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Polynomial interpolation

Thomas Bloom*

Introduction.

What is today usually referred to as the Lagrange interpolating
polynomial has also been credited by various authors to Newton, Waring
or Euler (see [1], page 23 for a discussion of the conflicting opinions).
It is certain that a version of the Lagrange interpolating procedure appeared
in the work of Newton (references to the early original papers may be
found in [12], Chapter 1). The case of multiple points was handled by
Hermite in 1878.

The question of polynomial interpolation for functions of several
variables is quite natural and important. Results however, have not been
entirely satisfactory (see the discussion in [6], for example). In fact, a good
theory of divided differences for functions of several variables is still
lacking (see§9).

In this paper we will present the result of Paul Kergin [4], [7], [8]
which generalizes Lagrange interpolation to the case of functions of
several variables (Theorem 5.2). This is a surprising result and one might
at first wonder that such a generalization had not been discovered long
ago. There are however a number of subtle points (see the discussion
in 5.3).

The paper is organized as follows: §1 to §4 review the classical La-
grange and Hermite interpolation and the difficulties faced if one tries
to generalize these results to the case of several variables. In §5 Kergin’s
interpolation is presented and a brief sketch of the proof is given in §7.
In §6 methods of calculating the interpolating polynomial are given — in
particular, a formula due to Micchelli-Milman [10].

The successful generalization of Lagrange interpolation to several
variables emboldens one to look at various other interpolation and
approximation questions in several variables. This is done in §8 and &9.
These two sections are independent of the results in the previous sec-
tions of this paper.

*This paper is based on a lecture given by the author at LM.P.A,, Rio de Janeiro in
November 1978. The author is supported by the National Research Council of Canada.

Recebido em abril de 1979.
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1. Lagrange interpolation.

1.1 We will first review the classical Lagrange interpolation formula.
It gives a polynomial (of one variable) of degree <m which assumes given
values at (m+ 1) distinct points on the real line.

1.2. Theorem. Let A, ..., A,, be (m + 1) distinct points on the real line and
let by, ..., b, be (m+ 1) real numbers. There is a unique polynomial p(x)
of degree <m such that

e p(4) =b; for j=0,..,m

Proofs. There are several simple proofs available. In fact one can give a
formula for p as follows.
Let 6(x) (j =0, ..., m) be the unique polynomial of degree m such that

N0ty g ]
(1.4} 5’(A‘)—{1 e o=

Of course &(x) is given by
[16—4)

i sy
Then we have .v
(1.6) p(x) = ;) b0 (x).

The uniqueness of p is clear since any polynomial of degree <m vanishing
at (m+ 1) distinct points is identically zero.

A second method of proof is to consider the coefficients of p(x) as
unknowns and use (1.1) to solve for them. That is, we write

pldi= g, phsb ey, i B L o8 Byt
Then (1.1) becomes
(L7 enA)" + cpoiAY "  + oo+ 1A; + co = b for j=0,...,m.

We regard (1.5) as a set of linear equations in unknowns cg, ¢y, ..., Cp,
Since the Van der Monde determinant
A, T
A AT

the equations (1.7) have a unique solution.

det =0

2. Hermite interpolation.

2.1 We need not assume the points A,, ..., 4, distinct. If some of the
points coincide there is still a unique polynomial interpolation procedure.
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Suppose A, ..., A ., are distinct points with_multiplicities Blgsiide,
The multiplicity is just a positive integer associated with a point which
counts the number of times it occurs. We have m, + ... + m,=m. We
also regroup the values b as follows. We assume we are given real numbers
Bats i Do for 720 .10

coes Ojmj

2.2Theorem. There is a unique polynomial p(x) of degree <m such that

P(4;) = b, for j=0,..,u

23 @ik
- SRy =b, for s=1,..m,
=0

Proof: The theorgm may be proved by either of the two methods used
in §1 to prove Lagrange interpolation [14, Chapter 1].

3. The interpolation problem in several variables.
3.1 We will use the following notation and terminology.

We let x = (x,, ..., x,) be coordinates for R". We will use the usual
multi-index notation. Thus, for I = (iy, ..., 1,) a multi-index notation.
We will use the usual multi-index notation. Thus for [ (T o

multi-index, x' =x" ... x*, IN=j!...i! and [blsiigeiul +up
A polynomial of (total) degree <m may be written uniquely in the
form

(3.2) )= 3 ext

| I]<m
where the ¢; are real numbers. :
3.3 We will consider the following interpolation problem inR". Let
Ag, ..., Ay be (m+ 1) distinct points of R" and let by, ..., b, be (m+ 1)
real numbers. Find a polynomial p(x) of (total) degree <m such that

34) P = by dor . fi=00000, m

The equations (3.4) are, of course, the generalization to R" of the equa-
tions (1.3).
If one substitutes (3.2) into (3.4) and attempts to solve for the unknown

- coefficients C; one has (m + 1) linear equations in (") unknowns.

A solution always exists but if n>1 it is never unique.

(3.5) Example. Consider Ao =(00) and A4, =(1,0) in R? (with (x, y) as
coordinates) and b, = 1, b; = 3. Then m = 1 and we must look for a poly-
nomial p(x, y) = c,oXx + co;¥ + coo such that

p(0,0) = 1
B p(1,0) = 3.
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Now, any linear function of the form 2x + ¢4,y + 1 satisfies (3.6). The
coefficient ¢,; may be chosen arbitrarily.

3.7 This dilemma and two remedies are discussed in Glaeser’s article [6].

One approach is to interpolate (™},") values at ("},") points. For the
corresponding equations to have a unique solution, ie. to interpolate
with a polynomial of (total) degree <m, the points must not be located
on any algebraic variety of degree <m. This is a cumbersome hypothesis.

A second approach (Glaeser’s schémas d’interpolation) consists of
requiring the coefficients of p to satisfy certain linear relations in addition
to (3.4). That is, one requires that p lie in a certain (m + 1) dimensional
subspace of the space of all polynomials of degree <m. The subspace,
and hence p, is not canonical but is chosen arbitrarily subject to the con-
dition that it ensure uniqueness.

We will present Kergin's result which provides a canonical inter-
polating polynomial in the case of several variables — not exactly to the
above interpolation problem but to a slight variation on that problem.
To introduce it, we will return to the classical (one variable) case and
once again look at Lagrange interpolation.

4. Lagrange interpolation of a function.

4.1 Again we begin with distinct points A, ..., 4, on the real line.
Instead of interpolating values by, ..., b,, We try to interpolate values of
a function f(x) at A, ..., 4,. That is, we want the unique polynomial
p(x) of degree <m such that

4.2) KA) =f(A4) for j=0,..,m

These equations are identical to the equations (1.3). We have merely
replaced b; by f(A4,. What then is the advantage of (4.2)?

In fact, by considering p(x) to be interpolating the values of a function
f(x) one has a slightly different perspective which we will now exploit.

Assume f(x) is defined for all x'and is of class C™ (m-times conti-
nuously differentiable). For 4 = (A, ..., 4,) we let £(A, f) denote the
polynomial of degree <m which satisfies (4.2), i.e. the Lagrange inter-
polating . polynomial. Then the difference £(4, f)—/ vanishes at the

points A, ..., A,. Applying the mean value theorem we have
d : )

(43) P (ALY m ML)
X

at (at least) m distinct points &. There is one such ¢ in each of the intervals
[4, 4511 twerasstimne A, <4, =10 S0l

For J < |0,...,m} we denote by [4,],, the interval spanned by
A Then, by repeated applications of the mean value theorem we have:

)
i jed:
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' For every integer r, 1 <r <m and for every subset J {0, ..., m}
with card(J) =r + 1 there exists a point £€[A4,],., such that

(44) L@ n-n©-=o.

Thus, in the case f is differentiable the Lagrange interpolating poly-
nomial has, “for free”, certain additional properties which may be summari-
zed as follows. (We use the notation €™(R) for the space of m-times conti-
nuously differentiable functions on R and 2™(R) for the space of poly-
nomials of degree <m.)

4.5 Theorem. Let A, ..., A,, be distinct points of R. There is a unique
linear map £ :€™R)->P™ such that
@) L(f)(4) =f(A) for j=0,...,m. That is, L(f) interpolates f at the
points Ag, ..., A,
(b) For every integer r, 1 <r < m and for every J < {0, ..., m} with card(J) =
=r+1 there exists a point £€[A}];.; such that
d d
@ &
SN O =L

. Of course, 2([ ) is just the Lagrange interpolating polynomial,
which, to emphasize its dependence on A, has also been denoted by

L(Anf).

@)

4.6 Remark. Theorem (4.5) is valid without assuming A, ..., A,, distinct.
In that case #(4, f) is merely the Hermite interpolating polynomial
(see§2). If A; has multiplicity m; then (b) implies that

dr
4.7 :
(4.7) i

LA, f) (4) = d‘% £(4)

for r=0,...,m;— 1.

S. Kergin interpolation.

5.1 The result of Kergin is a direct generalization of Theorem 4.5 and
Remark 4.6 to the case of R".

To state_it we will use the following notation: ¢™(R") denotes the
space of m-times continuously differentiable functions on R"; P™R")
denot'es the space of polynomials of degree <m; for {4 i} jes @ collection
of points in R" we denote by [4];., the convex hull spanned by those
pmpts. For k an integer >1 we denote QXR") the space of constant coe-
ficient homogeneous linear differential operators of order k. Thus, any
g€ Q4R") may be written uniquely in the form
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0 0 oL d \n
(5.2) q =|”z=kd, 33 where i (ﬁxl) <6x,,)

and the d; are real numbers.
We note that in the case of one variable Q%R) is spanned by the

d k
single operator <E>

S.2 Theorem. Let A, ..., A, be (m+ 1) points in R". There is a unique
linear map 7
X EM(RY) - PR

such that

(@) x(f) (A4) =f(A4)) for j=0,...,m. That is, x(f) interpolates f at the
points ' Ay, ..oy A,

(b) For every integerr,1 <r < mandfor every J < {0, ..., m} with card(J) =
=r+ 1 and for every qe Q'(R") there exists a point E€[A;];.; such

that

q(x(f) (&) = a(f) (©).

Briefly then one has the same results as Theorem 4.5 and Remark
4.6 on replacing the interval spanned by points by the convex hull spanned

; : di N
by points and by replacing the differential operator e by the space of

all constant coefficient linear homogeneous differential operators of that
order. i :
We remark that to have uniqueness in Theorem 5.2 it is not sufficient

I
merely to use the operators <ﬁi> with |I|=r in statement (b).
. x

5.3 Remarks. We have formulated Theorems 3.2 and 4.5 to emphasize
the similarity between the cases u = 1 and n > 1. There are however certain
important differences.

First, unlike the one variable case, there is no formula for Kergin’s
interpolating polynomial depending only on the values of f at the inter-
polating points. In fact, the coefficients of the polynomial y(A, 1) depend
- on integrals of derivatives of f over faces in the convex hull of the points
Ags ..., A, (see 6.5). The polynomial cannot, in general, be constructed
unless f is differentiable. This makes the calculation of (A, f) quite
difficult. In §6 we will give two methods for calculating x(A4, /). In §7 we
will sketch a proof of Theorem 5.2.
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6. Calculation of (A, f).

6.1 We will outline two methods of obtaining (A, f). The first one
(see 6.2) is valid when f is itself a polynomial. The coefficients of x(A4, f)
are then polynomials in the coefficients of f and the components of the
points {A;}. The second method (see 6.5) is valid for any f € ¢"(R") and
is a formula due to P. Milman (which was also discovered independently
by C. Micchelli [10]). This formula may be used to establish the existence
part of Theorem 5.2.

6.2 Let Ay, ..., A, be (m+ 1) points (not necessarily distinct) in R”,
Let 2:R"—> R be a linear function.

For s an integer >1 the calculation of the polynomial y(A, A*) has a
simple reduction to a one variable interpolation problem. It merely de-
pends on Hermite interpolation of the function x* at the points
MAp), ..., MA,,). To be specific, letting A(4) denote {MA))} 0. ... n We have

(6.3) XA, 2% = L(A(A), X o A.

Since any polynomial on R" is a linear combination of functions of
the form 7°, the linearity of y enables one to compute y(A4,f) for any po-
lynomial.

In particular, if the degree of f is <m, then A, 11 =r

6.4 As an illustration we return to the Example 3.5. Here Ay, =(0,0);
A; =(1,0) and b, = 1; b, =3. We consider the problem of interpolating
the function f(x, y) = x%y + 2x + | rather than just the values 1 and 3.
Of course f(4,) =1 and f(A4,) = 3. Since deg2x+ 1)< 1 y(A4,2x+ 1) =
=2x+ 1 and we need merely determine (A, x2 y).

We consider the three linear functions R — R given by A,(x, y) =
=X+ y; 45(x, ) = x — y and A;(x, y) = y. Then x2y =—é— {23 — 13 - 223}
Using (6.3) we see that y(4, 13) = A,; x(4, A3) = /4, and y(A, 23) =0. Thus,
by linearity of y, (A, f)=2x +-§ + 1.

6.5 In general, the coefficients of (A, f) depend on integrals of deriva-
tives of f over faces in the convex hull of Ao, ..., A, An explicit formula
may be given as follows:

Bathiug {(ro, s v it e

k
i r',zo}.

1=0
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Recall that if f is of class €* on R" then its total k™ order derivative D*(f)
at x € R" is a k-linear symmetric map from R" to R. That is, given k vectors
Uy oney U € R

D (x) (v, ..., v) ER

and the value is symmetric in vy, ..., v,. We let du,(t) denote Lebesgue
measure on S,. We set

k
(66) Xk(f) — J Dk(f) ('20 tjAj> (o= b T ) A 1) d(t)
Sk 5

and

67) CIEWI)

For n =1 formula (6.6) is essentially the standard Hermite-Genocchi
formula for the k™ order divided differences of a differentiable function
and (6.7) reduces to the standard formula for Lagrange interpolation in
terms of the divided differences of a function (see [5], section 2.6 or [12],
Chapter 1).

7. Sketch of the proof of theorem 5.2.

7.1 We will first sketch the uniqueness statement in Theorem 5.2.
By applying (b) of Theorem 5.2 to operators of order m it is clear

that if / is small in the ¥™ norm then the coefficients of (A4, /) are small.

Hence y is continuous.

Since polynomials are dense in %™, it suffices, by the linearity and
continuity of y to show that it is uniquely determined on functions of the
form A° where s is an integer >1 and 4 is a linear function on R". Again,
by applying (b) of Theorem 5.2 to operators of order 1 which annihilate 4,
formula (6.3) and hence the uniqueness of y follows.

7.2 For the existence part of Theorem 5.2 one may use the formula (6.6).
Kergin’s proof [7], [8] does not use such a formula.) From (6.6) it is
immediate that y is linear (and continuous). To prove (b) of Theorem 5.2
one establishes the formula

1.3 j af) = j a4, 1)
[Aj]jEJ [Ai]jel
for all ge QXR") and card(J) =k + 1. Since both integrands are conti-

nuous functions, they must be equal at some points of [4,];., and hence
(b) of Theorem 5.2 follows.
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8. Approximation problems.

8.1 The Weierstrass theorem which states that polynomials are dense
in the space of continuous functions on a compact set is valid in one or
sgveral variables. It is one of the rare results on one variable approxima-
tion which has a satisfactory generalization to several variables.

. The theory of polynomial interpolation and approximation in one
vaflable is quite rich and extensive. The one variable results often lead
quite naturally, to problems in several variables and it is reasonable tc;
suppose that many one-variable results have interesting generalizations
to the case of several variables.

As an illustration, we will review the basic onevariable theory of
Tchebyshev approximation and briefly discuss the several variable case.

?3.‘2 e 7 (x) .be a continuous function on the interval [—1,1]. What
is the polynomial of degree <m which best approximates f ? Alternatively,

where ghould one locate the points 4, ..., A,, so that Z(4, f) is the best
approximation to f?

Of course, it is necessary to be precise about what one means by

best approximation. Several interpretations are possible but we will
use the uniform norm

1Al = Sup“lf(x) |

xel b

We quote the following well-known results due to Tchebyshev.

8.3 Theorem. There is q unique polynomial Pe?™R) such that
If=Pll. = min | f-0]..

Qe?™(R)

'In other words, there is a unique polynomial of degree <m which
provides the best approximation.

The next theorem characterizes that best approximating polynomial.

8.4 Theorem. P(x) is the best approximating polynomial of degree <m

to f if and only if there are points — 1 SR s Xana = 1 such that

|(F= P)(x)] = \f = Plloforj=1,...,m+2 and the sign of f— P alter-

hates at successive points in the sequence X, ..., X, 4 .

This theorem has, in fact, been developed into an algorithm to obtain
the best approximation by computer.
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8.5 In the case f=x™ a precise formula for the best approximating
Pe®?™ Y(R) is known. In fact, the Tchebyshev polynomial T,(x) =

cos(m arc cos x) has leading term x™ and alternately the values

i 2m—1

1
i 2m—1
and has the required properties.

at m+ 1 distinct points. Thus x™ — T,,(x) is of degree <m—1

8.6 To what extent do the results 8.3, 8.4 and 8.5 generalize to several

i ? . .
Vana’lb%leesdrem 8.3 is not valid in two variables — the uniqueness part

does not hold. (The existence part is valid because of genera:1 Baqach
space arguments.) The following example (which arose from discussions

with L. Bos) illustrates this point.
We consider approximation on the set K = {(x,y) € R*|0<x<1
and 0 <y <1}. Let h(x) =4T;(x) be the Tchebyshev polynomial of degree 3.

Consider f(x,y) =4h(x))(1 —y). We will show that tl.1e polyngmial
P e2*(R?) which provides the best approximation to f (in the uniform
norm on K) is not unique.

First, note that f (x, %) = h(x). If Pe?*R?) then || f— P|x=

)72

lfx, )| < |he) | [4x(1 —y)| < 1 for (x,y)e K. Hence P =0 provides

> S >'1. If we consider P =0 we have

0<x<1

Loyd )
a best approximation. However < — ~2—> also provides a best appro-

ximation since

5 T 1 2<1
‘4@n<x)y(1—y>——<y - 5) s4y<1—y)+< —--2—) <

for0<y<lLl

Theorem 8.4 clearly depends on the zero set of a polynomial in one
i ing finite. :
varla'll?:fesze;ixiple observations do not, of course, preclud.e a generahz'fl-
tion of Tchebyshev theory to several variables. One specific problem. in
that direction is the following. Find a polynomial of degree Sm -1 ,,“,Vh‘cﬁ
gives the best approximation (in the uniform norm) to the function x™ + y
on the unit disc = {(x,y)e R?|x? + y* < 1}.
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9. Differentiable functions.

9.1 A good theory of higher order divided differences for functions of
several variables is lacking. Such a theory would have important applica-
tions to numerical solutions of partial differential equations.

In one variable, the Lagrange interpolation formula is connected
with higher order differences. In fact, we have the formula

m imd
(92) y(Aa f) oy .;0 A(Aos sevy Ah f) 1;!) (X e A;)

where A, ..., A, are distinct. Here A(A,, ..., A;, ) denotes the i order
divided difference of £. The leading coefficient of £(A, f)is A(Ay, ..., A,, f)
and this may be taken as the definition of the m™ order divided difference.

Kergin’s interpolation may thus be considered as giving one answer
to the question of higher order divided differences. However it is not
adequate to answer the problem (9.4).

9.3 We will discuss a general problem in the theory of differentiable
functions. The one variable version of this problem was solved by Whitney
[15] and the solution is expressed in terms of divided differences. The several
variable version of this problem is presumably related to the problem of
higher order divided differences.

9.4 Problem. Let X be a closed subset of R” and f a function defined
on X. Does there exist a function Fe@™(R") (for m=1,2, ..., +x)
such that F/X (the restriction of F to X) is equal to f. In other words,
can one decide from the values of f on X if it has an extension to a function
in €™(R")? This is, of course, a somewhat vague question.

For example, if X is a closed submanifold (of class €®) it suffices that
S be of class €™ on the manifold X.

More interesting, is the result of Whitney [15] which solved this
problem for arbitrary closed subsets of R. He proved.

9.5 Theorem.(Whitney). Let X be a closed subset of R and f a function

defined on X. Consider A(A,, ..., A,; f) for A, ..., A, € X. Suppose that
A(Ag, .., Ay, f) always has a limit as the points A,, ..., A,, converge to a
point x€ X. Then f has an extension of class €™ :

Merrien [11] proved that, in the above circumstances, if f has an
extension of class €™ for all m then it has an extension of class €.

Whitney’s proof of (9.5) uses the fact that the complement of a closed
set in R is a union of intervals.
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In R” things are, of course, much more complicated. The case when
X is a closed rectangle has been solved by Glaeser [6]. The €' problem
has been studied recenty by S. Birnbaum [3]. There is, of course, related
work of Whitney [9].

One particular case would be when X is algebraic. This is related
to generalizations of a theorem of Glaeser [2]. See also the result of G.
Schwarz [13].
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