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The pile driver problem via a fixed point argument
Mauricio Vieira Kritz

Abstract.

In this paper we study, via fixed point and subdifferential arguments,
the existence of solutions for 4 variational inequality which models the
dynamics of a pile penetrating into the ground through the action of a
pile hammer. This line of reasoning reduces the variational inequality
we considered to a nonlinear evolution equation involving a monotone
operator.

1. Introduction.

On a recent work [2], Raupp, Feijoo and Moura proposed a mathe-
matical model to simulate the dynamics of a pile driver into the ground
through the action of a pile hammer. The postulates assumed for the
friction force led to the formulation of this model as an evolutionary varia-
tional inequality involving a non-differentiable functional. Theorems
concerning existence, uniqueness and stability of solution of that variational
inequality were proved in [2] with arguments based on the regularization
of the non-differentiable term.

The same authors wrote yet two other papers [3,4]. In [3], some
numerical results were obtained with an algorithm that uses the regulari-
zation technique coupled with Galerkin and predictor-corrector discreti-
zations. In [4], another discretization of the variational inequality, this
one resting on an optimization algorithm, is analized.

The aim of the presente article is to treat with a different approach
the problem of the existence of solutions for the same variational ine-
quality. We use a fixed point argument and subdifferential techniques to
reduce this problem to a question on the existence of solutions for a cer-
tain non-linear evolution equation, with a monotone term. The theorem

- we obtained generalizes slightly the one in [2]. In order to formulate
that variational inequality we need to introduce some notation.
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Let Q = [0, L] be an interval of the real line, H = [3(Q) the space of
square integrable functions on Q, and V=H'Q) c H the first order
Sobolev spaces on Q. For 1 <p < ., D a Banach space and T a positive
constant, we shall denote by If(D) the space of all strongly measurable

functions
u:[0,T]->D

such that | u(r) |, belongs to I7[0, T]. These spaces are normed by

st f L ule) |5 dt,
0

if 1 <p< x, and by

| u 'L“(D; = €SS sup | u(t) |p,
1e[0.7]

if p= . The subspace of L*(D) consisting of all continuous functions
on [0, T] will be denoted by C(D).
If f and g belong to H, then

(.9 = f S (x)g(x)dx

denotes the H usual inner product, and

|f|2=\/(f,f)

its norm. The dual of V will be denoted by V'. And if fe V' and veV,
(fv) =fW) '

will denote the dual pairing of (¥, V'). Furthermore, for all functions o
belonging to C'(Q)-the space of continously differentiable functions on
the closure of Q — a functional afe V' can be defined by

{af,v) = (fyav), Vvel,

since av belongs to V whenever a belongs to C 1Q).

Now, let ¢, A, p be positive functions of C1(Q) such that ¢ and A are
greater than a strictly positive constant; and a, b, k,, k, and R be arbi-
trary positive constants. Then, the variational inequality studied in this
work has the following form:

(pAi(t), v — ilt)) + alAu (1), v, — i (t) +
1) + b(Au(t), v, — 0,(0) + ky <y, u(t)) <0y, v — ilt)) +
; + ky (84, 1t)) (61,0 — ul®)) + J(u(t), v) — J(ule), ult)) >
> (Af (1) + F(t)d,, v—u(t)), VYveV, te[0,T],
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- where f:[0,T]—> V' and F :[0, T]— R are given data. In (1.1) we have

used the usual notation for time derivatives:
e du

dt
i

dres
while 6, and §, are elements of V' defined by
<6l’ U> e v(l))
<50: U> = 0(0)3

for all v that are in V. Finally, J is a functional whose domain is the product
H x H defined by the formula

and

and

(1.2) J,v) =R f {(x) K(x + u(x) — L) (x + u(x) — L)| v(x) | dx,

. Q
where |« | is the norm of the real line and & : R — R is the Heaviside function

1. pifeges =0
NQ:{Qifs<Q

We point out the following properties of the functional J:

1) Jw,v) >0, VuveH,
(1.3) ii) Ju,v) < C(¢,R)|uly|v|,, Vu,veH,
i) J(u,+) is a proper convex functional for all fixed u in H.
These properties are straightforward consequences of the definition (1.2).
Henceforth, and without any loss of generality, we shall take
{=A=p=1and a=b=k;=k,=L=R=1. Under this normaliza-
tion, the constant C(p, R) in (1.3) equals unity and J appear as

(1.2 J(u,v) = j K0x + u(x) — 1) (x + u(x) — 1) | v(x) | dx.

To clarify certain points in the argument, we shall also consider the
bilinear form a:Vx V— R defined by

a(u’ U) e (ux’ Ux) + <51’ u> <61’ U>.

This bilinear form is continuous and coercive. In other words, there are
positive constants B, and C, such that

a(u,v) < Blul, |v|;,  Vuvel,
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and

(1.4) a(v) = a(v,v) = C,|v

(i v AR =

where |+ |, is the norm of V. For the proof of (1.4) see [2, sec. 3].
In this context, the existence problem we shall examine can be stated as.
To find a function ue L*(V), whose derivative i€ [}(V), and which
satisfies for almost every ¢ € [0, T)

(1.5) (i), v — u(t)) + a(ilt), v — w(t)) + a(u(t), v — (t)) +
J(u(t), v) — J(u(t), i(t)) = (Ft),v —u(t)), VYvel,

as well as the initial conditions

(1.6) u(0) = Ug,
and
(1.7) oy s

In (1.5) we have set §(t) =f(t) + F(1)0,.
In the next section the following theorem will be proved.

Theorem 1.1. Assume that ugeV, u, € H and & e IX(V), that is, fe (V)
and F(t)e I*(0, T). Then there exists a unique function u on € x 0.7
satisfying:
1) ue C(W),
ii) ue C(H) n I2(V),
iii) the variational inequality (1.5),
and ‘
1v) the initial conditions (1.6) and (1.7).

2. The proof.

It was shown in [2] that (1.5) — (1.7) has at most one solution. Our
existence proof shall be pursued in three steps:

i) First we reduce the problem to a fixed point question, by treating
the functional J as if its first variable was a given function w. This gives
rise to a map that associates w with the solution of a simpler variational
inequality. Then the Schauder Fixed Point Theorem is applied to this
map.

ii) Next, some standard results about subdifferentials are used to
show that the weak solutions of a certain non-linear evolution equation with
a monotone term are also solutions of the simpler variational inequality.
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Moreover, the solutions of this variational inequality are unique, so that
the mapping of step (i) is well defined.

iii) Last, we use a result from a book of Strauss [5] and the regulari-
zation technique to show that this evolution equation has weak solutions.

Step (i). Let w belong to I?(H) and consider the problem below, which
will be called associated variational inequality.

Find a function u € L*(V) such that u € I*(V) and satisfies, for almost
every t€[0,T],

2.1) Ciile), v — )y + ali(r), v — () + a(u(t), v —ilt)) +
J(W(t)’ U) i J(W(t)s u(t)) = <E§(t)’ Ui u(t)>’ Vve Va
and the initial conditions (1.6) and (1.7).

In steps (ii) and (iii) it will be shown that the variational inequality
(2.1) has a unique solution for each w in I*(H), whenever the given data
satisfy uo€ V, u; € H and & € [2(V'). Call this solution u,, reflecting with
such notation its dependence on w. Then we have that, for each w in I?(H),
u,, belongs to [*(V) and u, belongs to I3(V).

Now choose v =0 in (2.1) to conclude that
22) = Cii(), i (1)) — ali, (1)) — alu, (1), i,(1))

ok J(W(t)’ uw(t)) = N <g‘([)’ uw(t)>

Since J(w(t), i1,,(t)) = 0, (2.2) implies that
39 10 B+ ale ) + alin0) < | (F0) 0],

for all ¢. Integrating this last inequality and using (1.4), it follows that u,,
satisfies

)2 + )2 + f (B RS |u, ) +

K J | (&), i,(x)) | dr,
0
where K =max(2,2/C,). Thus,

D2 + | P + f (e a8
(0]

t t
+ ek J | u(0) |} dr + % .[ | §) |7 dr,
0 0
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so that, for any ¢ small enough, we have

2.3) i) 3 + | w0 [2 + (1 = €K j | i) [§ de <

0

i o J |56 2 dr = Ko,

for almost every te[0, T].
We now define the mapping

F:L*(H)— L*(H), w-— Fw)=u,,

and let

- Wy ={ueL”(V)|ieL*(H) and e g
It follows that F maps the closed convex set L°(H) into it self in such a
way that its range is contained in W,. Moreover, as a consequence of the
compactness criterion of Lions and Aubin [35, sec. 1.5, Theor. 2], the set
W, is a pre-compact set of L*(H). And so is the range of F.

We still need to show that F is a continuous mapping. So let (w,),

be a sequence that converges to w in L*(H) and set u, = F(w,) and u = F(w).
Then

24) iy V= i1,y + Qthyy ¥ — t1y) + Althyy v — 1) + J(Wy v)
— Jw, 1) =< v—u,), YvEV,

and

2.5 Gi,v—1) + a(, v—1) + a(u, v—1u) + J(w,v)

—Jw, o) = (&, v—uy, Yvel,

for almost every t. Next choose, for each t, v =u(r) in (2.4) and v = u,(t)
in (2.5). Then add to obtain

(2.6) — i — iy 1 — Uy — altr— 11,) — alu — t,, 4 — ;) =
J(W, u) + J(wm un) ko J(Wm u) g J(W, an),

which implies that

14

2 dt ‘

l J(W’ ':l) st J(Wnsu) | - l J(W, un) e J(wna an) |

2.7) (it — i, |3 + alu —w,) + aGi —i,) <
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But, from (1.3 ii), we have that

| J(w, @) — J(w,, )| < [w—w, [, [i], < Ko|w—w,]|,
AR o oy sr Bty < o il s Kok =, )

Therefore, integrating (2.7) from O to ¢, it follows that
J
wm—mm@+chn—mmﬁ<2&,f|ma—mwbm
0

since the initial data do not depend on u. Consequently, as w,—w in
L*(H), we have that u,— u in L*(V) and, a fortiori, in L°(H). That is, F is
continuous.

Being F a continuous operator that maps the closed convex set
E*(H) into a pre-compact set, the Schauder Fixed Point Theorem ensures
the existence of at least one element u of L*(H) such that F(u) = u.. This
function u is clearly a solution of (1.5) —(1.7). And, as u belongs to the
image of F, it also has all the properties that are common to solutions
of (2.1), the more relevant of which are included in the statement of Theo-
remeulsis

Step (ii). We shall first show that (2.1) has at most one solution for
each we L*(H). So, let w, = w in relation (2.6) and set u; =u and u, = u,.
Then, u =u, — u, satisfies

— i) —a@) — alu, i) = J(w, u;) + Jw, uy) — Jw, uy) — J(w, u,) =0,
with  4(0) = #(0) = 0.

This inequality is equivalent to

%0mo@+mwm+2mm»so

which implies that

i
| it |3 + alu(t) + 2 j a(@(t)dt < | u0) |3 + a(u(0)) = 0.
0

Since all the left hand side terms are non-negative, a fortiori,
Coluy(0)]} < alur) <0

for almost every ¢, and so u = 0.
Now, we shall prove that the variational inequality (2.1) is equivalent
to a certain non-linear monotone equation. Due to the uniqueness of
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solutions of (2.1), it is enough to show that any solution of the equation
is also a solution of (2.1).

Observe that J(y,+) is a continuous functional from H into R, for
any ye H. This fact, together with (1.3 iii), implies that J(y,+) has a non
empty subdifferential at all points of H [1, Chap. 1], for all y that belong
to H.

Define the function G :R— R by

Jetif s =10,
Gls)l=s110, if =i —i(),
-1, if s<0,

and the linear functional ®¥(y,v,) on H by

(2.8) (P(y,vo), v) = J g(x, Y(x)) G(ve(x)) v(x) dx,
Q

where g(x, y) = K(x + y — 1) (x + y — 1), for all y and v, that belong to H.
This functional satisfies

1) (q)(y7 vO)’ UO) = J(y’ Uo)a fOI' all ye H5 g
ii) (®(y, vy),v) < J(y,v),YveH, for all ye H, and
iil) ®(y, v,) is a continuous functional for any y and v, in H, since

| (@(,06), )| < |96, Y NGo(+ N, vl <[yl |0l
" Properties (i) and (ii) imply that
J(y’ U) i J(y’ UO) = ((D(y’ UO)’ (e UO)

and thus ®(y, v,) is a subgradient of J(y,+) at the point v, [1, Chap. 1].
Consequently, as ®(y, v,) is also a continuous linear functional on V, it
follows that if i belongs to I?(V) and w belongs to L*(H) then

Jw(t), v) — J(w(1), (1)) = {Dwlt), ilt)), v.— D)),

for all v in V and almost every ¢t in [0, T).
In this fashion, we can conclude that if u is a function of L*(V') whose
derivative i belongs to I?(V), and which satisfies for almost every ¢t € [0, T)

(2.9) Cu(t), v — we)) + a(i(r), v — i) + au(t), v — ilt)) +
{Dw(e), i(0)), v — (1)) = (F(t), v — (1)), YveV,

as well as the initial conditions (1.6) and (1.7), then u must necessarily
be also a solution of the associated variational inequality (2.1). That is,
(2.9) is equivalent to (2.1) and the solution of (2.9) does not depend on the
chosen subgradient, given by (2.8).
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After the equivalence between (2.1) and (2.9), the original problem
is thus reduced to show the existence of solutions for (2.9). But note that .
one can choose, for each time ¢, v = z + i(¢) in (2.9), so that it can be read
as the variational equation

(2.10) i), z) + a(idt), z) + a(u(t), z) +
CDW(), 1)), z) = (F(1),z), Vze ¥, te[0, T).
Moreover, these exists a unique linear operator 4 : V— V', associated

with the bilinear form a(-,-), defined by A(y) = a(y,) for all y in V. Thus,
if we define, for each element w of L*(H), an operator B : I*(V) — I*(V') by

B(y)(t) = A1) + D(w(1), ¥(1)),
it follows that (2.10) is the variational form of equation
(2.11) i(t) + A(u(t)) + B(a)t) = F(1).

This is an evolution equation which contains a non-linear monotone
operator B.

Step (iii). In [5, sec. 3.6] the following result is demonstrated.
Let A-be a linear operator from V into V' which is symmetric, coercive
and continuous, and B an operator from I?(V) such that

i) B is bounded and semicontinuous,
ii) for some real 4, e *(1/2 + B) is coercive in I*(V) and
iii) e~ *(4/2 + B) is semimonotone on bounded subsets of a subspace of
V),
then, for any u, belonging to V, u, belonging to H and & in I*(V'), there
exists a function u in C(V) such that i belongs to C(H) N I%(V) and which
is a solution of

(2.12) Cile), vy + CWu(r), vy + {B((1), v) = {F(0), v,
: VueV, te[0, T),

with the initial conditions (1.6) and (1.7).
Now, we shall use this result to show the existence of weak solutions
for (2.11). So, for any positive ¢, let

S

Gs) =y > if |s] <e,
=1 if i<t —e)

and consider the regularized operator B, : [*(V) — I2(V') defined by
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(2.13) B,()t) = A(v(1)) + P, (W(1), v(1)),
where we L*(H), and ¥, : H x V- V' is such that

(2.14) : (D,(y, u), v) =J g(x, Y(x))G (u(x)v(x)dx,

Q

for any y in H and u and v in V.

The operator A, being defined through the bilinear form af(-.-). is
symmetric, coercive and continuous from Vinto V' and thus has the same
characteristics as the operator 2. Moreover, A considered as an operator
from I2(V) into I2(V’) is also linear, coercive and continuous.

It is shown bellow that B, has some properties that imply (1). (i1)
and (iii) and so it has the same characteristics as the operator 8. Indeed.
it is an immediate consequence of (2.14) that

| ‘Dn(ws U) |L2(V’) == C ‘ w ’ZI(H;'

Furthermore, from

"
' D (w, vg) — P (w, v,) |i2(V'J = K| w |L1(H|J l G(vg) — G(v)) |§ dr.

0

where |- | is the norm of L*(Q), it follows that ¥ (w,+) is a bounded con-
tinuous operator from I%(V) into I*(V'). Therefore, the operator B, as
defined in (2.13) satisfies condition (i) for any positive e.

Next, note that

E g RN

o b el
Gfs)s = s]. = T

and so

(D (w,v),0) = j g(x, wx)) | v(x) |, dx = 0,
Q
for any v which belongs to H. This implies that B, is coercive for

T i
f (Bu(1)), (1)) dt = J' (AL, oln)) dt =

0 0
T T

j a((t)dt > Caf |u0)[Fdt = Co| vy
0 0
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whenever v belongs to I*(V). Therefore, we conclude that B, satisfies -
condition (i) with A =0.

Finally, if w belongs to H and v belongs to V, ®(w, v) is a subgradient
of the convex functional J,:H x V— R, defined by

g Jw,u) = J glx, wix)) [ v(x) |, dx,
Q
at the point v. Thus B,, as the sum of a linear coercive operator and a
sub_gr'adient, is monotone and thus satisfies also condition (iii) for any
positive e&.
Then, we conclude that for all positive ¢ there exists a function u°
of C(V) such that u° belongs to C(H) n I2(V), which satisfies the initial

conditions (1.6) and (1.7) and the following equation, which is a regulari-
zation of (2.10): '

(2.15) @), v) + (AW D), v) + (B (1), v) = (§(0), v),Vve V,
te[0, 7).

Choosing v = #(t) in (2.15) leads to

1
3 :?? (@) 3 + a@ @) + a@(0) < | {F), i) |.

And, by the same reasoning used to obtain (2.3), we conciude that

T
@16)  |#QOR + [#OF + 1 -ak) f i) 2 de < K,
1 0

since the initial data and & do not depend on &. Moreover, as A(u®) and
B,(i) belong to I*(V') for any positive ¢, it follows that e I2(V') and

Ius ,LZ(V') = | A" |L2(V’) s |Bg(fl£) |L2(V’) i l & lL2(V’)'
However, since

(2.17) | @) |20y < C |0 |20y < Ky,

| A@) |2y < C i |12y < Ko,
and

(2.18) | Bi#) | oy < Ky + C| W0 = K,
we conclude that

(2.19) , uE ILz(V’) S K.
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Thus, as a consequence of the bounds (2.16) — (2.19) and the weak
and weak* compactness of bounded subsets of those spaces, by choosing
successive subsequences, we can extract from u° a subsequence such that

1) u° — u, weakly* in C(V),
ii) &° — i, weakly* in C(H) n [A(V),
(2.20) i) u* — i, weakly in I*(V'),
iv) A@W®) - ¥, weakly in IA(V"),
and v) A@f) - @, weakly in IZ(V').
For convenience, this last subsequence was also denoted by u’.

By the compactness criterion of Lions and Aubin [5, sec. 1.5, Theor. 2%
we can also suppose that the subsequence #° converges to # strongly in
I%(Q) and almost everywhere in Q, where Q =Q x [0, T). These last
modes of convergence imply that ®(w,u®) > ®(w, i) in (V).

Next, it is easy to see that = A(u) and ¢ = A(%1) due to (2.201) and
(2.201ii) and the symmetry of operator A.

. Therefore, we conclude that there exists an element u of C(V), whose
derivative & belongs to C(H) n I*(V), and which satisfies

0

J (), b)) dt +j CAu()), vle)) dt +
0

T f &
J {B((D)), o)) dt = J (&), v(0)) dt,
0 0

whenever v belong to I?(V). This equality, however, implies that u is also
solution of (2.10). Finally, as u°(0) = u, and 4°(0) = u, for all ¢, it follows
. that u satisfies the initial conditions (1.6) and (1.7).

Remark 1. Due to the use, in this proof, of the compactness criterion
of Lions and Aubin, it is necessary to assume that T < co. However, we
can take 7 = oo in Theorem 1.1 because the solution can always be ex-

tende to T, > T if J | §() 2 dt < 0.

0

Remark 2. The function in equation (*), is defined by

%

|s|-— %—, if |s| B

|sle =1 2
i , if |s| <e.
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