The connectivity of a finite H-space

Daciberg Lima Gonçalves*

All spaces considered here are simply connected.

In [3] A. Clark proved the following: Let X be a finite loop space, then $\pi_i(X) \neq 0$ for some $i \leq 3$, otherwise X is contractible. Several people have considered the similar question under the weak hypotheses that X is either a finite H-space or a homotopy associative finite H-space.

Let us consider a certain class of spaces. Call the higher connectivity of the class the smallest integer n-1 such that if X belongs to the class and $\pi_i(X) = 0$ $i \le n$ then X is contractible. If such n does not exist then we say that the higher connectivity is infinite. For example the higher connectivity of the class of finite mod-p H-spaces where p is an odd prime is infinite. See [1]. The purpose of this note is to prove the following two theorems:

Theorem 1. The higher connectivity of the class of finite H-spaces is the same as the higher connectivity of the class of finite mod-2 H-spaces.

Theorem 2. The higher connectivity of the class of finite homotopy associative *H*-spaces is the same as the higher connectivity of the class of finite homotopy associative mod-(2, 3) *H*-spaces.

I would like to think the referee for given a much simpler proof of proposition 2, altough less elementary. We describe his proof in page 3.

The general reference for localization is [4] and for H-spaces is [7]. Proof of Theorems 1 and 2.

Proposition 1. Let (M,d) be a connected positive graded differential finite Hopf Algebra over \mathbb{Z}_p where dim M (as a \mathbb{Z}_p -vector space) is even, and p is any prime. Assume that $d(\overline{M}) \subset \overline{M}$ where \overline{M} is the augmented Hopf algebra. Then $H(\overline{M},\overline{d}) \neq 0$, where $\overline{d} = d \mid \overline{M}$.

Proof: Since \bar{d} is also a differential we have $\operatorname{im} \bar{d} \subset \operatorname{Ker} \bar{d}$. We also have $\dim(\bar{M}) = \dim(\operatorname{Ker} \bar{d}) + \dim(\operatorname{im} \bar{d})$. But $\dim(\bar{M})$ is odd so $\dim(\operatorname{im} \bar{d}) \neq \dim(\operatorname{Ker} \bar{d})$. Therefore $\operatorname{im} \bar{d} \neq \operatorname{Ker} \bar{d}$ and $H(\bar{M}, \bar{d}) \neq 0$.

^{*}Supported by Universidade de São Paulo and Fapesp-Fundação de Amparo a Pesquisa do Estado de São Paulo.

Recebido em março de 1979.

Proposition 2. Let X be a finite H-space. Then X is contractible if and only if X_0 (X localized at the rational) is contractible.

Proof: (⇒) It is obvious.

(\Leftarrow) To show that X is contractible, it suffices to show that $H^*(X,\mathbb{Z}_p) \simeq \mathbb{Z}_p$ for all prime p. (Remember that X is a simply connected finite complex.) Let p be any prime. Let us consider the Bockstein Spectral Sequence on cohomology associated with the prime p. See [2] for more details. Let (E_r, β_r) be the r-th term of the spectral sequence. We know that $E_r = \mathbb{Z}_p \oplus \overline{E_r}$, $\beta_r(\overline{E_r}) \subset \overline{E_r}$ and $\beta_r(1) = 0$. So $E_{r+1} \simeq \mathbb{Z}_p \oplus H(\overline{E_r}, \overline{\beta_r})$ where $\overline{\beta_r} = \beta_r \mid \overline{E_r}$.

Because X_0 is contractible we have $E_{\infty} \simeq \mathbb{Z}_p$. Suppose $E_1 \neq \mathbb{Z}_p$. Let r be the smallest integer such that $E_r \simeq \mathbb{Z}_p$ But $E_r \simeq \mathbb{Z}_p \oplus H(\overline{E}_{r-1}, \mathbb{Z}_p)$

 $\overline{\beta}_{r-1}$).

If $E_{r-1} \neq \mathbb{Z}_p$ we have $Q^{odd}E_{r-1} \neq 0$, otherwise $E_r \neq \mathbb{Z}_p$. So by the Borel decomposition theorem dim E_{r-1} is even then (E_{r-1}, β_{r-1}) satisfies the hypothesis of proposition 1. But this means $E_r \neq \mathbb{Z}_p$ which is a contradicton. So $E_1 \simeq H^*(X, \mathbb{Z}_p) \approx \mathbb{Z}_p$ and X is contractible. Q.E.D.

Referee's prof:

Browder proved in [3] the following: "Every connected finite H-space X is contractible or else there is an interger m>0 such that ξ generates $H_m(X,Z)\simeq Z$ and $\Lambda\xi:H^q(X,Z)\to H_{m-q}(X,Z)$ is an isomorphism for all q". So if X_0 is contractible $\Rightarrow \tilde{H}_*(X_0,Z)\simeq \tilde{H}_*(X,Z)=0$.

By Browder's theorem X is contractible.

Proof of Theorem 1. Let n-1, respectively m-1 be the higher connectivity of the class of finite mod-2 H-spaces respectively the class of finite H-spaces. Let me show first that $m \le n$. Let X be any finite H-space. Then $X_{\{2\}}$ is certainly a mod-2 H-space. If $\pi_i(X) = 0$ $i \le n$ then $\pi_i(X_{\{2\}}) = 0$, $i \le n$. So $X_{\{2\}}$ is contractible. Therefore X_0 is also contractible. Now by Proposition 2 follows that X is contractible. So $m \le n$.

Now let me show that $n \le m$. Let Y be any finite mod-2 H-space. It is well-known that $Y_0 = \prod_{i=1}^{s} K(Q, 2n_i + 1)$. Now let us consider the

space $(\prod_{i=1}^{s} S^{2n_i+1})_{\mathbb{P}^{-\{2\}}}$ where \mathbb{P} is the set of all primes. By [1], this is an

H-space. Now by Proposition 4.7.2 of [7] there is a finite X space such that $X_{\{2\}} \simeq Y_{\{2\}}$ and $X_{\mathbb{P}^{-}\{2\}} \simeq (\prod_{i=1}^{s} S^{2n_i+1})_{\mathbb{P}^{-}\{2\}}$. But the connectivity of

X is the same as the connectivity of $X_{\{2\}}$ and greater or equal to the connectivity of Y. So $m \ge n$.

Proof of Theorem 2. The proof is quite similar. Let n-1 resp m-1 be the higher connectivity of the class of finite homotopy associative mod- $\{2,3\}$ H-spaces resp. the class of finite homotopy associative H-spaces. The reason that $n \le m$ is analogous to the previous case. So let me prove that $m \le n$. Let Y be any finite homotopy associative mod-(2,3) H-space. We know that $Y_0 \simeq \prod_{i=1}^s K(Q, 2n_i + 1)$. Now let us consider the space $(\prod_{i=1}^s S^{2n_i+1})_{\mathbb{P}-\{2,3\}}$. By [6] this is a homotopy associative H-space. So by the main theorem part 2 of [5] there is a finite homotopy associative H-space X such that $X_{\{2,3\}} \simeq Y_{\{2,3\}}$ and $X_{\mathbb{P}^n-\{2,3\}} \approx (\prod_{i=1}^s S^{2n_i+1})_{\mathbb{P}-\{2,3\}}$. Since the connectivity of X is the same as the connectivity of $X_{\{2,3\}}$ and greater or equal to the connectivity of Y we have $m \ge n$.

Bibliography

- [1] Adams, J. F., The Sphere, considered as an H-space mod p, Quart. J. Math. Oxford (2) 12 (1961), 52-60.
- [2] Browder, W., Torsion in H-spaces, Ann. of Math. 74(1961).
- [3] Clark, A., On π_3 of finite dimensional H-spaces. Ann. of Math. 78(1963), 193-196.
- [4] Hilton, P., Mislin, G., Roitberg, J., Localization of Nilpotent Groups and Spaces, North Holland Mathematics Studies 15 (1975).
- [5] Mislin, G., *H-spaces mod* p (I), *H-spaces Nenchatel* (Suisse) Aout 1970. Lecture Notes in Mathematics 196 Springer-Verlag, 5-10.
- [6] Stassheff, J., Homotopy associativity of H-spaces II, Trans. Amer. Math. Soc. 108 (1963), 293-312.
- [7] Zabrodsky, A., Hopf Spaces, North Holland Mathematics Series 22.

IME – USP Caixa Postal 20.570 01451 São Paulo, SP. Brasil