphic to the homogeneous quotient field of
M=k[X,,...,X,]/I, where I denotes the ideal generated by
oK)= TI (Xo+gD X, +9() X, +...g" ) X,_,) - 6XT
Since the coefficient of each monomial of HXo, Xy, ..., X554 symmetric
polynomial in {z, a(z),..., 6"~ Y(2)}, it is clear that each coefficient is
actually an element of k.

The element 6 arises in a natural way. To see this let G be the group
of characters of G=Gal (k'/k). There is a canonical pairing

n:G x k* > HXG, k'*) = Br(k)

([11], p. 211;[15], p. 181). Let x be a generator for G and Hy: k¥ PG k%)
be the homomorphism defined by n,b)=n(x, b). Ker 1, consists of the
elements of k* which are norms from k'*. By construction ye Im i
For 6 one can choose any element of k* such that #(y, 6) = y. As there

may exist many cyclic splitting fields for 4 of degree n over k, the repre-

sentation given by Chatelet and Amitsur of K(V(B)) as the homogeneous
quotient field of the grade k-algebra M depends on the choice of k'. It
also depends on the choice of y, on the choice of the primitive element z
for k'/k, and on the choice of §. For an arbitrary field k there is no natural
way to make these choices. However, in case k is a locally compact field,
distinct from R or C (a p-field in the terminology of [15]) or in case k is
an algebraic number field it is possible to use the result of Chatelet and
Amitsur to construct projective models for K(V(B)) which are defined
over the ring of integers in k. The construction of these models is carried
out in §2 and §5.

It will be convenient, particulary in §4, to avoid mention of the
algebras by using the following.

Definition. Let y € Br(k) and let D(y) denote the central division algebra
over k defined by y. y will be called a cyclic Brauer class of degree n in
case there exists a cyclic extension k'/k of degree n such that D(y) ®, k'
is a full matrix algebra over k'. k' will be called a splitting field for y of
degree n over k.

As it will be necessary to work in a “coordinate-frec” context, we
make the following.
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Definition. Let V() be a Severi-Brauer k-scheme of dimension n—1
such that A(f) is a cyclic Brauer class of degree n. Let k' be a splitting
field for y of degree n over k. Let G be the group of characters of G =
= Gal(k'/k) and let y be a generator for G. Let zek’ such that k' = k(z)
and 0 € k* such that n(y, 6) = A(f) e H¥(G, k'*). Let M = lb X, bisi) Xal 11,
where [ is the ideal generated by

[](Xo+ 9@ X, +g() X, + ... + 9" ) X,_,) - 0X".

geG

Let M~ denote the quasi-coherent grade o, -algebra defined by M. A
k-scheme k-isomorphic to Proj (M") will be called a Chatelet model
for V(B).

It is important to observe that Proj (M) is birationally, and not
biregularly, isomorphic to V(f). Indeed, there are singular points on the
“hyperplane at infinity”. Their existence is reflected in the results of §3
where the specializations of models for Severi-Brauer schemes defined over
discrete valuation rings are determined.

§2 begins with the study of a non-trivial Severi-Brauer scheme V(p)
defined over a p-field. A projective model for V(B), defined over the ring
of integers of the field, is constructed. Then trivial Severi-Brauer schemes
defined over an arbitrary field with a discrete valuation are studied. Two
types of models for these schemes are constructed. In §3 the specializations
of the models given in §2 are determined and in case the discrete valuation
ring has finite residue field the zeta function of the specialization of each
model is computed. Severi-Brauer schemes defined over an algebraic
number field k are investigated in §4 and §5. §4 contains a detailed analysis
of cyclic Brauer classes of degree n. The arguments are based on the
Grunwald-Wang theorem and on strong approximation. As it contains
results in class field theory which seem to be new and may be of interest
apart from their application to Severi-Brauer schemes, we have written
this § so that it can be read independently of the rest of the paper. §5
contains the construction of a projective model of a Severi-Brauer k-
scheme that is defined over the ring of integers of k. The basic properties
of this model are established. In §6 the zeta function of this model is
calculated and its functional equation is established.

Much of the work on models for Severi-Brauer schemes was begun
at The Institute for Advanced Study during 1970-72 where the author
profitted from A. Weil’s advice and encouragement. Besides thanking
Weil, the author also wishes to thank J. -L. Verdier for helpful discussions.
He is also grateful for the hospitality extended to him by Brandeis Uni-
versity, and the Universidad Nacional Auténoma de México.
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§2. Models for Severi-Brauer schemes over local fields.

Let k be a p-field with ring of integers r and residue field F,. Let
V(B) be a non-trivial Severi-Brauer k-scheme of dimension n — 1. By local
class field theory V() is split by k,/k, where k, denotes the unramified
extension of k of degree n. k, contains a primitive ¢" — 1 root of unity
¢ and k, = k(). Let G = Gal(k,/k) and G denote the group of characters
G. There is a canonical surjective pairing 1: G x k* - H*(G, k¥). ([15]),
proposition 9, p. 182 and theorem 1, p. 222). Let n be a prime element
of k, then y —#(x, 7) gives an isomorphism of G onto H*(G, k*) which
is independent of the choice of n. Hence H*(G, k¥) is cyclic of order n.
Let o0 € G be the Frobenius automorphism and y, € G such that y (o) =
= e?™/" then n(xy, ) is a canonical generator for H?(G, k*) which does
not depend on the choice of n. As in the introduction, let y denote the
image of § in H*(G, k}¥). Then y = y(y,, ') for a unique 1, 1 <t <n-— 1.
Let I() be the ideal of r[X,, X,,..., X,] generated by

g(XO,Xl,...,X,,)=O<U 1(X0+oi(C)X1 L e g LR

+o(Y X, ) — mX"
Lotlfe Com) =l X o X IR,

Proposition 1. (r,{,7') is an integral domain.

Proof. Since r[X,,..., X,] is factorial, I(f) is a prime ideal if and only
if g(Xo, Xy, ..., X,) is irreducible in k[X,, X,,..., X,] and the greatest
common divisor of the coefficients of g is one. The latter condition is
clearly satisfied. Suppose that g,, g, € r[X,, X,, ..., X,] are non-constant
polynomials such that g,g, =g¢.g, and g, are necessarily homogeneous
PR e Sl el ) L b e N L s
well known that g(X,,...,X,_,,0) is irreducible (cf. [4], theorem 2,
p- 80). So we may assume that g,(X,,..., X,_;,0)=aer, a#0. Since
g; 1s non-constant and homogeneous, g, = aX, for some j,j> 1, but
X, 4 ¢ 50 certainly X Yo, .

Corollary 1. (r,{,7') is a flat r-module.

Proof. By the proposition (r,{,n') is a torsion free r-module. Since r is
a principal ideal domain, (r,{,7') is a flat r — module (AC, I, § 2.4, pro-
position 3).

Let (r, ¢, 7') ~denote the quasi-coheregt graded oy, ,-algebra defined
by (r, {, '). Since r is noetherian, (r, {, 7') is a coherent gfaded Ogpec,-al-
gebra (EGA 1, 1.5.1). By the preceeding corollary (r, {, ') is a flat O pecr™
module (EGA, 1V, 2.1.1).
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Corollary 2. Proj ((r,(, 7)) is an integral (i.e. reduced and irreducible)
r-scheme.

Proof. Proj ((r,¢,7")") and Proj ((r,{,n')) are isomorphic as r-schemes
(EGA, II, 3.1.3), so by EGA 1I, 3.1.14 it suffices to prove that (r, {, ) is
integral domain.

Definition. An r-scheme r-isomorphic to Proj ((r, ¢, n")") will be called
a canonical model for V(p).

The generic fiber F of Proj ((r, {, ")) can be regarded as a k-scheme.
Since Proj ((r, ¢, n")7) is r-isomorphic to Proj ((r, {, n")), F is k-isomorphic

'to Proj ((r,{, n') ®, k) (EGA 11, 2.8.9). Since k is flat over r(r{n)®,k

is k-isomorphic to k[X,, X, ..., X,]/(g). Thus we have.

Proposition 2. The generic fiber of a canonical model Sfor V(P) is a Chatelet
model for V(p).

The following proposition will be needed in §3.

Proposition 3. Let k be a p-field with ring of integers r and residue field
s diet k, be the unramified extension of k of degree n, r, be the ring of
integers in k,, and { be a primitive ¢" — 1 root of unity in k,. Let o € Gal
(k./k) be the Frobenius automorphism and A(() = det (BN <3, 3 Then
r.=r[{] and if n is odd, AQ) is a unit in r.

Proof. The first assertion is a well known fact ([11], proposition 16, p.
84). A({) is a Vandermonde determinant so

A= [I (') - d(Q)anda(AQ) = 1L o
n—12i>j20 e d

For odd n multiplication by ¢ induces an even permutation on
{6%0,0% ...,0"'}. So a(A(0)) = AQ) and A()) € k. Since A)er,,
AQeknr,=r {{a(),...,0" ()} belong to distinct cosets of (r) in
ry([15], theorem 7, p. 16) so for i >j, ¢({) — ¢/({) is a unit in r,. Hence
A({) is a unit in r,, therefore a unit in r.

We now define two types of models for Severi-Brauer schemes defined
over arbitrary local fields, not necessarily complete. First we need some
algebraic preliminaries.

Let A be a discrete valuation ring with group of units 4* and quotient
field K. Let L/K be a cyclic extension of degree n, n odd, and let B be
the integral closure of A in L. Let G = Gal (L/K) and let t be a generator
for G. For x € L define A(x)= det (r‘(x-’))os,-‘js,,. The argument used in
the proof of proposition 3 shows that A(x) € K. Let § 4 denote the dis-
criminant of B with respect to A.
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Proposition 4. Assumptions and notations being as above the following
conditions are equivalent :

i) There exists z€ B such that L = K(z) and A(z) e A*.
i) There exists z€ B such that B= A[z] and é5,= A.
i) There exists z€ B such that B= A[z] and A(z) € A*.

Proof. 1) implies ii). By [16], theorem 30, p. 307, A(z)? € 3,,. Since A(z) e
€ A* 0p, = A. By the same theorem Jg, = A(z)?A4 if and only if
{l,z,2%,...,2" "'} is a basis for B as a free 4-module. Hence B = Alz]
ii) implies iii). Since z € B, the minimal polynomial f(X) for z over K
yields an equation of integral dependence f(z)=0 for z over A ([16],
theorem 4, p. 260). B= A(z) implies L = K(z) so f(X) has degree n and
{1,z,...,2" "'} are linearly independent over K. Therefore | g 2hel)
is a basis for B as a free A-module. So 0p4=A(z)*A. By assumption
0p 4= A s0 A(z)* € A*. Since A(z)e K and A4 is a discrete valuation ring,
A(z) € A.

That iii) implies i) is obvious.

Remark. It follows from i) that any conjugate ti(z) of z also satisfies the
conditions of the proposition.

Remark. The equivalent conditions of proposition 4 are satisfied in two

important cases: !

a) A has perfect residue field, B is a discrete valuation ring, and m outhe
maximal ideal of 4, is unramified in B ([11], proposition 12, p. 66).

b) m, splits completely in B, i.e. there exist n distinct prime ideals of B
lying over ‘m,, and n < card (4/m,) ([11], exercise 3, p. 67).

Let K be the completion of K and let V be a Severi-Brauer K-scheme
of dimension n— 1, n odd, such that V XspeckSpec K is a trivial Severi-
Brauer K-scheme and such that V is split by L/K. Let ze B satisfy the

conditions of proposition 4 and let ¢ € 4* N N 1y&( L) for each completion
L of L such that K = L; Let A be the completion of 4 and I be the ideal
of A[X,,...,X,] generated by [] (X, + 7 AV QPR T2 ) SO
0<igsn—1

+7(""HX,_)— ¢ X" Let (4,z,¢) = VI TR X,]/I. The arguments
used to prove proposition 1 and its corollaries show that (4, z, d) is an
integral domain and a flat A-module. They also show that Proj (4, z, ¢)°)
is an integral A-scheme.

Definition. An A4-scheme A-isomorphic to Proj ((4, z, )”) will be called
a completed model with respect to L/K for the Severi-Brauer K-scheme V.
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Proposition 5. If m, splits completely in B, then the graded A-algebra
(4, z, §) is isomorphic to AL, AR A6 A8 AR A

Proof. Since the minimal polynomial f(X) for z over K yields an equation
of integral dependence f(z) =0 for z over A, each of the conjugates 7'(2),
i=0,1,...,n—1, of z in L is contained in B. On thec other hand, f(X)
decomposes into linear factors in K, the completion of K, because m "
splits completely in B. Let z' € K be a root of S(X) = 0. There is a unique
K-embedding 4 of L in K such that A(z) = 7. Let x e B, since x is integral
over A, A(x) is integral over A, but A is integrally closed, so A(x) € 4;
hence A(B) = 4. Let t(Z) denote A(z(z)), i=0,1,...,n— 1, 7(z)e A.

1 5 :2/2 zm—l 0
1Sy g2y L TRy g
Let D ey . . . e

1 ,L.'I—l(zl) Tn—l(ZIZ) ,L.n—l(z/n—l) 0
0 0 0 0 1

Det D= A(z). By assumption A(z')e A* = A* so De GL (n, A). Let
=Ko +7()X, +... +7"")X,_ ), for0<i<n—1

% =X

Then D defines a degree preserving 4-algebra isomorphism of A[X,,..., X,]
onto A[Y,,...,Y,] which induces an isomorphism of A[X,,...,X,]/I
onto A[Y,,..., Y, )(Y, Y;...Y,_, — ¢ Y"), as required.

Corollary. A[Y,,...,Y,J(Y,Y,...Y,_, —Y") is a flat A-module.

We conclude §2 with the definition of another type of model for
a Severi-Brauer scheme defined over a local field. Let K,L,A,B,G t
and V be as above. Let x € B, such that K(x)= L and x is contained in
all maximal ideals of B. Let ¢em,nN; z( 1) for each completion I,
of L such that K = I,. Let J be the ideal of A[X,,..., X,] generated by

oL [[ 1(X0 + TX E TOAX ot ok TOETHX, ) — X0

Let (4,x,¢)=A[X,, ..., X,]/J. As before we see that (4, x, @) is an
iPtegral domain and a flat A-module and that Proj (4, x, ¢) ) is an integral
A-scheme.

Definition. An A-scheme A-isomorphic to Proj (4, x, ¢)”) will be called
a degenerate model for the Severi-Brauer K-scheme V.
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§3. Specialization of models for Severi-Brauer schemes.

Let k be a p-field with ring of integers r and residue field ket
k, be the unramified extension of k of degree n, r, be the ring of integers
of k,, and p, be the maximal ideal of r.. Let p:r,—r,/p,= F, be the
projection homomorphism; for XE€r,, let x = p(x). p extends naturally
to a homomorphism r,[X,,...,X,] - F.[X,,.... X ] which will also be
denotAed by p. Let G = Gal(k,/k) and o € G be the Frobenius automorphism.
Let G=Gal([Fqn/ F,) and 6e€ G be the Frobenius automorphism.

Lemma 1. Let S be a symmetric polynomial in ZL X0 i o) with
each coefficient equal to + 1. For all XEr,, let s(x)=S(x, o(x), 6%(x),...,
0" 1(x)). Then s(x)= S(X, 5(x), ..., & (%)) = s(X).

Proof. Since each coefficient of S equals + 1, s(x)= S(x, o(x), az—(x),...,
...,6" " !(x)). Since o is characterized by the property o(x) = x4 (mod D)

ox)=x"=5"=54x%), forall i, 0<i<n-1.

Corollary. If xer, such that A(x)e r*, then . F 00 02 860
is a basis for Fpn over F, for each i, 0<i<n-— 1.
Proof. A(x) is a symmetric polynomial in 1% olx) &%), ... (x)} with
each coefﬁcient‘equal to + 1, so A(x) = A(x). A(x) € r* implies A(x) e 3
$0 A(x) =det (6'(x'))o<; ; < »—, #0. Hence {1,6%(x),... 6'(x"~ 1)} is a basis
for F,. over B

Let zer, such that r, = r[z] and A(z) e r* Let ¢ er and
M =r[X,,... X,]/I, where I is the ideal generated by FE IR N
= Tl @)X, + --.0%2"")X,_,)— ¢X". Then Proj (M) is an

0<i<n-—1
r-scheme and Proj (M) Xspecr Fq can be regarded as an F,-scheme. Let

M=F,[X,,...,X,)/T where I is the ideal generated by
[1 &, +&ex,+. . &Y%, )~ ¢x~

0<i<n—-1

Proposition 1. Proj (M) Xspee r Fq and Proj (M) are isomorphic F_-schemes.
Proof. The closed fiber of Proj (M) is canonically isomorphic to Proj
M®,F) (EGA 11, 2.89) so it suffices to prove that M ®, F, and M are
isomorphic graded F,-algebras. Since M is a flat r-module (cf. corollary
1 of proposition 1, §2), M ®, F, is isomorphic as an [, -vector space to
F[Xo, ..., X, )/, where I' is the ideal generated by p(f(X,,... X,)).
Wirite £i( X, .. 4. X0 = Y. . Sdz.oln), 0" Y 2))X*) — ¢ X", where o is a
|

a|=n

multi-index and where the S, are symmetric polynomials as in the lemma.
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By the lemma p(f(Xo,...X,,))=(l P(S(2,0(2), ... 6" 1(2))X*) — p(@) X" =

= (Z543,6(2),...5"'(2) — ¢ X, ki :
=, AL, Ko+ 60X, +.. 5@ X,)) - 6X3.

0=i=n~1

Corollary. Proj (M") Xspecr Fq and Proj (M ") are isomorphic F,-schemes.
Proof. EGA 11, 3.1.3.

Remark. The corollary applies in two important cases: first, if Proj (M)
is a completed model with respect to k,/k for a trivial Severi-Brauer k-
scheme and second, if Proj (M") is a canonical model for V(f), a non-
trivial Severi-Brauer k-scheme. il vhip
We now calculate the zeta function of Proj (M) in case n is prime,
n>2. Recall that the zeta function {(T) of an F -scheme X is the formal -

Ny L
power series in T such that log {(T)= ) - T*, where N, denotes

v=1

* the number of F,.-valued points of X. There are two cases to consider:

I) per*, so pcF* and II) ¢p¢r* so ¢ = 0.

Case 1) Let Fq be an algebraic closure of F,. The IFq.,-valu‘ed poin.ts
of Proj (M) correspond to the F,.-rational points on the variety W in
P,(F,) defined by

[l Xo+d@X,+..6E HX,_,)— dX=0.

0=i=n—1

Lemma 2. N, =q¢""'+¢" 2+ ...4+q+1.

Proof. Since {1,6(z), ... 3'(z"" ')} is a basis for F,. over F,, for efich
,0<i<n—1,Wn{X,=0} contains no F rational points. The points
of Wbelonging to the complement of the hyperplane X, =0 can be iden-
tified with the points of the variety W’ in A,(F,). defined by

FLe Yo+ 00, 4. 80" YY)~ & =0,

0<i<n—-1

Since {1,Z,...2""'} is a basis for F,. over F,, (yg, )1, .-, Yazy) €W for
yieF, if and only if N(y,+zy, +...2" " 'y,_,) =@, where 'N der_l?tes
the norm, N :'IFq,..'*—> Fy. Since N is surjegtive, ker N contaulsl q  +
+¢" %+ ... + 1 elements. By assumption ¢ € F; so thereare ¢"~ " + ... +
+ 1 points(y,, ..., y,—;) in A(F ) satisfying N(yo + zy; + ... + 2" 1y,_)) =
=¢. Hence N, has the required value. :
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Lemma 3. Let ve N such that n)v, then M= Vgt L
Proof. Since nis prime,.quu NF;=F,and F, and F,~are linearly disjoint over
F,. Hence {1,5%(z), ... 3" 1)} is again a basis for Fon over F . and the
argument of lemma 2 shows that N » has the required value.

Lemma 4. Let ve N such that n|v, then N,= g~V 4 grn-2 q° +1.
Proof. Since n|v, F» = F,. and (7)) e P for_.'all j, 0<i,j<n—1. By
assumption A(z).e r*, so Al e Fx. Therefore (6"(21‘))05,.’ j<n-1€GL(n, F ).
Let %,=Xo+5@X, +...+ 6z YX,_, 0O<i<no_1

¥ =g

The argument of proposition 5 of §2 shows that W, considered as a va-
riety defined over Fge, is F-isomorphic to the projective variety W” in
Rolleidsfined by X.¥ . ¥ . — & ¥*—0_Hence to calculate N, it
suffices to count the F,-rational points on W”.

W' n{Y,= 0} can be regarded as a variety in P,_,(F,). The affine
cone over this variety is the variety in A, (F,) defined by Y, Y, ... Y,_, =0.
This affine variety contains @) — (g —1)y F,~rational points, so the

i ‘ ) ) nv o 0} v i 1 n L 1
projective variety W " n{Y, =0} contains i\(qu)‘ F-rational
e

points. W”N{Y,# 0} can be identified with the points on the variety
in A(F,) defined by Z, Z, ... Z,_; — ¢ =0.This variety contains @ —-1)1
F,.-rational points. So N, = q”("*l) + q”.("‘Z) +...+q"+1. )

Combining lemmas 2, 3, and 4 with proposition 1 and the remark
following the corollary of proposition 1 yields.

Proposition 2. Let n be g prime, n > 2, and let V be a trivial Severi-Brauer
k-scheme of dimension n— 1. Then N,, the number of F,-valued points
on the closed fiber of a completed model Jor V with respect to k,/k, is given

by N, =g " 1 e DL e S0 20 oppanlon

Corollary. The zeta function of the closed fiber of a completed model for
V is given by

U7y = [~ PTF i st gl (R

Case 1II). Since ¢ %0, the F .-valued points of Proj (M) correspond

to the F.-rational points on the projective variety W, in P,(F,) defined
by [] (X,+&@x,+ .0(Z""1)X,_,)=0. Observe that the point

0<i<n-—1

©,0,...,0,x,),x,#0 is an F,-rational point, hence N,>1 for all ve N.
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Lemma 5. Let ve N such that nkv, then L=l

Proof. Since ntv, {1,6'z),...,5'z""!)} form a basis for F o= OVETIE L,
for each i, 0 <i < n — 1. Hence the only F,.-rational point on W, is
L R o S g

Lemma 6. LetveN suchthann|v, then N,=n(g"" " +q"" >+ ... + q")+ 1.
Proof. Since n|v, F,.c F,, and G'(z/)e F, for all 4,j,0<ij<n-—1. By
assumption A(z)er*, so A(z)e F¥. Therefore (g'(z)) e GL(n, ko) Let
Y=X,+6(2)X, + ...+ 6@ )X,_,, 0<i <n—1. The argument of
proposition 5, §2 shows that W;, considered a variety dgﬁned over F,,
is isomorphic to the projective variety W] in P,(F,) defined by
Yo Y,...Y,_, = 0. W/ is a union of the hyperplanes {Y,=0},i=0,...n—I.
Their common intersection is the point (0,0, ...,0, Vn), Yo 0. The com-

(n-2)

plement of this point in each hyperplane contains q”("'—l - PR
F-rational points. Counting the points with their appropriate multiplicity

gives N,— 1=n(g"" " + & q").
Combining lemmas 5 and 6 with proposition 1 and the remark following

the corollary of proposition 1 yields.

Proposition 3. Let n be a prime, n > 2, and let V(B) be a non-trivial Severi-
Brauer k-scheme of dimension n— 1. Then N v> the number of F .-valued
points on the closed fiber of a canonical model Jor V, is given by N,=1,

if n¥v, and Nv=n(q”("")+q”("_2)+ ot @)+ Ll alp,

: Corollary. The zeta function of the closed fiber of a canonical model for

V is given by
W) = s (™ TN A @ TA T L g T - I

This concludes the discussion of Case II).

Let A be a discrete valuation ring with maximal ideal m 4 and quotient
field K. Let L/K be a cyclic extension of degree n, n odd, and let B be
the integral closure of 4 in L. Assume that m,, splits completely in B and
that n < card (4/m). Let K be the completion of K and let V be a Severi:
Brauer K-scheme of dimension n— 1, n odd, such that V Xspeck SPEC K
is a trivial Severi-Brauer K-scheme and such that V is split by L/K. By
proposition 5, §2 a completed model for V with respect to L/K is A-
isomorphic to Proj (N) where N = A[Y,, Y,,...,Y,](Y, Y;...Y,_, — ¢ Y7)
with ¢ € A*. Let F = A/m,A and let ¢ be the image of ¢ in F. The closed
fiber of Proj (N) is canonically isomorphic to Proj (N ® ; F) (EGA 1I,
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2.8.9). Since N is a flat A-module (corollary of proposition 5, §2) N® 4F
is isomorphic as an F-vector space to

BRE ¥, LI YKL < $y.

Assume now that F = F, then the F,.-valued points on the closed
fiber of Proj (N) correspond to the F,.-rational points on the variety
W”in P,(F,) defined by Y, Y,...Y,_, — ¢ Y"=0. The argument of lemma
4 shows that N, =¢"" "+ ..+ 4°+ 1.

Proposition 4. Let n be odd and let V be a Severi-Brauer K-scheme of
dimension n — 1, n odd, such that V Xspecx Spec K is a trivial Severi-Brauer
K-scheme and such that V is split by L/K. Then N,, the number of F,-
valued points on the closed fiber of a completed model for V with respect
to L/K, is given by N,=q""-V+ ...+ ¢"+ 1, for all veN.

Corollary. The zeta function of the'closed fiber of a completed model for
V' with respect to L/K is given by #

M=[A-¢""D-¢g"?7)...1—qgT)1 - T)] .

Let K,L,A,B,F and V be as above. Let G = Gal (L/K) and let
7€ G be a generator for G. Let x € B, such that K(x) = L and x is contained
in all maximal ideals of B. Recall that a degenerate model for V is A-iso-
morphic to Proj (P) where P = A[_X 0s --- X,]/J, J being the ideal generated
by T[] 1(X° +TR)X, + .+ X" )X, ) — P XT, with dem,. As

0<i<n-—
before, the closed fiber of Proj (P) is canonically isomorphic to Proj
(P® ;F). Since P is a flat A-module, x belongs to each maximal ideal
of B, and pem,, PR,;F is isomorphic as an F-vector space to
F[X,, ..., X,]/X}. Assume now that F = F,. Then the F_-valued points
on the closed fiber of Proj (P) correspond to the F,o-rational points on
the variety in P,(F,) defined by X% = 0. This is a hyperplane, so we have.

Proposition 5. Let n be odd and let V be a Severi-Brauer K-scheme of
dimension n — 1, n odd, such that V Xspeck SPec K is a trivial Severi-Brauer
K-scheme and such that V is split by L/K. Then N,, the number of F -
valued points on the closed fiber of a degenerate model Jor V, is given by

N,=g D4 4g+1

Corollary. The zeta function of the closed fiber of a degenerate model for
V is given by

UT) = {0 — 47! Dol i@ D) B)JAA
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§4. Cyclic Brauer classes.

Throughout the rest of the paper k will denote an algebraic number
field. Let Q be the set of places of k; for veQ, let k, be the completion
of k at v. Let Br(k,) be the Brauer group of k,. In case k, is isomorphic
to R, Brik,)~{+ l}; in case k, is isomorphic to C, Br(k,)~ {1}; and
in case k, is a p-field, Br(k,) is canonically isomorphic to the group of
roots of unity in C*. For each v there is a canonical map Br(k)— Br{k,).
These maps give rise to an injection Br(k)— nBr(ku)([3], theorem 2,

veQ)

p- 16; [15], p. 252). Let y € Br(k) and let y, be the image of 7 in Brik,).
Let n be the order of y; n is clearly equal to the least common multiple
of the orders of the y,.

Let S={veQl|y,#1}. S is finite ([15], theorem 1, p. 202). In case
veS is a finite place, lgt k, ,, be the maximal abelian extension of k, (in
a fixed algebraic closure of k,). Let (7, = Gal (k, ,/k,) and $, be the open
subgroup of &, with fixed field k,,, the unramified extension of k of
degree n. Let ¢: 4, — (A, /K, be the projection and ¢, € A,/K, be the Fro-
benius automorphism. Let y,, be the character on &Z,/R, such that ¥ (5,) =
=¢e?™" Let a,: k*— (X, be the canonical morphism of local class field
theory. Then x, =y, o ¢ oa, is a character of order n on k*. In case ve S
is an infinite place, let y, be the non-trivial character on (&, = Gal (C/R).
Let a,: R* —» (X, be the canonical morphism. y, = ¥, oa, is the character
on R* which maps R* to 1 and R* to— 1.

Let P(n,S) be the group of elements zek* such that ze(k*)" for
all v¢S. Assume that P(n, S) = (k*)" in order to avoid the notorious “special
case” discussed in [3], pp. 93-6. Let J, denote the idele group of k. There
exists a chacter y of J, of order n, trivial on k*, such that the restriction
of x to ki is equal to y, for all ve S ([3], theorem 5, p. 103). Let k,, be the
maximal abelian extension of k and = Gal(k,/k) and a:J,—> A be
the canonical morphism of global class field theory. a is surjective. The
map induced by a from (&, the group of characters of &, to UL the
group of characters of J,, gives an isomorphism of & ~onto the group
of characters of J, of finite order, trivial on k*([15], theorem 5, p. 271).
So x can be regarded as a character on (¥. Let k' be the fixed field of ker .
By construction k'/k is a cyclic extension of degree n such that for all
vES, k'®; k, is a field, ky,; in case v is finite k, is k,-isomorphic to k,,;
in case v is infinite, k|, is k,-isomorphic to C. For every place veQ the
degree of k|, over k, is a multiple of the order of y, in Br(k,), so y is a cyclic
Brauer class of degree n with splitting field k' of degree n over k ([15],
proposition 5, p. 253).

x can be regarded as a character on 3= Gal(k,,,/k) constant on
cosets of &7 in J and y, can be regarded as a character on J,= Gall(k, , oK)
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constant on cosets of &Z, in J,. Let 7:J x k* - Br(k) be the canonical
pairing for k ([15], p. 181) and n,: §, x k* — Br(k,) be the canonical pairing
for k,. There exists 6 e*k* such that y = 5(y, 0). 6 is defined up to an element
of Ny, (k') and y, =1n,(x,,0). Let ve S, v finite, and n be a prime element
of k,. From §2 recall that there exists a unique integer ¢,, 1 <t,<n-— 1,
such that y, =n,(x, n').

Proposition 1. Let A denote the ring of integers of k and let T be a finite

set of places of k such that SNT= ¢. Then there exists 0’ € A satisfying
the conditions:

1) y=nlx0),
11) Sor all veS, v finite, ord(0)=t,,
ii) for all ve T, v finite, ord (0) > 1.

Proof. Let 6 be as above and let r* be the units in the ring of integers of
k,.,. For vesS, v finite, y,=1n,(x,,0)=n,(x,,7) so 0 ' nve Ny i, (K.
Since ki /k, is unramified of degree n, Ny, (k) = {n" r*} ., (flg], p.
139 and corollary p. 226), so t,— ord,(0) =b,n for some b,eZ.
rarix ek, N} (x)= Ny, (x) ([15], corollary 3, p. 58) and ord,
(N, X)) =n ord,(x). Hence if ord,(x)=b,, then ord (0 N,. () =t,.
For any veQ, v finite, if x €k’ has sufficiently high order at a place w
of k', w|v, then ‘ord (6 Nip () > 1.
Let U={veQ|v¢ SUT and ord(0)<0}. U is a finite set. Let 4,
be the set of places of k'. Using the strong approximation theorem ([5]
" p- 67) in k' select yek’ such that 1

a) for ve S, v finite, and for we,.,wlv, ord,(y)=b,,

b) for ve T, v finite, and for some we Q,.,w|v, ord,(y) is sufficiently large
that ord (O N, (y)) > 1,

c) for ve U and for some weQ.,w|v, ord,(y) is sufficiently large that
ord (6 Ny, () =0, :

d) for all finite v, v¢ SUT U U and for all weQ,.,w|v, ord,(y)>0.

Then for ves, vfinite, ord,(0 N, (V) =1, for ve T; vfinite, ord (6 Ny (7)) > 1
and for all other veQ, v finite, ord,(0 N,.,, (y)) > 0. So 6 =6 Nien()€ A
0 satisfies 1) — iii).

Remark. Proposition 1 was proven under the assumption that k, S and
n do not give rise to the “special case”. Proposition 1 is sufficient for
applications later in this paper. However, a stronger result can be esta-
!)lished using a similar argument. We describe the result as it may be of
- independent interest. Again, let k be an algebraic number field and let
7 € Br(k). y defines a central division algebra over k, D(y). The index i = i(y)
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of D(y) is defined by [D(y): k] = i(y)>. The Albert-Brauer-Hasse-Noether
theorem ([7], cf. [3] corollary, p. 105) implies that y is a cyclic Brauer
class of degree i(y) — even under the conditions of the special case. Let
S'={veQly,# 1} and let S, be the subset of Q defined on p. 95 of [3].
For all veS’, v¢S,, let &,; denote the subgroup of &, = Gal (k, ,/k,)
with fixed field k, ;. Let 6,€ &, K, ; be the Frobenius automorphism and
¥, be the character on (,/8K,; such that ¥ (o,) = e*™/™. Let yx, be the
character of order i on k¥ defined by y/, as above. Then there exists a
character y of J, of order i, trivial on k*, such that the restriction of y
to k¥ equals y,([3], theorem 5, p. 105). For ve §',v ¢ S,, let ¢, be defined
as above. An argument similar to the one used in the proof of proposition
1 gives.

Proposition 1'. Let A denote the ring of integers of k and let T be a finite
set of places such that S'nT= ¢. Then there exists 0' € A satisfying the
following conditions:

1) y=n(x0)

ii) for all ve S, v finite, v¢ S,, ord (0)=1t,
iii) for all ve T, v finite, ord (0') > 1.

Before giving an important coroflary to proposition 1 we recall
a result of Hensel concerning the discriminant of a finite extension of
an algebraic number field. As before, let k be an algebraic number field
and A be the ring of integers of k. For ve Q, let p, denote the prime ideal
of A defined by v. Let L/k be a finite Galois extension of k of degree m
with G = Gal(L/k). Denote the elements of G by 7,,0<i<m— 1. Let
B be the integral closure of A in L and let ép,, be the discriminant of B
with respect to A. For zeL, let A(z) =det (t{z))g<; <m-15 A(2)#0 if
and only if L=k(z). {A(z)*|z€ B, k(z)=L} generate an ideal I, of A.
Ig 4 <0g4;if p,|Ip 4 and p,k dp 4, then p, is called a common inessential
factor of the discriminant of L/k ([8], p. 439). From Hensel’s criterion
([8], p. 442) it follows that if p B is a prime ideal of B, then p, is not a
common inessential factor of the discriminant of L/k. A necessary condition
for p, to be a common inessential factor of the discriminant is that card
(A4/p,) < m. This condition is also sufficient if p, splits completely in B.
We apply these results in case L = k', the extension of k described above,
under the additional assumption that n is and odd prime.

Corollary. Notations being as in Proposition 1, assume that [k':k]=n
is and odd prime. Let T, ={veQ|p,|Ip }. Then there exists 6'c A sa-
tisfying the following conditions:

) y=n(x0), '
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ii) for all veS,v finite, ord (0)=t,,
iii) for all ve T, v finite, ord (0) > 1.

Proof. As n is odd, k,n, and S do not give rise to the “special case”. As

n is prime, p,|I B4 Implies that p, is totally ramified in B or that p, splits -

completely in B and card (4/p,) <m. Hence SNT, = @&. The corollary
now follows from the proposition.

Throughout the rest of §4 the assumptions will be those of the co-
rollary. We let f(instead of 6') denote an element of A4 satisfying con-
ditons i) — iii) of the corollary. Define

T,={veQ|v¢SUT,,0rd0) = 1},50 SUT, U T, = {veQ|ord,(6) > 1}.

For any v such that k/k, is unramified of degree n, the restriction map
Gal (k,/k,)— Gal (k'/k) is an isomorphism. Identify these two groups
using this isomorphism. Then A(x) is well-defined for any xe /el
A: ki, -k, is a polynomial map, therefore continuous. Let q, be the car-
dinality of the residue field of k,. k/, is generated over k,by {,, a pri-
mitive g,.— 1 root of unity. Recall that A({,)e A¥, the group of units
of A, (proposition 3, §2).

Lemma. Let B, be the ring of integers of k,,. There exists ¢ >0 such that
for all zek',|z—{,|, <e, the following conditions are satisfied:

i) k(2)=k(,)=Kk,,

ii) zeB,,
iii) A(z) e A*.

Proof. Let g, = min IGCW—Cwlw.Letzek’suchthatlz—Cw|w<é1.
aeGal(kw/ky),0 # id

By Krasner’s lemma ([9], proposition 3, p. 43) k,(,) < k,(z), so k,, = kz).
Since {,, € B,,, for some &, >0,|z—{,|,, <, implies z € B,. Since A: Kk, —
— k, is continuous and A(,) € A¥, for some &; >0,z — {w|w < &5 implies
A(z)€ A*. Set e =min &, i=1,2,3.

Proposition 2. Let B be the ring of integers of k'. There exists z, € B such
that

1) k(z) =k,
ii) for all veS, v finite, A(z,) € A*
iii) for all w|v, ve T, U T,, ord,(z,) > 1.
Proof. If there is no finite ve S and T, U T, = &, then ii) and iii) are va-

cuous and i) is obviously satisfied for some z, € B. If there is no finite
veS, but T,u T, # J, let z€ B be a primitive element for k' and let g 4
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be such that ord,(az)>1 for all w|v,ve T, uT,. Then z, = az satisfies
1) and iii), while ii) is vacuous. Finally, assume that there is a finite v e S,
For each such v select ¢, >0 as in the lemma; let ¢ = ming,. Using the

veS
strong approximation theorem in k' select z, € k' such that |z, — (|, <e¢
for all w|v, veS, v finite, such that ord,(z,)> 1 for all wlo, veT,UT,,
and such that ord,(z,) > 0 for all other finite places w of k. z, € B and
i1) and iii) are satisfied. To verify i) observe that [k(z,): k] > [k(z,),: k,] = n
for all finite ve S, so k(z,)=k.

By definition of T;, for each finite ve Q, v¢ T;, there exists an x, € B
such that k'=k(x,) and A(x,)*>€ A¥ (or, equivalently, A(x,)e A*). Let
Z, ={veQ|v finite, v¢SUT, UT,, A(z,)¢A*}. I, is finite set. Let v,
be a finite place of k,v,¢S VT, VT, UX,, such that there is only one
place w, of k' lying over v,, so K, /k,, is unramified of degree n. Let Qv,
be the cardinality of the residue field of k,, and {,, be a primitive i, 1
root of unity in k. ;

Proposition 3. There exists z,€ B such that

i) k(z) =K,

il) for all veXZ,, Az,)e A*.

Proof If £, = (7, ii) is vacuous and i) is obviously satisfied for some 2,€B.
The rest of the proof being essentially the same as the proof of proposition
2 it suffices to remark that one choose z, € B close to Cw, In the topology
of k,, and close to each x, in the topology of each k|, w|v,veX,.

§5. A model for Severi-Brauer schemes over algebraic number fields.

Let Y= Spec A and for veQ, v, finite, let A, denote the valuation
ring in k,. For an A-scheme X, let X, denote the A4,-scheme X x, Spec A,.
Let X, denote X x, Spec k. Let V be a Severi-Brauer k-scheme of di-
mension n— 1, n an odd prime, defined by yeBr(k). Let y, be the image
of y in Br(k,). For each veQ, let V= Vx spec k Spec k,. The purpose of
this § is to prove:

Theorem 1. There exists a quasi-coherent graded oy-algebra &, flat over
Oy, such that Proj (¥) is a projective Y-scheme and such that

1) Proj (%), is a Chatelet model for V.

1) For all veS, v finite, Proj (&), is canonical model for V (y,)

ii)) For all ve T, UT,, Proj (¥), is a degenerate model for, V.

iv) For all other veQ, v finite, Proj (¥), is a completed model for V.
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The comstruction of <.

We make the following notational convention: if D is an integral
domain with quotient field E, F is a finite Galois extension of E with
H=Gal(F/E), xeF such that F = E(x), ¢ € E*, then the graded D-
algebra

DX, X, ...,X,,]/(]_’[l(Xo + o(x)X; + ...0(x"")X,_, — 0 X))

will be denoted by (D, x, ¢).

The quasi-coherent oy-algebra & is constructed by first assigning
to each member of a cover for Y, consisting of subsets of the form D(f),
J €A, a quasi-coherent graded oy-algebra and then joining these sheaves
using recollement de faisceaux (EGA 0, 3.3).

Let Q;, be the set of finite places of k and let U, = Qi — Z,.
BUTuT)NZ, =¢, so SUT,UT, cU,. Identify U, with an open
subset of Yand let {W,|W,< U,},, be a covering of U , by distinguished
affine open subsets of Y. Each W, = D(f;) for some f; € A. The affine scheme
(W, oy|w) is canonically isomorphic to Spec A 5o (Ag, 21, 0) is a graded
A, -algebra of finite type. (Af;,z,,0) can also be regarded as a graded
A-algebra. Let (A,,z,,0) be the associated quasi-coherent graded
oy-algebra. Then (4,,,z,,0) ~| W, is canonically isomorphic to the quasi-
coherent graded o, 4, -algebra associated to the A sialgebra (4, z,,0)
(EGA I, 1.3.6). For h,iel,(Ay,,2,,0) |y, w,and (A5,21,0) |w,nw, are
isomorphic as quasi-coherent graded o,-algebras because each is iso-
morphic to (Ay,;,21,0) |w,aw.

LetZ, = {v€Q|v, finite, e SU T, U T, or A(z,) ¢ A*}. By construction
Z,nX,=¢. Let U, =Q, —%,. Identify U, with an open subset of Y.
Let {X;|X;cU,},, be a covering of U, by distinguished affine open
subsets of Y. If X;=D(g;) and X, = D(g,), g;> 9 € A, then as before
(45,22,0) |x,nx, and (A,,,z,,0) |y, .y, are isomorphic as quasi-
coherent graded oy-algebras. ]

{W., X,}ics. jes is an open cover for Y. In order to apply recollement
de faisceaux to establish the existence and uniqueness of a quasi-coherent
graded o,-algebra ¥ such that & IWi is isomorphic to (4, z,, 0)~|W|’
forall ie I and # |y is isomorphic to (4,,, z,,0) |, for all j € J it suffices
to verify that (4,,2,,6) |y, x, and (4,,,2,,0) | . x, are isomorphic.
(A5,21,0) |w.n x, 18 canonically isomorphic to the quasi-coherent
graded o, 4, -algebra associated to (A, ,z,,6) and (4 622 0) |winx,
is canonically isomorphic to the Ospec af g,-2lgebra associated to (4 T
z3, 0). Since the functor ~ from the category of graded A 1.g,-2lgebras to
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the category of quasi-coherent graded Ospec 4g,-2lgebras is faithful, it
suffices to prove

Proposition 1. (A4 rup21>9) and (A;, ., z,,0) are isomorphic graded A Tl
algebras.

Proof. Let C be the A, -algebra Ao i, LY 1. .. 8 8%
There is a 4 1ig,-algebra homomorphism of (4 1,221, 0) onto C which
maps X,+0'(z)X, +...+0%z,"")X,_, to Y, for i=0,...n—1 and

maps X, to Y,. This homomorphism is defined by the matrix

JIOGEY gpRoma yimlonsio
Picthle e S T B
e . i
Prat e R (o) dgrnige ety g
O .0 0 0 1

Similarly, there is an A 1.9,-algebra homomorphism of (4 fia;0 22, 0) onto
C defined by the matrix

e £l T et T
B0 a2, ) 4100 g) L e () b
gl o 7 4 vag ! j . X
Yo ey 0 Y0
0 0 0 0 1

An easy calculation (recall that n is odd) shows that a(Z; ! Z =252,
$0 Z,1Z, has entries in k. By construction A(z,) = det Z, € A* for all
veW,nX; h=12 Hence Z;' Z, has entries in 4,k and det Z;' Z, e
€ A3k for all ve W,nX;, so Z;'Z,eGL (n,A,nk). Since Apg =

= "O . (A,nk),Z;" Z, has entries in A, . Since det Z;' Z, is a unit
VEW NAj

in each 4,Nk, itis a unitin A,, . Hence Z;' Z, e GL (n, Asi) S0 Z3'Z,
defines an isomorphism of (A4 1,2 %1,0) and (4 fi9;0 22, 0) as graded A i
algebras.

The properties of &
The assertions of theorem 1 are proven in proposition 2-10.

Proposition 2. & is a coherent graded oy-algebra.

Proof. By construction & is a quasi-coherent graded o,-algebra of finite
type, so since A is noetherian, % is a coherent oy-module (EGA 1, 1.5.1).
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Proposition 3. . is a flat oy-module.

Proof. Since #|y is isomorphic to (A;,z,,0) |, . and (A;..zy,0) is
an integral domain (cf. proposition 1,§2) %, is an integral domain for
all pe W,. Applying the same argument to .&| x, we conclude that &,
is an integral domain for all p € Y. But for each p€ Y, 0,  is either a discrete
valuation ring or a field. So &, is a flat ¢, ,-module for all pe Y.

Proposition 4. Proj () is a scheme of finite type over Y and the morphism
f:Proj (¥)— Y is projective.

Proof. Let &; denote the homogeneous component of ¥ of degree i.
By construction %, is isomorphic to oy, ¥, is an % ,-module of finite
type, and . is generated by %, (EGA 11, 3.1.9). The two assertions now
follow from EGA II, 3.4.1 and 5.5.1-2 respectively.

Proposition 5. Proj (&) is integral i.e. reduced and irreducible.

Proof. In the proof of proposition 3 we observed that . is integral (EGA
II, 3.1.12) and that Yis an integral scheme. Since %, is isomorphic to
0y, the conclusion follows from EGA 1I, 3.1.14.

Proposition 6. Let Y,: Spec k— Y denote the canonical map of Spec k
to the generic point of Y. Then Proj (&) xy Spec k is a Chatelet model for
the Severi-Brauer k-scheme V.

Proof. As before, let D(f) be a basic open set of Y contained in U,. The
schemes (D(f), o,| b)) and Spec A, are canonically isomorphic. Identify
them using this isomorphism. The inclusion homomorphisms 4 — A4 sk
induce maps Spec k— Spec A;— Spec A; Y, is the composite of these
maps. Proj () xy Spec k and (Proj (¥)xy Spec A 1% speca, Spec k are
canonically isomorphic as k-schemes (EGA 0, 1.3.2), so it suffices to show
that latter is a Chatelet model for V.

By the definition of Proj (¥) (EGA 11, 3.1.2-3) Proj (£)xy Spec A,
is canonically isomorphic as an A4 s-scheme to Proj (I'(D(f), &)). By cons-
truction s | p(s) 18 isomorphic to the quasi-coherent graded Ospec 4,-algebra
(A7,21,0) | pgsys S0 Proj (P)xy Spec A, and Proj (A;,z,,0) |n,,) are
canonically isomorphic as A -schemes. From the proof of EGA II, 3.5.3
one sees that Proj(A,, z,,0)” rD( )X spec a,Speck and Proj((A [, z,,0)® , k)~
are canonically isomorphic as k-schemes. Since k is a flat A4 s-module,
(As,2,,0)®, ,k and (k, 2y, 0) are canonically isomorphic gradgd k-alge-
bras. So Proj(Ay,2,,0) | p)Xspec 4,peck and Projik,z,,0)" are ca-
nonically isomorphic k-schemes. The latter is a Chatelet model for V.

In order to state and prove the next proposition without introducing
an awkwardly complicated notation we make the following convention:
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(A,,2;,0) (resp. (4 72 Zi> 6)") will denote the graded o5, 4,-(resp. Ogpe, 4 %)
algebra (instead of the graded Ospec 4 — algebra) associated to (4,, z;, 0)
(resp. (A, z;, 0)).

Proposition 7." Let v be a finite place of k, k, be the completion of k at v,
A, the valuation ring in k,, and ¥,:Spec A,— Y be the map induced by
the inclusion A—A,. If veU,, i=1,2, then Proj(¥)xy Spec A, and
Proj(A,, z,,0) " are canonically isomorphic A,-schemes.

Proof. Assume ve U, and let D(f) be a basic set of Y contained in U,
such that ve D(f). As in the proof of proposition 6 one sees that .
Proj(¥) xy Spec A, and (Proj(¥)xy Spec A )X speca, are canonically
isomorphif as A,-schemes; and also that Proj(¥)x, Spec A s and Proj
(As,z,,0) are canonically isomorphic as A s-schemes. From the proof
of EGA II 3.5.3 one sees that Proj(Ay,z,,0) X s, 4, Spec 4, and Proj
(Af, 2,00 ®,4, 4,) are canonically isomorphic as A,-schemes. Since
A, is obtained from A, by localization and completion, A4, is a flat A "
module, hence (4,,z,,0)®, , A, and (4,, z;, 0) are isomorphic as graded
A,-algebras. So Proj(Ay,z,,0)x g, 4 ,Spec A, and Proj(A,,z,,0) are
canonically isomorphic A, -schemes.

~ Proposition 8. For all veS, v finite, Proj(¥)xy Spec A, is a canonical

model for V(y,).

Proof. Let q, be the cardinality of the residue field of 4, and { be a pri-
mitive g, — 1 root of unity in k, ,, the unramified extension of k, of de-
gree n. Let o be the Frobenius automorphism of k, , over k,. Since ve S,
ve U,. By proposition 7 it suffices to show that (4,,z,, 0) is isomorphic
as a graded A, -algebra to an (A4,,, #) where ¢ € A, and ord(p)=1,t
being the positive integer defined in the first paragraph of §2. But by
the corollary to proposition 1, §4, ord(6)=t. An isomorphism between
(4,,2,,6) and (A4,,(,6) can be constructed by noting that

S g il e b .+ i M s e e
i o A ) AL el a1 £ 0(z)) 7 3 (e O
Lot TME) ol MY Gy "D 0 | 0
0 0 Olie.r 0 1 Ghe e 8 Dsek

€ GL(n, A,) (because A({)e A* by proposition 3, §2, and A(z,)e A¥ by
proposition 2, §4) and employing the argument used in the proof of pro-
position 1.
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Proposition 9. For all veT, v T,, Proj(¥)xy Spec A, is a degenerate
model for V.

Proof. Since ve T, U T,,ve U,. Let D(f) be a basic open set of Y con-
tained in U, such that v € D(f). The inclusion homomorphisms A — 4, —
- A,Nnk— A, induce maps Spec A,— Spec A,nk— Spec A;— Spec A.
Let Z, denote the A,Nk-scheme (Proj () xy Spec Ay) X spec a , Spec
(A,nk). Then Z, x 5pp0a,~1) SPeC A, is A isomorphic to Proj(¥)xy
Spec A,. As in the proofs of proposition 6 and 7 one sees that

Zl xSpec(A.,nk) X Spec Av and Pro;((Avm k, 21, 9) ®A,,nk Av)~

are ‘isomorphic A,-schemes. Since A4, is a flat- 4,nk — module, (4,N
Nk, z,,00® 4, A, and (A4,,z,,0) are isomorphic graded A, -algebras.
It suffices to show that k' = k(z,), ord,(z,) 2 1 and that 6em, ., Ny .
(k,,) for all places w of k', w|v. That the first two conditions are satisfied
follows from proposition 2, §4; that the last condition is satisfied follows
from the corollary to proposition 1, §4, and the definition of T,.

Proposition 10. For all veQ, v finite, v¢ SU T, U T,, Proj(¥)xy Spec A,
is a completed model for V.

Proof. In case ve U, the proof follows that of proposition 9 up to the
final two sentences. Beyond this point to conclude the proof of proposition
10 for veU, it suffices to show that k' =k(z,), A(z,)e(4,nk)* and that
- 0e(4,nk)*, 0e Ny, (k) for all places w of k', w|v. By proposition 2,
§4, and the definition of U, k' =k(z,) and A(z,)e A¥; since A(z,)€ek,
A(zy) € (A,nk)*. By the corollary to proposition 1, §4, and the definition
of $,T,, and T,,0€ A¥ for all v, v finite, v¢ SUT, UT,; since 0 € k*,
0 e (A, nk)* for these v. Also by the corollary to proposition 1, §4,
0 € Ny, () for all w|v, v¢S.

In case v¢ U,, let D(g) be a basic open subset of Y contained in U,
such that ve D(g). The inclusion homomorphisms 4 — A gl k> A4,
induce maps Spec A,— Spec A,k — Spec A,— Spec A. Let Z, denote
the A, k-scheme (Proj(#) xy Spec A,) Xspe. 4, X Spec (A,Nk).

Z 3 X speca, k) Spec A, i1s A -isomorphic to Proj(¥)x y Spec A,. As in the
proof of proposition 9 one sees that Z, x4, ~1SPec A, and Proj(A, z,, 6)
are isomorphic as A,-schemes. So it suffices to show that k' = k(z,),
A(zy)€(A, N k)* and that Oe(A, N k)*,0€ N, . (k,)for all w|o.

By proposition 3, §4, k'=k(z,) and A(z,)e A¥; since A(z,)ek, Az,)e
€(4,nk)*. Since v¢ U, by the corollary to proposition 1, ¥, e A*;
since 0 ek*, 0e(4,nk)*. Also by the same corollary f€ N, (k,) for
all w|v. :
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§6. The zeta function of proj ().

Let V be a Severi-Brauer k-scheme of dimension n— 1, n an odd
prime, defined by y € Br(k). Let X = Proj () be the Y-scheme constructed
in §5. As X is of finite type over Y (proposition 4, §5) and Y is of finite
type over Spec Z, X is of finite type over Spec Z (EGA 1, 6.3.4). For each
x€ X, let o,/m, be the residue field of x and let N(x)= card (0,/m,). Let
X denote the set of closed points of X. Then X = {xe X | N(x) is finite}.

; 1
{x is defined by {,(s) = g?TtN(;):
absolutely for Re(s) >n— 1. Let f:X > Y be the projection. For
each y€eY, let o,/m, be the residue field of y, N(y) = card (o,/m,), and
X,=f"1(y). Let Y denote the set of closed points of Y. Then {,(s) =
Sl x, (s). Each { x, = C(N(y)™°), where { denotes the zeta function of

yeY
X, regarded as a scheme over o,/m,. Hence {y contains factors corre-
sponding to each”of the finite places of k.
Recall that for ve S, v finite, X x, Spec A,, is a canonical model for
V(y,) (theorem 1, §5) and that the zeta function of the closed fiber of a
canonical model is given by

Cxl)=[(1 = N1 =971 = N@)" =2 797)....(1 = N =9")(1 = N()~)]

(corollary of proposition 3, §3). For all other finite v, X Xy Spec A, is
either a completed or a degenerate model for a trivial Severi-Brauer k,-
scheme and the zeta function of the closed fiber of X xy Spec A, 1s given by

Cx(8)=[(1 = N@Y"™ " 7)1 = N@)""?7%)...(1 = N(v)' ~*X1 — N(v) ] ~*

(corollaries of propositions 2, 4, and S, §3).

It is generally agreed that the full zeta function of X should also
contain factors corresponding to each of the infinite places of k, but is
not clear just how these factors should be defined. There are two possi-
bilities. For an infinite place v one could use the factor corresponding
to v which occurs in the zeta function Z p(y Of the central division algebra
D(y) defined by y. The other possibility is to use a definition which has
been proposed by J. P. Serre ([12]) and is based on the complex cohomology
of X =(X xy Spec k) X g, Spec k,. Pursuing either alternative leads
to the same definition for the factor corresponding to v, as we now show.

For each infinite v such that k, is isomorphic to R, D(y)®,k, is a
central simple R-algebra of dimension n? over R. Since n is odd,
D(y) ®,k,is k,-isomorphic to M,(R). Hence the factor in Z p(y corresponding

Hictl

to vis [] Gy(s— i), where G,(s) = n "2 I'(s/2) ([15], prop. 1, p. 203). For
i=0

([13]). This product converges
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each v e Q such that k, is isomorphic to C the factor in Z p(y) corresponding

=1

to vis [ G,(s—i), where G,(s)=(2n)! ~* I(s).
%0

For each infinite v, ,X can be regarded as an R-scheme in case k,
is isomorphic to R, and as a C-scheme in case k, is isomorphic to C and
an isomorphism between k, and C has been chosen. In either case, let
»+X(C) denote the C-valued points of ,X. ,X(C) is a singular C-variety bira-
tionally isomorphic to P*~1(C). Since ,X(C) is not a complex analytic
manifold, the proceedure proposed by Serre for determining the factor
corresponding to v in the zeta function of X is not applicable. However,
this procedure can be applied to P"~*(C), for which it gives a plausible
result.

For each i,0 <i <2(n— 1), H(P" *(C),C) is a C-vector space of
dimension one or zero, according as i is even or odd. In case i is even,
the Hodge decomposition of H(P"~*(C), C) is simply Q"% 2 If k, is
isomorphic to C, the factor corresponding to v for the i cohomology
group is (2m) "' G,(s — i/2) or 1, according as i is even or odd; the complete
factor corresponding to v is Gg(s) = IT (2n)~! G,(s — i/2). This is

0<i<2(n—1)
i, even

the same factor as the one corresponding to v in Z p(y» €xcept for the
innocuous (27)~". If k, is isomorphic to R, G = Gal (C/R) acts on P"~ LC)
by conjugation, an anti-analytic automorphism. So G acts on each
H'(P"~!(C), C). Let g be the non-trivial element of G and x € H{(P"~(C),
C), x #0, then g(x) =(— 1)"? x. Thus, the factor corresponding to v for
the " cohomology group is G,(s — i/2) or 1, according as i is even or odd.

The complete factor corresponding to v is Gg(s) = Il G, (s—i/2),
0=1=2(n—1)

the same factor as the one corresponding to v in Z pey-

Definition. Let r, be the number of real places of k and r, be the number
of complex places of k. The function Z(s) = Gg(s) "Ge(8)? {4(s), defined
in the half-plane Re(s) > n and homomorphic there, will be called the
full zeta function of X.

'Proposition 1. Let seC, Re(s) > n. Then
Zyls) = : :
=Zp(5)* [_[ [(1 = N@)*"—1-9m1 - MOSE T P ikl Mgt
veS
v, finite

Proof. Since n is prime, for each v € S, v finite, D(y) ®, k, is a central division
algebra over k, and the factor corresponding to v in Z iy 1841 = N(p)™ 91
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([15], proposition 7, p. 197). For all other finite v the factor corresponding
to vin Zp,, is [(1 = N@)" ' 7)1 = N@)' 27%)...(1 — N(v)™)]~*. So Z,
and Zj,,, are formed from the same local factors for all infinite v and
for all finite v,v¢ S. The conclusion follows by comparing the factors
in Zy corresponding to each v € S, v finite, with their counterparts in Z, ..

Theorem 1. Z, can be continued analytically as a meromorphic function
in the s-plane, holomorphic except for simples poles at s=0 and s =n.
Zy satifies the functional equation

(n/2 —s5)

) = (o TaRT R e D

where N0 is the norm of the different of D(y) over k and D is the discriminant
of k.

Proof. Zp,,, is a meromorphic function in the s-plane, holomorphic except
for simple poles at s = 0 and s = n ([ 14], theorem 2, II). The finite product
which appears in the statement of proposition 1 defines a non-vanishing
holomorphic function in the s-plane, so the first two assertions follow
from proposition 1. Z,, satisfies the functional equation

n(n/2—s)

Zpys) = (Na)l/z_s” D’ Zp)n —3)

([14], loc. cit.). So by proposition 1
=L L N NG S D I"'"/z_” Zyn — s).

veS
v, finite

For veS§, v finite, Né,, the norm of the different of D(y) ®, k, over k,,
is given by NJ, = N(v)""~"([14]), proof of proposition 2, II). As N =
= [] N&,, the functional equation has the form asserted.

veS
v, finite
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