BOL. SOC. BRAS. MAT., VOL. 10 N° 2 (1979), 87-162 87

On characteristic classes of compact homogeneous spaces and
their applications in compact transformation groups I

Wu-Yi Hsiang*

Introduction. Basically, this paper is a natural continuation of a series
os papers of Borel-Hirzebruch on characteristic classes of homogeneous
spaces [BH] which reduced the computation of characteristic classes of
homogeneous spaces to their Lie group theoretical invariants, namely,
roots and weights. However, in actually carrying out such computations,
one finds that their method needs some basic modifications ir order to
simplify the corresponding algebraic problem to a manageable level {Ct,
Section 1]. As a direct application of such a modified method of Borel-
Hirzebruch in the computation of characteristic classes of homogeneous
spaces, we are able to solve the following problems which are the motiva-
tion of this paper to start with:

Problem 1. Let G be a classical compact simple Lie group, namely,
SU(n), SO(n) or Sp(n), and H be a connected closed subgroup of G. Suppose
the first three Pontrjgin classes of the homogeneous space G/H vanish,
i. e, P(G/H)=0, j=1,2,3. How to classify all such subgroups H of
classical groups up to conjugacy classes?

Problem 2. Let M be a smooth manifold with P(M)=0, j=1,2,3,
and @ be a given smooth action of a classical compact simple Lie group
G on M. Let (H) be the conjugacy class of the connected components
of principal isotropy subgroups of the G-action ®. What are the possib-
ilities of such conjugacy classes (Hg) for all smooth actions ® of classical
groups G on all such manifolds M with P(M)=0, j=1,2,3?

Problem 3. Suppose M is a smooth manifold with PiM)=0,j=1,2,3,
and @ is a given G-action with dim Hg #0. What are the possibilities
of (G% for xe M?
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supported by National Science Foundation Grant MCS75-23180-A01.
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A simple, basic idea introduces characteristic classes of equivariant
vector bundles over homogeneous spaces as a useful tool of investigating
orbit structures of compact transformation groups is the following basic
fact about local structure of orbits:

Suppose G/H occurs as an orbit in a given G-manifold M. Then G/H
imbeds in M with an equivariant normal bundle which is an associated
bundle of the canonical H-principal bundle over G/H, namely,

WG/H): R* > G x 4 R* > G/H

where R! is the H-linear space of normal vectors of the orbit G(x) = G/H
at x with the induced H-action. Following the notation of Atiyah-Hirze-
bruch [AH], we shall denote the canonical homomorphism of RO(H)—
— KO(G/H) by ag ,. Then v(G/H) =ag 4(p,) where ¢, is the induced
linear representation of H = G, on the space of normal vectors R¥. There-
fore, the pullback of the tangent bundle of M, t(M), with respect to the

imbedding, G/H—’»M, gives us the following equation:
i'((M) = ©(G/H)+ WG/H) = a6 4(Adg|H — Ady) + ag 4(0.)

If one evaluates the above equation at the characteristic class level, then
one gets a system of algebraic equations involving the following data:

7%k

(i) the homological data of the imbedding: H*(M) ke H*(G/H),

(i) the infinitesimal data of the location of H in G,

(iii) the weight system of the slice representation ¢,.

From the viewpoint of transformation groups, all the above three sets
of data are “unknowns” that one would like to determine their possible
solutions. As a simplified example, suppose M is a G-manifold with
P(M)=0, j=1,2,3, and G/H is a principal bundle. Then ¢_ is a trivial
representation and one has the following system of equations:

P(G/H) = *PM)=0 j=1,2,3.

Therefore, the solutions of problem 2 are exactly the same as the solutions
of problem 1. Of course, it is rather remarkable that problem 1 actually
consists of the following neat solutions:

Theorem 1. Suppose H is a connected closed subgroup of SU(m) such
that P(SU(m)/H) =0, j = 1,2, 3. Then the possibilities of the representation
Y:H < SU(m) are as follows modulo trivial representations:

(1) H is any given subtorus,

(i) H is semi-simple and = Ady,

(iii) H = SU(n) x H, n/30 and ¥ = p, ® pu, + Adg,
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g (l)f((n)) Mo OF 2., dim p, = n,
B n —_ ) Pn, dim p, = n,
) Sp(n) ° v V,, dim v, =2n,

G, @, or 20, dim ¢, =7

(V) H =5Sp(lY, vi=k( 4 if v, k=124
hL {SUG) x SU(3) {k(ﬂs +u) + s + ), k+ € =12,

G, x G, (@1 + @) or 2e, + @),
SU(n), n=34,5 U, + 0,
SU@3) kuy + €y, k+¢ =36
H = A :u3 u3a ’ 9(k’ f) # (3a3)
Sp(2) L v, + A%,
Spin(8) AT+ A

Theorem 2. Let yy: H < Sp(m) be a sympletic representation of a compact
connected Lie group with P,(Sp(m)/WH) =0 Jor k =123. Then the possibi-

lities of all such pairs (H, ) are given by the following list modulo trivial
representation:

() H is any given subtorus,
(i) H = Sp(n), Y = v,,
(iii) H = Sp(1y, y = k(" + s hi Dok = 124,

SU(n), n = 3,45 Ho + B,
: SU@3) x SU(3) (U3 + fAs) + (4 + u
iv) H = =4 s T+ By) + U + o)
(iv) Gig X Ly v 20, + 2¢)

G, 2¢,

Thef)rem 3. Let Yy:H < SO(m) be a compact connected Lie group with
a gwen_r‘eal representation Y. If P, (SO(m)/YyH)=0 for k=123, then
the possibilities of all such pairs (H, ¥) are given by the following list modulo
trivial representations:

() H is any given subtorus,
(11) H is semi-simple and = Ady,
(iii) H is semi-simple withouth normal Jactors of B,, C,, or D,, type and
w — 2AdH,
(iv) H = [Sp(1)], y = kO + ... + ), k/8,
H - {SO(n)’ e kp,, k/(2,n)
Sp(n) 2y,
i {SU(3) x SU(3) il {k'[ﬂa + By + py + B33 k=12,
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SU(n), n = 34,5 k(u, + 4,), k=12
GZ ngl, k T 1’2’4
it girodhBn) | 2A%, + 2,
O B 50 sweis) GRAREAT BA), k= 12
SU@4) A2#4 + (g + Hy)
SU(Q2) 4u, + Ad.

We shall prove the above theorems in Sections 3, 4, 5, and then apply
them to further study the orbit type of actions of classical groups on
manifold with vanishing first three Pontrjagin classes and with positive
dimentional principal isotropy subgroups as determined by the above
three theorems. Technically, this paper is a continuation as well as an
improvement of the three papers of Borel-Hirzebruch [ BH], and the result
'we obtain in this paper is a convincing indication of the computability
and applicability of such a framework. From the viewpoint of transfor-
mation groups, this paper is a natural extension of the general ideas of
[ HH1]. One may further combine the result of this paper with cohomology
theory of transformation groups to obtain deeper and more specific results
for actions of classical groups on manifolds with given cohomology
strucutres such as Stiefel manifolds and other homogeneous spaces.

Section 1. Basic reductions and the splitting principle of characteristic
classes.

In this section, we shall recall some basic general facts about equi-
variant vector bundles over homogeneous spaces and the spliting principle
of characteristic classes which will enable us to set up some fundamental
reductions to reduce the computation of their characteristic classes to a
manageable algebraic problem.

(A) Equivariant Vector Bundles over Homogeneous Spaces.

Let G be a compact connected Lie group and H be a closed sub-
group of G. Then the equivariant KO-group of the homogeneous space
G/H is simply the representation ring of H, namely

KOg;(G/H) =~ RO(H)

Let (G,, H,) and (G,, H,) be pairs of compact Lie groups and

¥:(G,, H,)—>(G,, H,;) be a Lie homomorphism of pairs, : G,/H, = G,/H,
be the induced equivariant map. Then, one has the following commutative
diagram of induced morphisms:
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RO(H,) = KOg* (G,/H,) 2 KO(G,/H,)
L|H)* Ly! L y!
RO(H,) = KOg, (G,/H,) = KO(G,/H,)

Applying. the above diagram to the special case of (G, H)—- (G, G), it is
then obvious that the composition of the following morphisms is equal
to zero: i

RO(G) - RO(H) % KO(G/H) - KO(G/H).

Let ©(G/H) be the tangent bundle of G/H. Then it is well-known

that ©(G/H) = ag y(Adg|H — Ad,,). Therefore, one has the following reduc-
tion of basic importance:

Reduction 1. 1(G/H)=ag y(Ads|H — Ady) = — a6 ,(Ad,,) in KO(G/H)
[ a6 u(Adg|H) = 0 in KO(G/H).] _
As simple, direct applications of the above reduction, one has the following

propositions:

Proppsition L.1. If H is a torus subgroup of G, then G/H is stably pa-
rallelizable, i.e., (TH) = — ag ,(Ad,) =0 in KO(G/H).

Proposition 1.2. Let H be a semi-simple compact connected Lie group
and y: H— SO(m) be a real representation with ¥ = Ady modulo trivial
representations. Then SO(m)/y(H) is stably parallelizable.

Reduction 2. Let G > H > H, be a triple of compact connected Lie groups
and H; be normal in H. Then

p'u(G/H) = «(G/H,) in KO(G/H,)

when? p:G/H,; - G/H is the induced projection.
Pf: Since H, is a connected normal subgroup of H, it is well-known that
Ady|H, = Ady, + trivial representations. Hence

p'u(G/H) = — a(Ad,|H,) = — «(4dy) = ©(G/H,) in KO(G/H,).

Reduction 3. Let G > K o H be triple of compact Lie groups and
K/H 5 G/H — G/K be the associated fibration. Then
©(K/H) = i't(G/H) in -KO(K/H).

[ the local product structure of the fibration.]
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(B) Splitting principle of Borel-Hirzebruch.

Following Borel-Hirzebruch [BH], let us formulate the splitting
principle of characteristic classes of equivariant bundles over homogeneous
spaces as follows: :

Let & be a real representation of H on R" and a() be the associated
equivariant R"-bundle over G/H. Let T, S be maximal tori of H and SQ(n)
respectively, ®(T) < S, and let B, By, By, and Bso(n,.be their classifying
spaces. Then, one has the following commutative diagram of maps:

G/T—i»BTmi»Bs
$F ok In

j (1))
G/H - Byt B

Let &, be the universal R"-bundle over Bgy,,. Then
a(P) =i'- D' (&)
n'a(®) = (@ | T) = i{(@| D'y 7'(C,).
Since the structural groups of the induced bundles over B, and Bg are

reducible to T and S respectively, it follows from the Schur lemma and
the splitting principle that

TP () = P(n'a(®) = P(®| T) =
= i*P (a5, (® | T)) = i*{ TS w)}
wel(®)

where Q(®) is the Weight system of ® and we QD) are cpnsidered as
elements of H*(B;;Z) via the following natural identifications:

H*(B;;Z) = H(T,Z) = The group of characters of T.

Summarizing the above discussion, one has the following special version
of splitting principle for equivariant bundles over homogeneous spaces
wich is the basic setting of the papers of Borel-Hirzebruch [BH]:

‘Reduction 4. Let G o H o T'be a triple of compact connected Lie groups
and T be a maximsl torus of H. Let @ be a real representation of H with
weight system Q(®) and a(P) be the associated equivariant bundle of &
over G/H. Then

n*P*(a(&D))=i*{ naY w)}

weQ(®)
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where n*:H*(G/H)—»H*(G/T)i*:H*(BT)ﬂH*(G/T) and P, is the total
Pontrjagin class.

In the special case of tangent bundle of G/H, one sets & = (Adg|H-Ad,,)
and its weight system is called the complementary root system of H in G,
namely,

¥ (Py(G/H)) = i*{T1(1 + w)}

where w runs through the complementary root system of H in G. This
is the basic setting of Borel-Hirzebruch for the computation of character-
istic classes of homogeneous spaces. However, in actual computations,
the complementary root systems are usually rather complicated which
make their symmetric products very difficult to deal with, especially in
the case that the subgroup H is itself an unknown that one needs to solve,
e.g. problem 1, 2 and 3. The following is a simple but significant modifica-
tion of the setting of Borel-Hirzebruch which greatly simplifies the alge-
braic computations involved in the computations of characteristic classes
of homogeneous spaces:

Reduction 4. Let G > H = Tbe as in reduction 4 and P, be the total dual
Pontrjagin class of G/H. Then

7*P,(G/H) = i* { Bl oz)}

acA(H)

where A(H) is the root system of H.
[ «(G/H) = — «(Ad,) in KO(G/H) and Pontrjagin classes are stable.]

Remark. The above symmetric product of root system {T1(1 + «); ae A(H)}
is not only much simpler than that of the complementary root system
but is also independent of the imbedding of H in G, ie., only dependent
on the abstract Lie group structure of H. This simplification makes the
solution os problems such as problem 1, 2 and 3 at all feasible.

(C) Transgression theorem and the kernel of "

In order to compute the homomorphism i*: H*(B,) —» H* (G/T), let
us consider the following commutative diagram:

G — G

! !
Gx]‘g;_’EGX TGLE(,‘

dTyi l
p

G/T—— B,—2.8,
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where G— Eg x ;G— By is the induced G-bundle of p: B, — Bg and d
is the map induced from d: G— G x G with d(g) =(g,g~'). Observe that

d is a cross-section of the fibration Eg— Eg x +G— G/T with weakly

contractible fibre Eg, it is clear that d is a weak homotopy equivalence.
Therefore, one may identify H*(G/T) and H¥*(Eg x ;G) via the isomorphism
4* and then it follows from the above diagram that i* = n§ where
n: H¥(B;) > H*(E; x ;G) is the edge homomorphism of the Serre
spectral sequence of the fibration Eg x ;G — By. The advantage of the
above reformulation is that n¥ is effectively computable in terms of the
transgression theorem of A. Borel [B1]. Let us recall the concrete cases
of G =SU(m), Sp(m) and SO(m) in the following:

(i) The case G =SU(m). In this case, H*(SU(m);Z) is an exterior
algebra generated by (m — 1) universally transgressive elements of degree
(2k + 1), 1 <k <(m—1), whose transgressions are the universal Chern
classes {C,,;,1 <k <(m—1)}. Therefore, it is not difficult to see that
the kernel of i* = n% is exactly the ideal (in H*(Br; 7)) generated by
{p*(Cy+,)}- Moreover, it follows from the splitting principle that

pCo= [1 A +w=1+Py>+ PP+ ..+ Py"
weS(Y)
where Q(J) is the weight system of the representation of Y:H <= SU(m)
and p*C, = PYy*= the homogeneous part of degreee k of the above
symmetric product. Hence, one has the following reduction for the case
G =SU(m).

Reduction SA. In the case G =SU(m), Y: H< SU(m) can be considered
as a complex representation of H with its weight systems (). Let
[T A+w=1+Py>+...+Py*+. .. +Py"bethe symmetric product
we(®) ;
of weights of . Then
Ker(i*) = (PY2, PY3, ..., PY™).

(i) The case G = Sp(m). Again, H*(Sp(m); Z) is an exterior algebra
generated by m universally transgressive elements whose transgression
are respectively the universal quaternionic classes q;,q;, ---> qm- Therefore,
one has the following reduction for the case G = Sp(m).

Reduction 5C. In the case G =Sp(m), ¥: H< Sp(m) is a quaternionic
representation of H. Then .

Ker(i*) = (PY?, Py*, ..., PY*™)
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whe(;e Py**is the homogeneous part of degree 2k in the following symmetric
product:

[T A+wy= J] (d=w?)=14+ P>+ Py*+ ... + PYy?™

wed(y) weQ * (y)

(iii) The case G =SO(2m+ 1). Since H*(B;; Z) is torsion-free, no
tors@on elements can have a non-zero transgression in H*(B,; Z). The
torsion-free part of H*(SO(2m + 1); Z) is again an exterior algebra gener-
ated by {x,,1 <k<m} such that {2x,} are universally transgressive
yvhose transgression are respectively the universal Pontrjagin classes { P, }
in H*(Bsp(ym+1): Z)- Let Y: H=SO(2m + 1) be the real representation
and Q(y) be its weight system. Then

pH(I™R Pyl plyie SRS b o) = [T 1 -wH)=

weQ(yY) wed T (Y)
=1+ Py? + PY* + ... + Py

Furthermore, let us introduce the following notation, namely,

1 : Sealaes

5 Py ?*if Pys?* is divisible by 2 in H*(B,., Z)
Pyt =

Py?** otherwise.

Then, one may state thr result for this case as follows:

Reduction 5B. In the case G =SO02m + 1),
(PY2, PY*, ..., PY*™y < Ker(i*) = (PY2 PY4, ..., Py,

Remark. Thecase of G = SO(2m) is essentially the same as that of SO2m + 1)
except that the m-th Pontrjagin class should be replaced by the Euler,
class. A precise statement about Ker(i*) will involve conditions on the
Z,-weights of Y, ie., its Stiefel Whitney classes. We refer to [BH] for

similar results for the Stiefel-Whitney classes in terms of Z,-roots and
Z ,-weights. '

Section 2. Basic Weyl invariants and algebraic computations of
symetric sums and symmetric products.

The 'sp.litting principle of Section 1 reduces the computations of
characteristic classes of homogeneous spaces into elementary algebraic
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problems involving symmetric products of roots and weights of the follo-
wing type:
IT 0 +w) =ZPy*

weQ(Y)

where Q(y) is the weight system of a given representation y of H and
Py* is the homogeneous part of degree k of the above product. We need
to compute the explicit expression of Py/* in terms of the basic Weyl in-
variants of invariant polynomials of the linear space of Cartan subalgebra
of H with respect to the action of Weyl group of H. Straightforward
computations of Py* are rather difficult to carry out and the idea to
overcome such a computacional difficulty is to make use of the Newton’s
Formula which enables us to reduce the computation of {Py*} to that
of the following symmetric sums:

SY = Y wh k=123,

weQ(y)

(A) Newton’s Formula.

Let {6,,1<i< <n} be a set of n indeterminants. Then

1_.[(1 +0)=1+ 0,0 +»62(0) + ... + a,(0)

where the homogeneous part of degree k, ,(0), is called the k-th ele-
mentary symmetric polynomial of {6 }. On the other hand, let s,(6) = Z6"
be the symmetric sum of k-th power of 6. Then the well-known Newton’s
Formula consists of the following identities relating {0, } and s, |, namely,

Soe gl (Reoas) sesssnloRmiNO splo R s +i(— 1) ko

[adopting the convention that ¢, =0 for j > n]. From the above system
of linear equations, one may solve s, explicity in terms of o; and vis versa.
In fact, one can use the formal power series of logarithm to get explicit
general formulae for s, in terms of ¢,, namely,

12 (_ 1)k+1
k=1 k i

Y log(l +60)=log(l + 0, +0,+ ... +0,)=
=1
0 _lH—l I
= _(+(Ul +0,+...+a).
i=1
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If one expand (¢, + 0, + ... + ¢,)' by multi-nomial theorem and collect
terms of degree k of the righthand side, one gets

ign 1)"—1, ‘;(_k by el l)ja|+1. (IOCI — 1! -

where o =(a,,a,,...,a,) runs through all multi-indeces with Zio, =k
n n

and |a| = Zay, a! =[] (@), 6= [] o%.
i=1 Tivgi=1

Conversely, one can use the formal power series of exponential go
get explicit general formula for o, in terms of s,:

1+0,+0,+ ... +0) =exp|:2 (— k1. ik—:l =
k=1

e S (L . At ey k+17‘9k_/
+|:k§1( 1) k:|+ ..+€![k;1( 1) k:l -+

Again, by collecting terms of degree j in the right hand side, one gets

Ll | et ol
o, =X(— 1y T
where oc=(a1,oz2,...,oz,)_ runs through all multi-indices with kot —

J i
=ia'= na' @ n 9% i & 7%
Jrat! ey = Vs ko= T1R
k=1 ok k=1

Remark. The above two explicit formulae are kmown as Waring formulae.

(B) Basic Weyl invariants of simple Lie groups.

Let G be a compact connected Lie group, T be a maximal torus of
G and N(T) be the normalizer of Tin G. Then the Weyl group W(G) =
= N(T)/T acts on T via conjugations and hence also acts on H*(B;) via
induced automorphisms. It is not difficult to show that G/N(T) is Q-
acyclic and H*(By,r); Q) @ H*(B;; Q)¥, the fixed elements of H*B;; Q)
under the action of W(G). Therefore, one has

H*Bg; Q) = H*By(r); Q) = HYB;; Q)"

It is easy to see that H*(B,; Q)" can be canonically identified with the
ring of invariant polynomials over Q of the Cartan subalgebra with respect
to the action of W which acts as a finite group generated by reflections.
It follows from a theorem of Coxeter and Chevalley [C 1] that H%(B,; Q)"
is then itself also a polynomial algebra generated r basic invariant po-
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lynomials, r =rk(G). We shall such a set of basic invariant polynomials
a set of basic Weyl invariants of G. For later use, we shall exhibit a set
of basic Weyl invariants for each simple compact connected Lie group
in the following:

. (1) G=4,_,, the Cartan subalgebra of 4,_, can be parametrized
by (6,,0,, ...,6,)such that £ 6, =0 and W(G) acts as the full permutation
group of {6;}. Hence a set of basic Weyl invariants of A, _, are simply
the elementary polynomials of 0,, namely, o,,0,,...,0, (notice that
g =200)!

(2) G=B, or C,: the Cartan subalgebra of B, (or C,) can be pa-
rametrized by (6,,6,,...,0,) so that WMG) acts as permutations of {6}
modulo an arbitrary number of changes of signs. Hence, a set of basic
Weyl invariants of B, (or C,) are those elementary symmetric polynomials

of {02}, say, denoted by 5,,d,,...,5,.

(3) G=D,: the Cartan subalgebra of D, can be parametrized by
(6,,0,,...,0,) such that W(G) acts as permutations of {f,) modulo an
even number of changes of signs. Hence, a set of basic Weyl invariants
ol B0 ave' oy g it e liiiigndsq 1t

(4) G = G,: the Cartan sualgebra of G, is parametrized by
(0,,0,,0;) with 6, +60,+ 6, =0 and WG,) acts as permutation of 6,
modulo a uniform change of signs of all 6;. Therefore, o, and a2 consists
of a set os basic Weyl invariants of G,.

(5) G =F,: the weight system of the first basic representation v,
of F,, dim ¥, =26, is given as follows:

1 :
Qy,) = {i 0.-;5(1 6, +6,+0,+80,);2zero weights}.

Let a,(F,) =S‘/"i = Z w¥. Then 0,(F,), a4(F,), 0g(F,) and o,,(F,)
we(Y1)
consists of a set of basic Weyl invariants of F,.

(6) G =Eg: the weight system of the first basic representation Y,
of E¢ is given as follows:

Qy)={t1+6;—-(0,+0,);1<i<j<6},dimy, =27.
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Again, let 0,(E) = SY% = £{w¥; we Q(y,)}. Then
{o(Eg); k = 2,56,89.12)
forms a basic system of Weyl invariants of 1055

(7) G=E,: the weight system of the first basic representation of
E; is given as follows: ‘

QW) = {+ 0, +0);1 < i <j < 8),dimy, = 56
Let o (E;) = Z{w*; we Q). Then
{0dE-);k = 2,6,8,10,12, 14, 18)

forms a system of basic Weyl invariants of B

(8) G = Ejg: the first basic representation of Ejg is its adjoint repre-
sentation and the root system of Eg is as follows:

A(Eg) = {£ (6, ~ 6,5;6,+ 0, + 0,:1 < i < j < k <9
Let SE§ = X {«*; € A*(E,). Then
{SE§; k = 2,8,12,14,18,20,24,30}

forms a system of basic Weyl invariants of Eg. Here, it is interesting to
notice that the last seven exponents are exactly those p + 1 for the con-
secutive primes between 7 and 29 and

SE§™! =305, ,(6,) (mod p).

In fact, one may use the above equations to give a simple proof of the
above assertion that {8Ef:k =2, p+1,7<p<29} forms a system of
basic Weyl invariants of E.

(C) Symmetric products and symmetric sums.

In view of reduction 1, 4 and 5 of Section 1, the following symmetric
products are of basic importance in the study of Pontrjagin classes of
compact homogeneous spaces, namely,

l;([w(HW):l+P¢‘+Pn//2+...+Pw"+...
We! )

especially when = Ad,, is the adjoint representation of H. We shall
denote PAdj; simply PH* namely,

[ G+a)= T[] (1-a®)=1-PH*+PH*+...(= 1)« PH?* + ...

aeA(H) aeA * (H)
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ie, PH**71 =0. One shall often need the explicit expression of PH?*
in terms of a chosen system of basic Weyl invariants of H. However, such
computations are rather difficult to do directly. We shall first compute
the corresponding symmetric sums {Sy*} and {SH*} and then make use
of the explicit Newton’s Formula to compute {Py*} and {PH*} indirectly.

Lemma 2.1. Let {0;;1 <i<n} be a set of n indeterminants and s, = X 0%.
Then

(k—1)

1
Z 0; + 9,/)’( = [0+ )5 + = Z (/) (s, * Stk=1) —5) =
i<j =1
(k—1)

=[n—2(k_l)]‘sk+ Z Z (/)sr Stk—r)-

=1
Lemma 2.2. With the same notation as in the above lemma,

Z 0, — HY,') = Z (/ S/ *Sak—r)-

i<j

Notations. Let H be a compact connected Lie group, A(H) be the root
system of H, A*(H) be the system of positive roots and

SH” =L lu e ()
(— 1)+« PH?* = the homogeneous part of degree 2k in the symmetric

product [[ A +a)= [] (1 - 2.
aeA(H) aeh*(H)
Then, one may use the explicit Newton’s Formula to express {PH?*} in
terms of {SH?/}, e.g,
PGS o RE7
PH* = %{- SH* + [SH2]2),

3

1 - 1
PHS §{5H6 i) ré—SHZ-SH“ L 2[SH2]3}, siaetc

Since we are going to deal with the first three Pontrjagin classes
of various homogeneous spaces, we shall often need the explicit forms
of PH?. PH* and PH® for all simple compact Lie groups. We state the
results of such computations as follows, [ with the help of Newton’s formula
such computations can be reduced to that of symmetric sums SH?, SH*
and SH® which are rather straightforward.]:
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Lemma A.

Lemma B.

Lemma C.

Lemma D.

Lemma E_.

Lemma E..

Lemma E..

~PAL =0

PA,_ | =2no,+ (2n* — n — 6)¢2,

— PAR_ | =2n0s + (4n® — 2n — 40)0,0, — (n — 30)02 +

2
+ 737(2n3 —3n* — 17n + 30)+ 62.

PB: =(2n— 1)a,,

PB4 =(2n—"706, + (n— 1)2n — 1)52,
PB6 —(2n —31)65 + (4n*> — 18n+ 18)5, - 5, +

ff(n — 1)(2n —-3)2n—1).

PC2=2(n+ 1)5,,

‘71

PC4 =(2n+ 8)6, + (n — 1)(2n + 5)53,

POt = (O D N T 36)5, - &

+ %(n — 1)2n = 3)(n+4)53.

PD2 =2(n—1)5,,

Q
[ 8]
_+_

PDA—(2n—8)5, + (n— (20— 352,
PDS, = (2n — 32); + (4n? — 22n + 28)5, - 5, +

»37(n — 1)(n — 2)(2n — 3)53.

PEZ = — 24(3% — 5,),
PE% = 270(3% — 0,)?,

PEg =1900-(% - g,)* — 6(240, —

+4)262 — 20726, + 302 —

— PE2 =360,, PES = 62402,

PES =4.(2404 + 36} — 40,0,) + 21732 63.

PE} = — 600,

4,0, +

40,0,)

101

[Since we shall only need PE} for later computations, we omit PE§ and

PES here.].

Lemma F o

PF;=95,,
147 _
PF:Z *4‘0'%,

1
Png —7<3&3—‘ 2*61'62>+ TEER

721
8

=3
Gy.
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Lemma G,. PG3= —80,, PGi=2202,
— PG§ = 2603 + 2803.

Remark. (a) The computations. involved in verifying the above lemmas

consists of the following three steps:

(1) Express PH** in terms of {SH?/;1 <j <k} by Newton’s formula.

(2) Compute SH* in terms of {s,} by means of binominal or multinomial
theorems (cf. Lemma (2.1), (2.2)).

(3) Use the Newton’s formula again to replace those {s,} by their ex-
pressions in terms of {g;} of {7}

(b) In the above indirect method of computation, each step is rather
simple and the advantage of such indirect method becomes more clear if
one tries to compute PH?* for slightly larger k, such as k = 7, by direct
expansion of the symmetric product. [I think he will soon find out that
it is inteolerably complicated and hence appreciate the above indirect
method more. ] f

c¢) For a general compact connected Lie group H, then

A(H) = A(H,) + A(H,) + ... + A(H,)

where H; are the simple normal factors of H. Hence
SHF "5 ISHE
ji=1

and it is easy to reduce the computation of PH to the case of simple Lie
groups.

Section 3. Homogeneous spaces of SU(m) with vanishing characteristic
classes.

Let H be a compact connected Lie group and y: H — SU(m) be
an almost faithful unimodule complex representation of H. In this section
we shall investigate the possibilities of such pairs (H,y) whose asso-
ciated homogeneous spaces SU(m)/y H satisfy various vanishing conditions
on their characteristic classes. In particular, we shall prove Theorem 1
as stated in the introduction. First, let us prove some simple but basic
lemmas:

Lemma 3.1. Suppose SU(m)/YH satisfies the following vanishing conditions,
namely

P, (SUm)YyH) =0 for j =1,2,...,¢.
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Then the symmetric products of the roots of H and the weights of Y satisfy
the following systems os algebraic equations:

PH? =0 (mod Py?),

PH* =0 (mod Py?, Py?3, Py*),

PH* =0 (mod Py, Py3, ..., Py¥).
Proof. Let T be a maximal torus of H and n: SUm)y T— SU(m)/YH.
Then it follows from the duality of Pontrjagin classes *) and reduction 1
reduction 4 that
PlalAd, D) ="MPHY) ' 20 for k'=12" 1%y

On the other hand, it follows from reduction 5A that

Ker(i*) = (PY%, Py, ..., Pym>.
Hence, i*(PH?*) =0 if and only if
PH** =0 (mod Py?2, Py3, ..., pyr?¥).

Lemma 3.2. Let H < SU(m) be a compact connected subgroup of SU(m).
If P, (SUm)/H =0, then H is either abelian or semi-simple.

Proof. Suppose the contrary that H is neither abelian nor semi-simple,
namely, the Lie algebra of H is the sum of a non-trivial center and a non-
trivial semi-simple part. Let H be a finite covering group of H such that
Hedl x H x| x H, is the direct product of a torus group H, and
k simple compact Lie groups {H,;1 <i <k}. Let : H - H = SU(m), and

H*Bg = HBy,) ® H*(By,) @ ... @ H*(B,,).

Since y: H — SU(m) is almost faithful, it is not difficult to see that Py2 e
€ H*(Bj) has non-zero component in H‘(BHO). On the other hand, it is
obvious that the component of PAd% in H*B,, ) is zero. Therefore

PAd% =0 (mod Py?)
and it follows from Lemma (3.1) that P,(SU(m)/H) # 0, which is a contra-

diction to the assumption. Hence, H is either abelian or semi-simple.

Remark. Proposition 1.1 asserts that G/H is stably parallelizable if H
is abelian. Therefere, we shall from now concentrate in the case that H

*P,; together with P, , = W3, . satisfy duality formula. Since H* (By; Z) is torsion
free,W,;,, =0 at H*B;;Z) level.
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is semi-simple. Suppose H, is a connected normal subgroup of H and
p:SU(m)/H; — SU(m)/H. Then it follows from reduction 2 that

Pk(SU(m)/Hl) 5 P*Pk(SU(m)/H),

and hence SU(m)/H, will satisfy the same kind of vanishing conditions
as that of SU(m)/H. In view of the above fact, it is rather natural to first
investigate the basic cases that H is simple.

For the study of first Pontrjagin class of homogeneous spaces, it is
convenient to introduce the following definition:

Definition. Let H be a semi-simple compact connected Lie group and
Y bea representation of H with weight system Q(y). Then the total length
of i, denoted by L(y), is defined to be: L() =Z{|w|* we Q(y)!, where
|w| is the length of the weight vector w with respect to the usual Cartan-
Killing inner product.

Lemma 3.3. [f H is a simple, compact, connected Lie group and
Ww:H — SU(m) is a complex representation P, (SUm)/WH) =0, then L({)
divides L(Ady).

Proof. In the case that H is a simple, compact, connected Lie group, it
is well-known that H%B,;Z)" is an infinite cyclic group generated by
the only basic Weyl invariant of formal degree 2 (dim 4) which is essen-
tially the “sum of squares”. Therefore the condition PH? is divisible by
PY? is equivalent to the condition that L(Ad,) is divisible by L(). Hence
Lemma (3.3) follows from Lemma 3.1.

Remarks. (1) It is not difficult to extend the above lemma to the general
case that H is semi-simple. Suppose
H=H, x ... x H,,H, simple.
Let ¥, =y/|H,. Then P,(SU(m)\yH)=0 implies that
L(AdH ) L(AdH ,) L(AdH,)
Bl e STk it 0 v e

The above assertion follows from the following fact:
k k
H*By:2) = @ Y HYB,;2) = ® ), HB,,:2)""
i=1 i=1

where T; = H; are maximal tori of H; and W, are the Weyl groups of H,
respectively.
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(1) Observe that, for a given simple Lie group H, L(AdH) is rather
small as compared with L() for most representations Y of H. In par-
ticular, there are only few representations of H (modulo trivial repre-
sentations) satisfying the inequality L(y) < L(AdH). Therefore, the above
simple lemma already reduces the classification problem of P(SU(m)/yH)=
=0, k=123 to a manageable finite case.

(ii) Reduction 1 plays an important role in realizing as well as in
proving the above lemma. If one uses Borel-Hirzebruch setting without
the modification of reduction 1, then one would investigate the divisibility
of L(Adsym|H — Ad,) by L(y) which is extremely complicated to compute
or discuss with directly.

Next, let us investigate homogeneous spaces SU(m)/H with simple
subgroup H according to the classification of simple Lie groups:

(A) The case H = A, _,.

It is not difficult to show that the following list exhausts all those
irreducible (complex) representations of A,_, with L(})< L(Ad);

L(Ad) =2n+(n - 1), L(n,) = L(R,) = (n — 1),
L(A’u,) = L(A*R,) = (n — 2)(n — 1), L(S*,) = L(S*3,) = (n + 2)(n — 1),

LA u) = LIN3j) = %—(n -2)(n—3)(n—1), 6<n<8,

where 4, is the stardard representation of SU(n) on C". As a direct con-
sequence of the above list and Lemma (3.3), one has the following propo-
sition:

Proposition 3.1A. If P, (SUm)YA,_,) =0, then the possibilities of
are given by the following list modulo trivial representations and conjugations:

(i) Ad,
(ii) k-, + €F, with (k + €)2n,
(i) Su, + A’u,, or S?u, + A2Q,, or S, + ku, + €@, with
(k+¢)=(n-2),
(iv) A%, + kp, + €F, with (k +€) = 2 or (n + 2),
2A%u, + kp, + €@, with (k + ¢) = 4,
Alp, + A2f, + kp, + €, with (k + ¢€) = 4,
V) (n=6:Apg,2A g, A3pg + kpg + Cig,k + € = 6
Aug + Npg + kpg + €iig with k + € = 2,
n="TANpu, + kp, + €, with k + £ = 4,
I 83/\3#8 + pg or Aug + Hg,
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(7) Similar computation will show that P,(SUm)/YA,_,)#0 for
the remaining cases of ¥ listed in (vi) of Proposition 3.1A, namely 4A%y,,
3A e ki Sl kok €=2 and AT, L kA S, ps with j+k=3.
All of the above computations complete the proof of Proposition 3.2A.

Now, let us proceed to determine which of those representations,
listed in Proposition (3.2A) have vanishing third Pontrjagin class for
SUm)/YA,_,. We shall prove the following proposition:

Proposition 3.3A. If P (SUm)WA,_,)=0 for k=123 then the possi-

bilities of such complex representations  of A,_, are given by the following

list modulo trivial representations and conjugation:

(1) Ad,

(1) w, or 2u, or 4u,

(ii1) p, + 1, for the special cases n=34,5, or kuy + €fiy with (k +€)=3
or 6, but (k,{)+# (3,3).

(v) u,® p, with n/30,

(V) A’y = ps.

Proof. (1) Let us first consider the case Y =ku, + ¢ji, with k+¢ =3 or

6 and n =0 (mod 3), n > 6. In this case, the coefficients of a5 Nogiand

Gy+0, in PY?, PY* and Py respectively are all divisible by 3, but the

coefficient of ¢,:0, in PAS_, is

— (4n* — 2n — 40) = 40 # 0 (mod 3)forall n = 0 (mod 3).
Hence PAS_, #0 (mod Py2 Py?3, ..., PY®) and Py(SUm)/yA,_,)#0.

n=1

(2) Next let us consider the case ¥ =pu,+ fi,,n>6. In this case
PYy? =20,, PY* =0, PY* =20, + 63, PY® = 26, — 02 + 20,0,. Therefore,
PAS_, =2nag —(n— 30)0% + ... # 0 (mod PY2, Py>, ..., Py®)

Hence, again Py(SU(m)/yA4,_,)# 0 for the case y = s =6

() ¥ =p, ®p, = $*u, + A*,. Straightforward computation will
show that Sy?=2ns,, Sy*=2ns, Sy*= 2ns, + 652, SY® = 2nsy +
+ 305,54 + 20s3 and therefore, by Newton’s formula, Py? = 2ngy; P =
=2n0y, PY* =2n0,+(2n* — n—6)02 and PY® =2noq + (202 — n— 30)02 +

+(4n* — 2n — 40)o 40, + i»(Zn3 —3n? — 171+ 30)03. Hence PAS_, =0

(mod Py?2, Py>, Py*, Py®) implies that 60 = (mod 2n) = n/30.
(3) ¥ =§%, + A%[i,. Similar computation will show that Py? = 2no,,
Py? =80,, PY* =2no,+ (2n* - n— 6)o3 and PY® =2nos — (n —2)o? +

+(4n? = 2n — 40)0,0, + 2(2n% = 3n? — 1Tn + 30)03. Since 2820 (mod
2V 4 3
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8), it is not difficult to see that PAS_, #0 (mod Py?2 Py, Py*, Py©)
for this case.

(4) Similar computations will also show that Py(SUm)WA,_,)#0
for the following W :Aus; Alug+ A2ug + kpg + €ug, k+¢€=2: and
Alpg + kug + Ciig, k + £ =8.

(B) The case H = B,, n > 3.

The following are those complex irreducible representations
B, — SU(m) with L) < L(Adpg,):

L(Ad) = 2n-(2n — 1),
L(p) = 2n,
L(A) =2""Y.n < L(Ad) for 3 <n < 6,

where p is the first basic representation of dimension (2n+1) and A
is the spinor representation of dimension 2".

As a direct consequence of the above list and Lemma 3.3, one has.
the following proposition:

Proposition 3.1B. If P,(SU(m)/WB,) =0, then the possibilities of such
are given in the following list modulo trivial representations:
(i) Ad,
(i) kp with k/2n— 1) and the Sollowing extra cases for 3<n<6:
n=6: A+ 3p,
n=5: A+5por2A+p,
n=4: kA +€p with 2k +{) =1,
n=3: kA +€p with (k + ¢)/5.

(iif)

Next let us study which y among the above list also satisfy the con-
dition n*P,(SU(m)/yB,) =0. We shall prove the following proposition:

Proposition 3.2B. If P, (SU(m)/WB,) =0 for k =12, then the possibilities
of such representations W: B, — SU(m) are given by the following simple
list modulo trivial ones:

(i) Ad=A?p, (ii) kp with k/(2n— 1,3).

Proof. Let us first consider the case y = kp. Then,
PY? = k&, PY* = k&, + <§>62

and hence PB%=(2n— 1)s, =0 (mod Py?) and
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PB% = (2n — No, +(n— 1)2n — 1)d2 = 0 (mod Py?2, Py*)

imply that k/(2n—1,3), the gc.d. of (2n— 1) and 3.
Next let us consider those cases listed in (iii) of Proposition 3.1B
case by case:

(1) n=6, y =A+ 3p. In this case one has
SY? =225, SY* =45, + 1063, Py = 116, Py* = — G, + 5857

Therefore, it is easy to see that P,(SU(m)/yBg) # 0.
(2) n=5, y =A+ 5p. In this case, one has

SY? = 185,,SY* = — 125, + 1252, PY? =95, PY* = 35, + 7-2§“f.

Hence PB{=3G,+4.952%0 (mod Py2 Py* and P,(SU(m)/yBy)+# 0.
Similar computation will also show that P,(SU(m)/yBs) # 0 for yy = 2A + p.
(3) n=4, oy =kA + ¢p with 2k + £ =7. Similar computation will

show that PyY* =75, and Py* =(f — k)g, + 411*-(98 — k —2¢)a3. Then, it

is not difficult to check that in all the above cases, P*(SU(m)/yB,)+# 0.
(4) n=3, ¢ =kA+{p with k + { =5 or Y = A. Similar computation
will show that Py? =105, or 25, and

R\ 1 i e &
Py* =<€— ?>02 i (100 — 4¢ — k)G2 or <— Cid +?af>.

In all the above cases, it is not difficult to show that P,(SU(m)/yB,) + 0.
This completes the proof Proposition 3.2B.

Proposition 3.3B. If P, (SU(m)/yB,) =0 for k =123 then either V= Ad
or Y = p modulo trivial representations.
Proof. We need only to show that

Py(SU(m)/yB,) # 0 for Y =3p, 2n — 1) = 0 (mod 3).

Since Py?=3G,, Py*=3G,+ 362, PY®=35,+ 65,6, + &3, one has
PBS = (2n— 31)3, + 2(n — 3)2n — 3)3,5, + ;—(n o2 ) B 1)

=0,0,+ %(n — 1)(n —2)(2n — 1)a} # 0 (mod 3, Py, Py*, Py®)

Hence, P4(SU(m)/3pB,)+# 0.
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(C) The case4H =C,, n=>2.

The following are those irreducible complex representations
Y:C,— SU(m) with L(y) < L(Adc,) = 4(n + 1)n.
L(Ad) = 4n + 1)n
L(v!) =2n
L(A*v,) = 4(n — 1)n
n=3LA%; —v;)) =30 =10.n

where v, is the standard 2n-dimensional representation of Sp(n). Hence
it follows from Lemma 3.3 that

Proposition 3.1C. If P,(SUm)/YC,) =0, then the possibilities of such
representation Y are given as follows modulo trivial representations:
(@) Ad, (i) kv with k/2(n + 1), (i) A%V + 4v and
(iv) {n =3, Ay + 2v,, A%v,,2A%,
n=2:kev, + €A%, with (k + 2¢)/6.
Next, let us investigate which  among the above list also have

vanishing 2nd Pontrjagin class for SU(m)/yC,. We shall prove that fol-
lowing result:

Proposition 3.2C. If P,(SUm)YC,)=0 for k=12, then Y is one of
the following representations modulo trivial ones:
() Ad, (i) kv with k/(3, n+ 1)

Gt 30 A%,
n=2: A’v, = p,,3A%, = 3p,,v, + AZy,.

Proof. (1) First, let us consider the case Y = kv, k/2(n+ 1).

Py? = ka,, PY* = k&, + (;)&f.
Therefore, PC5 =2(n+4)5, + (n— 1)(2n + 5)52 (mod Py2, Py*) implies
that :
n+)=6=@m—-1D2n+5)—m+dHk—-1)=4n+1 = 0 (mod k)

which is equivalent to k/(n + 1, 3).
(2) Y=A2v-+4v. PY> =2(n+1)5,, PY* =Q2n—4)5, + Qn+1)(n+1)2.
Therefore PCj, =(2n+ 8)5, + (n— 1)((2n + 5)5% (mod Py2, Py*) implies

that (n — 2)/6 and:f;.(zn + 1)n+ 1) = (n— 1)2n + 5) = 0 (mod 2(n + 1)).
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There are the following 4 cases of n =8,54,3 to consider and it is not
difficult to see that none of them satisfy the above equation. Hence

Py(SUm)/YC,) # 0 for ¥ = A%y + 4v.

(3) A%V, + 2v;- SY2 = 166, SY* = 163, + 1652;
PY? = 85,, PY* = — 45, + 286%. Hence P,(SUmWC,) # 0.
(3') ¥ =2A%v,. Similar computation will show that
PY? = 85,, PY* = — 4z, + 2857

and hence again P,(SU(m)/yC,)#0 in this case.

@) n=2, =kv, + €A%, (k + 20)/6.

SY? = (2k + 40)G,, SY* = 2k(— 25, + 52) + 40(45, + a2

k + 26’) 4

9§01

From the above result, it is not difficult to check that
Py(SUmM)WC,)#0 for Y =2v + 2A%y or 4v + A?y.

PY? = (k + 20)5,, Py* = (k — 4€)5, + (

This completes the proof of Proposition 3.2C.

Proposition 3.3C. If P,(SUm)/YC,) =0 for k=123, then Y is one of
the following representations modulo trivial ones:

(i) Ad, (i) v, or the special cases of
(i) n = 2: A?v, = pg, v, + Av,.

Proof. (1) Yy =3v, (n+1)=0 (mod 3).

PY? =36, PY* = 35, + 362, PYS = 35, + 66,+6, + &3
Since PCS =6, -5, (mod 3, 53) but Py2, Py*, Py6 =0 (mod 3, 53), there-
fore Py(SU(m)/yC,)# 0 for this case.

(@) ¥ = A, PY? =45,, PY* = — 25, + 662, PY® = — 265, —
—26,6,+45;. Hence PC§=2.195,+ 545,+G, + 28530 (mod Py?
Py*, Py®) and

i P3(SUm)YC,) # 0 for Y = Av,.

Similar computation will show that Py(SU(m)/yC,) # 0 for the case
Y =3A%,. .
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(D) The case H =D,, n > 4.

The following are those irreducible complex representations ¥ : D, —
— SU(m) with L(y) < L(Ad”)=4(n—1)n.
L(Ad) = 4(n — 1)n
L(p) = 2n
LAY =2"3n<4n—ND-nford<n<1

Therefore, the following proposition is a direct consequence of the above
computation and Lemma 3.3.

Proposition 3.1D. If P,(SU(m)/yD,) =0, n <4, then the possibilities of
such complex representations Y are as follows:
(i) Ad, (i) kp with k/2(n — 1) and

n=T71A+4p

n=6: kA" + koA + €p, 4k, + ky) + £/10
n=5: kA* + kyA™ + €p, 2k, + k) + /8
n=4: k\A" + k,A™ + €p, k, + k, + £/6.

Next, let us study the 2nd Pontrjagin class of D, case.

Proposition 3.2D. If P(SU(m)yD,) =0 Jor k=12 and n >4, then the
possibilities of such complex representations W are as follows:

(i) Ad, (i) kp with k/(n — 1,3) and the special cases
(iii) kyA™ + kyA™ + €p with (ky + k, + €)/6.

Proof. (1) First let us consider ¥ = kp, k/(2n — 1).

Py? =ké,, PYy* = kG, + (£)>. Hence

PD} =(2n—8)5, + (n — 1)(2n — 3)6% = 0 (mod kG, (ka, + (3)a?))
implies that 6=0 and —3=0 (mod k), ie., k/(n— 1, 3).

(2) ¥ =A3F +4p. In this case, SY? =245,, SY* = 1262 and hence,
it is easy to see that PD3#0 (mod Py? Py*). Therefore P, #0.

() ¥y =AF +p, or Ag +6p, or A + A5 +2p, or 2AF +2p.
Straightforward computations will show the following results:
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v Sy? Sy Py? Pyt
e = - =) = it 23 _2
AF +p 105, 4G, + 467 56, —a, + ?‘71
: . i 5 W e
AZ + 6p 205, — 165, + 1462 105, 45, + 5
20% +2p

205, 85, + 857 105, —G, + 4852

Ad + Ag +2p

From the above results on PY?, Py*, it is easy to check that
PD¢ = 45, + 4552 £ 0 (mod Py2, Py%)

therefore P, # 0 for these cases.
(@) ¥ =k A5 + kA5 +4€p, 2(k; + ky)+€/8. Let k=k, + k,. Then
it is easy to check [assume k > 0.]:
SY? = (4k + 20)5,, SY* = (k + 20)52 + 4k — €)F,
Py? = (2k + )3, 2k + €)/8; PYy* = (¢ — k)G, +

1 1 e
+ {7(21( ) = el 4 2€)}01.

ki . .
Observe that %e H%B,;Z)" but Tl¢ H*(B;;Z)" for the case of Spin(10).

It is not difficult to check that
P,(SU(m)/yDs # 0

for Y = k,AS + kyAS + €p with 2k, + 2k, + ¢/8 and k, + k, #O.

The above computations complete the proof of Proposition 3.2D.
Proposition 3.3D. If P (SU(m)/yD,) =0 for k=1,2,3 and n>4, then
Y =Ad or p or (A] + A) for the special case of Spin (8).

Proof. (1) First let us consider the easy case Y =30 and (n—1) =0
(mod 3). In this case, PY?=30,,PY*=35,+ 35> and Py°=3G,+
+ 66,6, + ;. Therefore -

PDS = (2n— 32)5, + 22n — T)n — 2)5,5, + %(n —1)(n—2)2n - 3)33
=00+ %(n — 1)(n — 2)2n — 3)53 # 0 (mod 3, Py, Py*, Py°).

Hence P,(SU(m)/3pD,)# 0.
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(2) The only remaining cases are those cases of D, = Spin (8). Spin(8)
is rather special here and deserves more careful treatment. [For one thing,
the coefficient of G, in PD} is zero.] The outer automorphism group of
Spin (8) is a permutation group of three objects which permutes {A*,A™,p}.
One may imbed Spin(8) as a subgroup of F, and realize the above outer

: : : 1
automorphism group as N(Spin(8))/Spin(8). Let x = 7(91 -0,—-0;-4,)
be one of the simple root of F,. It is not difficult to check that

T el = T
@) = ~ 55— 3y + T4t

where r, is the reflection of o,y = 6,-0,-0,-0,, and
1 1

r3) =63 — '161'62 it >1;66i T ?61')!-

Therefore one has the following table for the symmetric products of
AS and A

e

weQAt)

by 3 4y i 16 50t | e S
it —702—3x+§01 — 03—26102—#%01—?011.

n QA+w=1-4a,+

weQA )

1. S 3 | S | S
+—~2—02+3x+§01— 03“70102+1‘6‘01+701X-'

In order to complete the proof of Proposition 3.3D, we need to show that
P3(SU(m)/yD,)# 0 for the following cases:

AT + A” +p,2p + A%, 5p + A*,4p + AT + A}
3p +2A" + A", 4p + 2AT.

Remark. The other cases are either conjugate to one of the above cases
or already covered in (1).

Based on the above result of the symmetric products of A* and Al
it is easy to compute Py, Py* and Py® for all the above representa-
15 .,
gt

tions. For example, in the case y =A* + A~ + p, Py? = 35, Py*= e
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; 1 21 . ‘ !
PYS =36, — YR 3. Then, it is rather straightforward to check

that Py# 0 for all the above cases. For example
PD§ = — 246, + 40,0, + 20G; = 4163 # 0 (mod Py?, Py, Py®).

(E) The exceptional cases.

Finally, let us consider the remaining cases that H is an exceptional
compact connected Lie group. Let ¢ be an irreducible complex represen-
tation of H with L(¢) < L(Ady). Then, it is not difficult to check that
¢ =Ad or dim ¢ =7, 26, 27, 56 for G,, F,, E, E, respectively, Therefore,
the following proposition follows easily from Lemma 3.3.

Proposition 3.1E. If H is an exceptional compact connected Lie group
and Y : H — SU(m) is a complex representation of H with P,(SU(m)/yH) =0,
then the possibilities of such pairs (H, V) are as follows modulo trivial re-
presentations:

(i) The adjoint representation of H.

H = G,, ko withdimo = 7,k/4
(i) H = F,, ko withdime = 26,k = 1,3

H = Eg, ko + (o* dimo = 27,(k + {)/4

H =E, kp,dim¢e = 56,k = 1,3.

Next let us compute the second and third Pontrjagin classes of the
above cases. We shall prove the following result.

Proposition 3.2E. If H is an exceptional compact connected Lie group
and y: H — SU(m) with P,(SUm)/yH) =0 for k = 1,2,3, the possibilities
of such pairs (H,V¥) are as follows:
(i) ¥ = Ady for all the five exceptional groups
(i) H=G,, Yy'=¢ or 2¢, dim ¢ =1,
Proof. (1) H = G,, ¥ = 4¢, dim ¢ = 7. In this case,

Py? = — 8a,, PY* = 2802, PY°® = 442 (mod 5,)
Hence PG$ =2603 + 2803 %0 mod (d,, Py2 Py* Py%) and
P4(SU(m)/4¢ - G,) # 0.

(2 H=F,, Yy =9, dim ¢ =26. Since ¢ |Spin(8) =A* + A~ +p, it
is not difficult to use computation of Proposition 3.3D that

15 A 21
Py = 36, Ppl= T&f,Pl//"’ = (3&, - 751-62> + §&§
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Therefore
4 b s TRA 721 21
PFg = 7'(303 = ‘20'1'0'2) T ?Gi} = <— 8— G 7';)6? =
217

=3

sl # 0 (mod Py2, Py*, Py®), hence P3(SU(m)/pF,) # .
Similar computation will also show P3(SU(m)/3¢F ,)# 0.
(3) H=Eg, Y =ko + €o*, dim ¢ =27, (k+¢)/4. In this case, let
I=(4*—0,) and J =(2404 — 40,0, + 302 — 42%0, + 42203 — 204%,).
Pp? = — 61, Pp* = 1512, Pp® = — J — 201, Pp® = 0 !
Therefore PES =6J — 190013 = 202013 #0 (mod Pg?, Pp* P¢®). Hence

Py(SU(m)/E¢) # 0. Similar computation will also show that Py(SU(m)/
/(kp + €@*)E¢) #0, (k + ¢)/4.
4 H=E,,y = ¢, dim ¢ =56. In this case,

Pg? = — 129, Pp* = 6603, Pp® = 2240, — 40,6, + 303) — 22003.

Hence, PES = 4+ (2405 — 40,0, + 302) + 217-3203 = 738403 #0 (mod 3,
Pg?, Po*, Po°®).

Therefore Py(SU(m)/@E,)# 0, and similar computation will also show
P5(SU(m)/3¢E-) # 0.

(F) The case that H is semi-simple but non-simple.

. Based on the above detail understanding of the cases that H are
simple, we shall finally proceed to prove the main theorem of this section.

Theorem 1. Let Y:H < SU(m) be a compact connected Lie group with
a given almost faithful complex representation Y. If P(SUm)/WH) =0

_/?)r k =1,2,3, then the possibilities of all such pairs (H, V) are given by the
following list modulo trivial representations:

(1)) H is any given subtorus,
(1) H is semi—simp[e and Y = Ad,,,
(i) H = SU(n) x H, n/30 and = U, @ p, + Adg,

SU(n) My Or 2p,, dim p, = n
SO(n) L p,dimp, =n

Sp(n) T V,, dim v, = 2n

G @, or 29, dim ¢, =17,

WM H=SpY, €21, ¢ =ke(P + v + .. + V), k =124,
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(VD = SUB) x SUQ3) G o k(us + p3) + €3 + f3),k + € = Lor2,
G, x G, 4 @1+ @ or e, + @}),
SU(n),n =345 U+ I,
5 5. St _Jkps+€h,,k+€ =36
) Haa Sobo) o 1S
Spin(8) At + A

Proof. In view of the results of Lemma 3.2, Proposition 3.3A, 3.3B, 3.3C,
3.3D and 3.3E, what remains to be investigated is the case that H is semi-
simple but non-simple. The case (H, Ad,) is obviously always such a
possibility, let us study the other possibilities:

(1) Suppose (H,y) is a semi-simple subgroup of SU(m) with
P (SU(m)/yH) =0 for k=123, and H, is a simple normal subgroup of
H,y, = y|H,. Then, it follows from Reduction 2 of Section 1 that
P(SU(m)/yH,;) =0. for k=123. Hence the possibilities of (H,, ¥,)
are given by those lists of Proposition (3.3A,B,C,D,E). Furthermore,
suppose H=H, x ... x H,, H; simple and y; =y/|H,. Then P,(SU(m)/
/WH) =0 implies that

L(AdH,) L(AdH,) _ L(AdH,)
By R R S TG

(cf. remark following Lemma 3.3, which puts a strong restriction on the
possible pairings of (H;, ;).

(2) Suppose H=SU(n)x H, n>3, n/30 and ¥|SU(n)=pu,®pu,.
Let H, be an arbitrary simple normal subgroup of H, /, = ¥|H,. Then,
it follows from (1) that L(y,) = L(Ady,). Therefore, it is not difficult to
see from the lists of Proposition (3.3A,B,C,D,E) that either Y, =Ady,
or (H,, y,) are among the following special cases:

SU(m),m = 3,m/30 U DU,
H2 % ) ll,Z _{

SUQ3) kps + €,k +€ =6
SU(2) 4u,.

We shall show that all the above three special cases are impossible and
hence the only remaining possibility is ¥ =y, ® W, + Adg. The com-
putations involved in such demonstrations are quite similar, we shall only
exhibit the case (SU(m), u,, @ p,,) as follows. In view of reduction 2 of
Section 1, we may assume that H = SU(m) x SU(m), v=u,Q®u, +
+ i, ® p,,, n, m/30. Let

@©,,...,0,)and (4,, ..., A,) with 20, = 0, Zi; =0
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be the usual coordinates of the maximal tori of S U(n) and SU(m) respec-
tively, and {o,,...,0,}, {1,,...,7,} be their elementary symmetric po-
lynomials. Then straightforward computation will show that

Py* = PH* =2no, + (n* — n— 6)02 +.2mt, + (2m* — m— 6)t3 + dmno,1,,
PY® =2no4 + 2mr,, :

PH® — Py® = (60 — 2n?)o2 + (60 — 2m?*)t} — dmnoyt, =
= 60(c3 + 13) — (2nt5 + 2m7,)(noy + mts).

From the above result, it is easy to show that P,(SU(m)/yH) # 0, which
contradicts to the assumption. Hence, the case ¥y =1, ®pu, is in fact
impossible.

(3) Suppose H=H, x H, H 1 18 a simple Lie group of rank > 3 and
L) < L(Ady,), ¥, = ¥|H,. Then, it follows from reduction 2 and the
results of Proposition 3.3A,B,C,.D.E that

SU(n) 3 My OF 21,
SO(n) Pn

Hl i SP(") . Vn
Spin(8) At + A™

SU@orSUB) | (ue + fiy) or (us + fis).

IP this case, we claim that H must be in fact equal to H,. For otherwise,
H contains at least one simple normal factor say H, and we may reduce
to consider the case H = H, x H, by reduction 2. Again, it follows from
the remark following Lemma (3.3) that

L(4dH,) _ L(AdH,)
L(y,) L(y,)

Then it is tedious but rather straightforward to check that P,(SU(m)/
/WH) # 0 for all such cases. Therefore one must have H = H , for this case.

(4) Suppose H=H, x ... x H,, H; are simple Lie groups and
¥|H, = Ady,. Then it follows from reduction 2, the remark of Lemma 3.3
and the results of Proposition 3.3A,B,C,D,E that either Y;=y|H;= AdH,
or

Y =y, + y,and

SU(n),n > 3,n/30 U, @ u,
H; ={SU(3), s Y =vku; + iz, k+€=6
SUQ) 4y,

Since the case (H;, ¥;) = (SU(n), u, ® M,), n/30 has already been discussed
in (2), we shall show that the following two cases: (SU(3), ku, +€i,)
and (SU(2), 4u,) are both impossible. Again, we may reduce the proof
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to the case that H = H, x H,. We shall show that P,(SUm)/(H, x H,))#0
for the following cases:

H, = SUQ) U= A g P k=6
H, = SUQ)’ ¥ = Ad,, + 4y,

In the case Y = Ady, + kuy + €fi,, PY? = PH? = PH? + PA2, Py* =
= PHY + PH} - PA} + 1503, PH*=PH*+ PH2.PA? + 903. Therefore

PH* = — 603 #0 (mod Py?2, PY*), P,(SU(m)/WH) + 0.
In the case Y = A4dy, +4u,, PY> = PH?> = PH? + PA2, PH*=PH?! +

+ PH} - PA} Py*=PH?{+ PH?-PA? + 612 Hence PH*= — 612 (mod
Py?, Py*). We shall show that — 612 %0 (mod Py, Py?) for the cases
H, =SU(2) or SU(3), and all the other cases are even simpler.

(i) H, =SU(Q2). PY* =40 + 41, PYy* = 1601 + 612. Therefore the re-
lations are 40 = — 41, — 1012 =0, 462 =472 and — 67220,

(i) Hy =SUQ). PY* =60, + 41, PY* =902 + 240, + 612. Therefore,
the relations are 60, = — 41, 1803 = 812, 962 = 10r2 and 1272 =0, hence
61> #£0 (mod Py2, Py*). This proves that Yi=Ady, or u,®u,, n/30
and at most one of them can be different from Ady..

(5) Suppose H = SUB)x H and ¢|SU(3) = ku, + €ji5, k+{ =6.
Then, it follows from the results of Proposition 3.3A,B,C,D,E and the
above discussion of (2) and (4) that all normal factors of H must be of

SUQ3) or SU(2) type and ¥ |SU(3) = k'p, + €'1t} or ¥|SUQ2) =4u,. Again,

one may reduce to investigate the cases H = SU(3) x SU(3) or SUG3) x

x SU(2) with ¢ =kpus + €jis + K'iy + €'y or ¢ = kps + €ty + 4p,, with
k+{ =6, k' +{ = 6. Direct computations will show that all such cases-
are impossible. For example, if H = SU(3) x SU(3), ¥ =6pu; + 615, then
PY? =60, + 61,, PY* =605+ 615, PY* =15(c2 + 12) + 360,7, and

PY® =15(a3 + ©3) + 20(63 + 13) + 360575 + 900,7,(c, + 7,),
PH® = 27(65 + ©3) + 4(03 + 13) + 540,7,(0, + 1,).

PH® = 27J% — S4J, + 413 + 421, -1,

subject to relations: 61, =0, 151 +6I,=3I2+6I,=06J, =0 and
15J3 +6J, + 2013 + 301,1, =3J% + 6J, + 213 =0. Therefore PH®=4I3 #
#0 (mod Py, Py3, Py*, Py®) and hence P5(SU(m)/yH) # 0 for this case.

(6) Suppose H=SU(2)x H, x ... x H,, and ¥|SU(2) =ku,, k=
=1,2,4. Then we claim that P(SU(m)/yH) =0 for j=1,2,3 implies that
H=[SUQT, y =k-(u" + ... + u). Again, we may reduce the proof
to the special case that H =SU(2) x H,. If y |SU(2) = u,, then it follows
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from the remark of Lemma 3.3 and Proposition 3.3A,B,C,D,E as well
as the results of (3), that either (H,, ¥/,) = (G,, @) or(H,,¥,)=(H,, ¥,) =
=(SU(2), u,). Therefore, we need only to show that the case (G,,0,)
is impossible. Suppose the contrary that H = § U2)x Gy, ¥y =p, + 0y,
dim ¢, =7. Then

PYy* =14 20,, PY* = 20,0 02, PYS = to} — o2
which implies © = — 20,,303 =0 and 03 = — 203. Therefore
PH® = 2603 + 2803 + 88103 = (— 52 + 28 — 176)03 = 203 % 0

and hence P4(SU(m)/yH) # O for this case. Similar computation will show
that P5(SU(m)/WH)# 0 for the case ¥ =2(u, + ¢@,). Next, let us show
that  =2u, + kuy + €jiy, k + ¢ =3 is also impossible. For this case,

5t2 = 0. Therefore
PH* =903 + 41+ 60, = 912 — 1612 = — 712 # 0.

Similar computation will show that the case Y = 2u, + v, + A?v, is also
impossible. This proves that y/|SU(2) =2-pu, implies that ;05 =
(SUQ), 2u,).

Finally, let us remark that the case Y|SUR) =4y, is essentially
included in the discussions of (2), (4), and (5). Because it follows from
the remark of Lemma 3.3 and the results of Proposition 3.3A,B,C,D,E
that the possibilities for (H,, y,) are follows:

(Hy, Ady,), (SU(n), p, @ p,), n/30,(SUB), ks + €fi3)
k+ ¢ =6 and (SU(2), 4u,),

and it follows from the results of (2), (4) and (5) that only (SU(2), 4u,)
is still possible.

(7) Suppose H = SO(4) x H and y/|SO(4) = p, . Straightforward com-
putation will show that P,(SU(m)/yH)# 0 for H=SO0(4) x S UR) y =
= p4+2u,. Therefore the only possible case is H =S0(4). H =
(Cf. (6) and reduction 2). Similar computation will show that
Py(SU(m)/2p, - SO(4)) # 0 (Cf. Proposition 3.2D).

(8) Direct computation will also show that P3(SU(m)/yH) # 0O for the
case H=SUQ) x SUQB), ¥ =pu; ®uj or 2(us @ p}).

(9) Finally, what remains to be investigated are those cases of H =
=H,x..xH, Y=y, +..+y, with (H;, ;) as follows:

SU@3) kps + €ig,k +€ =2 or 3
Hi%=14.:5p(2), Y =1 v, + A%,
G, @, or 2¢,
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Straightforward computations will show that if H is non-simple, then
there are only the following such possibilities, namely

i {SU(?)) x SU(3) 1 = {k(y3 4 py) + (i, + )k + € =12,
G, %0, i ©, + ¢, or 2, + @)).

All the above computations complete the proof of Theorem T

Remarks.

(i) Of course, one may further reduce the above list of possibilities
by stronger vanishing condition on its Pontrjagin classes or Stiefel-Whitney
classes. For example, in the case H semi-simple, SU(m)/Ad- H always has
some non-vanishing Stiefel-Whitney classes.

(ii) Suppose H = SU(m) is a disconnected, positive dimensional
subgroup with P,(SU(m)/H)=0 for k=123 and H° is its connected
component identity. Then n: SU(m)/H® - SU(m)/H is a covering map
and hence t(SU(m)/H®)= n! t(SU(m)/H). Therefore, it follows that
P,(SU(m)/H®) =0 for k =1,2,3 and consequently H° is one of the possi-
bilities listed in the above theorem, which already strongly restricts the
possibilities of H itself.

Seciimi 4. Homogeneous spaces of Sp(in) with vanishing characteristic
classes.

In this section, we proceed to determine those homogeneous spaces
of symplectic groups, Sp(m)/H, with vanishing first three Pontrjagin classes.
Let H be a compact connected Lie group and ¥ : H — Sp(m) be an almost
faithful sympletic representation of H,y': H— Sp(m) < SU(@2m) be the
associated complex representation of . Then the weight system of ¥ is
by definition the weight system of /', ie., Q(¢) =Q(y’). Since Y’ =¥/, it
is clear that — Q) = Q(¥) and hence

I1 (1+w=1+Py>+Py*+Py®+ ... +Py*+ .
weQ(Y) ;
where the odd degree symmetric products Py**~' are automatically zero.
Similar to the case of homogeneous spaces of SU(m). One may state the
splitting principle of Borel-Hirzebruch as follows:

Lemma 4.1. Suppose Sp(m)/yH satisfies the vanishing conditions
P,(Spm)/yH) =0, k=12,...¢.
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Then the symmetric products of roots of H and the weights of Y satisfy
the following system of algebraic equations:

PH? = 0 (mod Py?)
PH* = 0 (mod Py?, Py*)

PH* =0 (mod PY?, Py*, ..., Py¥).
Proof. 1t follows from P, (Sp(m)WH)=0, k=12, ...,¢, that
Py(x(Ady|T)) = i*(PH*) =0 for k =12, ...,¢.
On the other hand, it follows from reduction 5C that
Ker(i*) = (PY?, Py*, ..., PYy*™).
Hence i*(PH**) =0 if and only if PH?**=0 (mod Py?2, Py*, ..., Py

If one compares the above Lemma 4.1 with Lemma 3.1 and observes
that Py?*~1 = Py'?*~1 =0 for the symplectic representation ¥, then it
is clear that the conditions of Lemma 4.1 and Lemma 3.1 are in fact
identical. Therefore, one may simply select those symplectic representa-
tions of listed in Theorema 1, one obtains the following main result for
the case of .symplectic groups.

Theorem 2. Let Y: H < Sp(m) be a symplectic representation of a compact
connected Lie group with P, (Sp(m)/yH) =0 for k =123. Then the possi-
bilities of all such pairs (H, ) are given by the Sollowing list modulo trivial
representations:
(i) H is any given subtorus

(i) H = Sp(n), ¥ = Ve it 2 1
(i) H =[Sp()], ¢ =k-(vP +v@ + ... + i ke 123
(iv) H=S8U(n), n =345, y = u, + fi,

SUB) x SUQ) (43 + ) + (s +
(v)H={G;xGZ w={2<p1+23<p; AR

G, 20,.

Remark. .Obse'rve that Sp(m)/Sp(1)™ is the principal orbit type of the linear
Sp(m)-action via A?v,,. Therefore Sp(m)/Sp(1)™ is stably parallelizable and
consequently Sp(m)/Sp(1) is also stably parallelizable.

Section 5. Homogeneous spaces of SO(m) with vanishing characteristic
classes. _

; In this fsection, we shall study homogeneous spaces of SO(m), SO(m)/H,

with vanishing first three Pontrjagin classes. Let y: H < SO(m) be a given
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real representation of H and y¢: H = SO(m) < SU(m) be its complexifi-
cation, T< H be a maximal torus of H. Then the weight system of v,
Q(y), is by definition the weight system of ¥¢| T, which is even in the sense
— Q(y) = Q). Hence the odd degree symmetric products Py2*~! vanish
automatically, namely

[TA+w=1+Py2+Py* + ... + PY* + ...

weld

In view of reduction 5B, we define Py2* as follows:
Py**ifit is not divisible by 2
}3.7/21\» i
% Py2*ifitis divisible by 2.

Then one combines Reductions 1, 4 and 5B into the following lemmas:

Lemma 5.1. Let y: H = SO(m) be a given real representation of a compact
connected Lie group H. If P,(SO(m)/yH) =0 for k=1,2,...,¢, then the
symmetric products of the weights of  and the roots of H satisfy the following
algebraic equations:

PH? = 0 (mod Py?)

PH* = 0(mod Py?, Py*)

PH = 0(mod Py, Py, ..., Py?¥).

Lemma 5.2. If P,(SO(m)/YyH)=0, m>S5, then H is either abelian or
- semi-simple.

Lemma 5.3. Let H=H, x ... x H, be a product of simple compact
connected Lie groups, Y : H— SO(m) be an almost faithful real representation,
Y;=y|H,; and L(Y;) be the total length of weights of V; defined in Section
3. Then P,(SO(m)/yH) =0 implies that

L(AdH,) _ L(AdH,) _ oAy 0<m0a Wy )
Ly,) T e S T 2

The proofs of the above lemmas are essentially the same as that of
Lemmas 3.1, 3.2 and 3.3. However, because of the possible factor of

% involved in Py?*, we can not directly reduce the case of SO(m) to their

complexifications as we did for the Sp(m) case. Therefore, we shall again
proceed to investigate the case of simple Lie groups via classification.
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(A) The case H = A,_,.

L(Ad,,_,) =2n(n — 1) and simple computation will show the follow-
ing are those irreducible real representations of 4, _, with L(y) < 2L(Ad) =
4n-(n—1).

L, + 1) =2(n - 1)

L(A%u, + A%i,) = 2(n — 2)(n — 1), and the special case APh)<g.,

L) =6 .

L(Ad) =2n(n—1) ,

L(S?p, + S*0) = 2(n + 2)(n —='1) :

LA, + Afi)=(n—2)(n - 3)(n — 1) < 4n(n — 1)forn = 6,78

L(A*ug) =207

Based on the above results and Lemma 5.3, one has the following:

Proposition 5.1A. If ¥ is a real representation of A,_i, n#4, such
that P,(SO(m)/YA,_,) =0, then the possibilities of ¥ are given by the
Sollowing list modulo trivial representations:
() Ad,24d, Ad + n(u, + fi,), Ad + (A, + A*i,) + 2u, + f,),
(1) K, + @), k/2n,
(i) (S°u, + S*A,) + (n — 2) (u, + [,), pt, ® p, + fi, ® fi,,
(V) (A%, + A’R,) + 2, + [,), 2A%, + A2E,) + Hu, + ),
(A%u, + A*[,) + (n + 2) (u, + fi,),
n=6: 2Mu,, 4N g, 2A3 g + 6(ug + fig),
2% + APpg + A%fig + 2ug + fig)
n=T Au, + A, + Hu, + )
n=8: Aug + Aig + pg + fig, A*ug + 6(ug + fig),
Aug + Aug + A%fig.

Next let us investigate which yy among the above list also ha?e vanishing
second Pontrjagin class. Observe that if y(4,_,) = SU [%] < SO(m), then
it follows from reduction 3 that P, (SO(m)/yA,_,) =0 implies

P(SU [%:I/z//A,,_ el
Therefore, one may simply apply Proposition 3.2A to conclude that

Py(SO(m)/yA,_,) #0 for the following cases:

(1) kw, + ;) with k ¥ (2n, 6);
@) S*p + S2R, + (0 = D, + B); A2, + AR, + (1 + 2) (g, + B)on # 6,

or k«{A’u, + A%, + 2u, + 24,}, k = 1.2:
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3) Alpg + Afig + pg + fig; APpy + 4, + A4);
2006 + Bl + fig); 4A3u

Proposition 5.2A. If P, (SOm)/YA,_,)=0 for k=12 and n+#4, then
the possibilities of  are given by the following list modulo trivial repre-
sentations: :
(i) Ad, or 2Ad, (i) k(u, + f1,) with k(2n, 6)

(1) p, @ p, + i1, @ A,

n=6: 20,20 1g + Apg + A2fig + 2ug + fig),
(iv) { A’pg + A2fig + 8(ug + fig)

n=2:4u, + $%u,, 8u,
Proof. If one compares the above list with the lists of Proposition 3.2A
and 5.14, it is clear that one only needs to show P,(SOm)/yA,_,)#0
for the following cases:

(1) Ad + n(u, + fi,), or Ad + A’pu, + AR, + 2(u, + @), n >3
(2) A*pg + 6= (g + fig), or Aug + A’ug + A2j,.

The computations involved are rather simple. For example, in the case
¥ = Ad+ n(u, + fi,), PY? =2ne,, PYy* =2no, + (4n* —n— 3)63 and in the
case Y = Ad + A’ + A*fi, + 2u, + f1,), PY* =2no,, PY* =(2n— 6)a, +
+(4n* = n—3)6%. In both cases, it is easy to check that

PH* % (mod Py?, Py*),

hence P,(SO(m)/y A, _,) # 0. The other two cases involve A*ug are in fact
easier.

Proposition 5.3A. If P, (SOm)yA,_,)=0 for k=123 and n+#4, then

the pessibilities of such y are as follows modulo trivial representations:
(1) Ad or 2Ad

(i) n =345 u, + i, or 2u, + fi,)

(1) n=2,2p,,41,,8u, or Ad + 4p,.

Proof. In view of the results of Proposition 5.2A and 3.3A, we need only

to show that Py(SO(m)/yA,_,) # 0 for the following cases, namely,

(1) (u, + ft,) or 2u, + fi,) for n > 6,

(2) 3(n, + @,) or 6(u, + f1,) for n > 3,

3) u,®u, +n,®pm, for n > 3.

Let us verify the above facts according to the three cases:
(i) Suppose H =SU(n), n>6 and ¥ =, + fi,. Then

PY® =20 + 2036, ~.0%)
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and hence
PH® = 2nog — (n — 30)63 # 0 (mod a,,0,, Py®)

Therefore P,(SO(myH)+#0 for the case ¥ =p,+9,, n>6. The case
¥ = 2u, + fi,), n > 6, is essentially the same.

(ii) Suppose H=SU(n), n>3 and y = k(u,+ p,), k=3,6. Then
PiAs0 (mod 30,), PY*=0 (mod 30,, 30,). However PH® %0 (mod
36,, 30,4, PY°), therefore P,(SO(m)/yH) 0.

(i) ¥ = u, ® u, + f1, ® ii,,. Then, the computation of Section 3 show
that

Py? = PH? = 2n0,, P§* = PH* + 2n%¢2,

Py° = PH® + PH?. PH* — 6002
and it is difficult to see that PH® % (mod Py, Py*, Py®), for example,
in the case n =3, PH® = 2743 (mod 0,, 0,) and PY° = 3362 (mod 0,, o,).

(B) The case H = B,, n > 3.

L(Adg,) = (2n — 1)2n and the following is the list of those irreducible
real representations, ¥, of B, with L(y)< 21(Adg,).
(i) L(Ad) = (2n — 1)+ 2n, L(p) = 2n, L(S%p — 1) = 2n + 3)+2n

n=56LQA,) =2""1.n < 21(Ad)
n=3,A%; = 10-6 = 2L(Ad, )

where A, is the spin representation of Spin(2n + 1). It follows directly
from the above result and Lemma 5.3 that

{n =341, WA) =0 %im< 0o LiAd) = 42n _ 1)on
(ii)

Proposition 5.1B. If P (SO(m)/yB,) =0, then the possibilities of Y are
given by the following list modulo trivial representations:

(1) Ad,2Ad, Ad + (2n — 1)p, (ii) kp wth k/s+(2n — 1),
(iii) S%p + (2n— 5S)p, and the Jollowing additional cases for small n:

n
Gyl 2A5+p,2A5+10p,40 5 +2p,2A 5+ Ad + p;

n

n

Next let us investigate the second Pontrjagin class of SO(m)/\wB, with
¥ in the above list.
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Proposition 5.2B. If P, (SO(m)/yBn) =0 for k=12, n>3, then the
possibilities of such Y are given as follows:
(@) Ad, (i) kp with k/(32n—1), (iii) n=3, ¥ =A,.

Proof.
(1) Suppose ¥ =2- Ad. Then Py? =2PH? =2(2n— 1)5, and Py* =

= 2PH* + (PH?? = 2. PH* + (2n — 1)3%. Therefore Py? = %P.//Z =

=(@2n—1)6, and Py*=Py*, consequently, PH*%0 (mod Py? Py?)
which implies P,(SO(m)/¥B,) # 0.

Similar computations will show that P,(SO(m)/yB,) # 0 for the case
Y =Ad+(2n—1)p and ¥ = S%p + 2n— 5)p.

(2) Suppose ¥ =kp. Then Py? =kg,, PY* =k, + (¥) &2. Therefore
Py*=Py* if k0 mod 4 and Py =%P|//“ =§az +k—("4‘—1)af if
k=0 (mod 4). Hence

PH* = (2n — 7)6, + (n — 1)(2n — 1)5% = 0 (mod Py?2, Py*)

implies that k/(3,2n — 1). ;
(3) Next let us consider those special cases for n =7,6,5,4,3 listed
in (iv) of Proposition 5.1B. Observe that

1
QA,) = {?(i‘ Be b B d ok Bn)}, and for ¢ = A,
So? = 207 M5, Spt'=20 .50 £ da )
T v
Moreover, in the case of Spin(2n + 1), H*By;Z)" contains ?al but

not % 0,. Based on the above results, it is not difficult to verify that

P,(SO(m)/yB,) # 0 for all those special cases listed in (iv) of Proposition
5.1B except ¥ =A;. This completes the proof of Proposition 5.2B.

Proposition 5.3B. If P,(SO(m)/yBn) =0 for k=123 and n>3, Y = Ad
or p modulo trivial representations.

Proof. Suppose Y =3p and 3/(2n — 1). Then Py? =35 , PY* = 3G, + 352,
Py® =36, + 66,6, + . Therefore

PH® =(2n—31)G, + 2(n—3)(2n—3)5,5, + % (n—1)2n—-3)(2n—1)g3 =

=554 %(n— 1)(n—2)(2n—1)53 % 0 (mod 3, Py, Py*, Py°).
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Straightforward 'computation will also show that P3(SO(m)/A4B,) # 0.
This completes the proof of Proposition 5.3B.

(C) The case H=C,, n = 2.

L(AdC,)=4(n+ 1)n and the following are those irreducible real
representations of C, with L(y) <2- L(Ad).
(i) L(Ad) = 4n+1)-n, L(2v) = 4n, L(A*v—1) = 4(n— 1)y,
(ii) n =3: LQ2(A%;—v;)) =20.3; n = 4: L(A*v, — A%,) = 28.4,

Proposition 5.1C. If P,(SOm)/yC) =0, then the possibilities of such
are given by the following:
(1) Ad,2A4d, Ad + (n+ 1)-2v, (i) 2kv with k/(n+ 1),
(i) A%V +4v,A%v + 2(n + 3)v, 2A%y + 8v, A2y + Ad + 4y,
n=4: A%, (A*v, — A%,) + 6v,
(iv) {n =3:2A%; +4v,, 2A%, + A*vy, kA%, k=124 :
n=2: Ad+2A%, + 2v,, Ad + 3A%v,, kA%, + ¢ - 2v,, (k+¢)/6.

Proposition 5.2C. If P(SOm)YC,) =0 for k=12, and n=>2, then the
possibilities of such representations are as follows:
() Ad or 2Ad for n odd, (i) k-v, k/Bn + 1)
n=>5:As + dv;, or A%v, + 16v,,
(i) {n = 3: A%v; or 2A%,,
n=2: 3A%, or 2A%v, + v,.

Proof. In view of the list of Proposition 5.1C, the proof of the above
proposition consists of a series of case by case elimination. For example,
in the case Y =24d, H = Sp(n)/Z,, PH? is not divisible by 2 in H%(B s d)
for the case n even. Therefore Py*— Py* =2PH* + PH?. PH* and
PH*#0 (mod Py?, Py*).

(1) It is easy to show that P,(SO(m)/yC,) # 0 for the cases ¥ =Ad+
+(+1)-2v and k-2v with k#1 or G+ 1). If  =A?v + 4, then
PY? =2n+1)d,, Py*=(n— 40, +2n+ 1) (n+ 1)a2, PY? =(n+ 1)5,

— Lol b4 WA
and Py* = é'PdI‘t if n is odd, Py* if n is even. It is then easy to check

that PH*=0 (mod Py?, PY*) only when n =S5, Similarly, in the case
=A%+ (n+3)2v, PY? =4n+ )a,, PY* =2-Qn— 1), 1 [B(n+ 1)
—2n+ D]at, PY? =2n+ 1)a,, Pp* = (2n — Doy + [4n+ 1) — (n+ 1)]52
Hence PSH4 =0 (mod Py, Py*) implies that 2n+8 =9 =0 (mod 2n—1),
e, n=5
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(2) The computation of Proposition 3.2C applies to show that
P,(SO(m)/yC,) # 0 for the case ¥ = 2A2v + 8v. As for the case V'=Ad +
+ A?v + 4v, it follows easily from Py* = 2(2n + 2)7, (mod 6%) that PH* %0
(mod P2, Py*), if n+#2.

: (3) In the cases of n = 4,32 listed in (iv) of Proposition 5.1C, straight-
forward computations will show that P,(SO(m)/¥C,) #0 except the
following possibilities:

= 8 ANy or 28 Sy on SR A%y G 2y

Proposition 5.3C. If P(SOm)/YC,) =0 for k =1,2,3 then the possibilities
of such Y are given as follows:

(1)) Ador2Ad for n odd,

(i) 2v, and the special case 2A%v, + 2v, for n=2.

Proof. In view of the list of Proposition 5.2C, we need only to show that
P5(SO(m)/yC,) # O for the following cases, namely 3. 2v for n + 1 =0 mod
3, Avs +4vs, A?vs+ 16vg, A%v,, 2A%, and A%V =38,

(1) ¢ =6v, 3/(n+1). Then Py = 365+ 156,6, + 1063 and PH® =
=0,0, #0 (mod Py?, Py* Py°,3). Hence P, #0. Similar computation
will show P, #0 for the case 3p;.

(2) In the case Y =A%y, +4v,. PYyS = — 1865 and PH® = 425, (mod
Gy,0,) and hence P; # 0 for this case. In the case Y =A%+ 16vs: PY? =
=8y, PY* =90, + 13862, PYS= - 65, + 4186, + 7, (mod 120,). Therefore

PH® + TPY® = — 6,6, % 0 (mod Py, Py*, Py®,3)
Hence again P, +# 0.
(3) For the case A%v; or 2.A2y,, PyS= — 265, or — 526, (mod

0y, 6,) and hence PH® =385, + ... £ 0 (mod Py2, Py*, Py®). This com-
pletes the proof of Proposition 5.3C.

(D) The case H=D,, n > 3.

The following is a list of irreducible real representations ¥ with
L) < 2-L(Ad) = 4+(n— 1)-2n.
(i) L(Ad) = 2(n — 1)+2n, L(p) = 2n, L(S*p — 1) = 4n(n + 1),

R 48 LX) = 2" 30y
(i){n=6: FAIA )= 0% 2o e JB oy

n=357 A"+ A )=2""2.p
Based on the above result, it is immediate that one has the following
proposition. :
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Proposition 5.1D. If P,(SOm)/yD,) =0, n>3, then the possibilities of
such real representation  are as Jfollows:
(1) Ad,2Ad, Ad + 2(n— 1)p, (ii) S*p + 2n—6)p
(iii) kp with k/4n— 1) and the following special cases involving spin re-
presentations:
rn =8: A* +12p
n=7 (A" +A7)+ 8p
n=6:2A% + 2p,4A* + 4p 2A* + 12p,2A* + Ad + 2p
n=>5:kA* + A7) + €p,(4k + €)/16,S%p + (A* + A"),
Ad + 2A" + A7), Ad + (A* + A7) + 4p
n=4:jp+ kA" + €A, (j+ k + ¢)/12
Ad +jp + kA* + €A™, j+k+€ =6,S% + A* + A"
n=3: ko+ (A" + A7), (k + £)/8,
Ad+ kp + €AY + A ) k+¢ =4

Next let us investigate which of the above representations has
Py(SO(m)/YyD,) =0 and P,(SO(m)/yD,) =0.

(iv) <

Proposition 5.3D. If P, (SO(m)/yD,) =0 for k =1,2,3 and n> 3, then the
possibilities of such representations W are as Sfollows:
(i) Ad,2Ad fornodd, (i) por2p
(i) {n =4: A" + A" or2(A* + A™) modulo conjugations

s S R L AT AT AT A+ AT,
Proof. We start with the list of Proposition 5.1D and compute their second
or third Pontrjagin classes to see if they are still vanishing. The following
is a summary of such computations:

(1) In the case  =2Ad and n even, Py* = 2PH* + PH?. PH? where
PH? =2(n— 1), is not divisible by 2 in H%B[;Z) because AdD, =
=S0(2n)/Z,, 20, + ... +6,)e H(B,;Z) but 0, +...+0,¢ H(B ;; 2).
Therefore Py* = PY* and PH* %0 (mod Py2, Py*).

(2) ¥y =Ad+2(n—1)p. Then PY? =2(n— )6, and PY* =(2n— 5)5, +
+[(n—1)(2n — 3)+ 2(n — 1)*]62. Since (2n — 5) 4 (2n — 8) except for n =34,
it is easy to see that P, # 0 for n > 5. For the special cases n =34, P, #0
because of the following facts:

B} 3+507 # 0(mod 65,)

PD% + 2PJ* = 602 % 0(mod 45,).

(3 ¥ =5% +(2n—6). In this case, PY* =2+(2n+ 1)5, modulo &,
and hence PH*=(2n—8)5,%0 (mod Py2 Py*).

@) ¥ =kp. PY? = ké,, PY* = ké, + (%52 and

PY® = ki, + kik — 16,6, + (4)73.
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Based- on the above result, it is not difficult to check that P, =0, P, =0
imply that k=1,2. In fact P, =0 implies that k/(6,2(n — 1)) and in the
case Y =3p, PH®*=6,6,%0 (mod Py?, Py*, Py°).

(5) n=8, Yy =A*+12p. PY*>=145,, Py* =45, + 38452, PH*=
=80, +7-1367, PH*—2Py* =7.136> - 2.38452 = 261 (mod 7). The-
refore, P, #0.

©) n=7 Y =(A* +A")+8p; n=6, Y =2A% 1 2p, 4A* 4 4p,
2A* +12p or n=5, KA* + A7) + €p, (4k + £)/16 and ¢ even. In all the

above cases, the representation factor through S U[%] Therefore, it

follows from reduction 3 and the computation of Proposition (3.2D)
that P, #0. : :

(7) n=6. Y =2A* + Ad + 2p: Then Py? =105, and Py* =25, +
+1936}, PH*—2Py*=0 (mod 105,) and hence P, #0.

B) n=5.¢y=8’p+(A*+A7), Ad+2(A* + A" )or Ad+(A* +A7)+
+4p. In the above three cases, straightforward computations will show
that P, # 0.

(9) n=4. This case is rather special because Spin(8) has an outer
automorphism group of S;-type and the coefficient of G, in PD} is zero.
Recall that (cf. Proposition 3.3D).

1 3
I1 (1+w)=1—61+<———6'2+3x+§6f)~

weQ(A ) 2

Wi peortes) nisi
T 03 TET 70'10'2 + Eal + ?QIX

: 1
IT (1+w)=1—61+<—762—3x+%6f>—

S L
e 63~70162+i€01—?0’1x

Based on the above result, it is tedious but not difficult to check that
P, =0, P; =0 imply that y =A* + A~ or 2(A* + A~) modulo conjuga-
tions of outer automorphism (of course, also A* or 2A* which conjugate
to p or 2p). ‘

(10) n=3. Spin(6) =SU@), p=A2u,, A* =4, A =j,. Direct
computation will show that, p, 2p,(A* + A7),2(A* + A" )and p+ (A + A7)
are the only possibilities with P, =0, P, =0, :
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(E) The case H is exceptional.

- Propesition 5.3E. If H is an exceptional compact connected Lie group

and Y:H— SO(m) be a real representation with P(SO(m)/yH) =0 for
k =123, then the possibilities of such pairs (H,y) are as follows modulo
trivial representations:

() Ad,24d, (i) H =G,, ¥ =ke,, k=124.

The proof of the above proposition is essentially the same as that
of Proposition 3.3E.

(F) Based on all the above results for the case H is simple, we are, finally,
ready to prove the following main theorem of this section.

Theorem 3. Let y: H— SO(m) be a compact connected Lie group with a
given real representation Y. If P(SO(m)/yH) =0 for k=123, then the
possibilities of all such pairs (H,\) are given by the Sfollowing list modulo
trivial representations:

(i) H is any given subtorus,

(i) H is semi-simple and ¥ = Ad,,, ;
(i) H is semi-simple without simple normal factors of B,, C,, or D,_type,

‘// = 2Adﬂ’

(iv) H=[Sp()], ¥ =k(V" + ... + v{), k/8

) {H =80(n), ¥ =k-p,k/(2,n)

H = Sp(n), ¢ =2y,

iy {H = SUG) x SUG), ¥ = k+[uy + i3 + s + 5], k = 1,2
H=GZXG2, l//=k(¢l+¢/1),k=l92

H = SU(n), n = 34,5, y = k(u, + =12
H =G,, y =ko,, k/4.

H = Sp2), ¢ =2A%, + 2v,

H = Spin8), Y = k(A" + A7), k =1,2
H=S5U@4), y = A2#4 + (ug + iy)

H =SUQ), ¢ =4u, + Ad

(vii)

Proof. The proof.of the above theorem is quite similar to that of Theorem
1. It is easy to show that H is either abelian or semi-simple. The cases
of simple Lie groups have already been treated separately in Proposition
5.3A,B,C,D.E. Therefore, one need only to investigate the cases that H
are semi-simple but non simple.
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(1) SupposeH =H, x ... x H, is a product of simple Lie groups
and ¥, =y |H, = 2Ady,. Then it follows from Lemma 5.3 that

LW |H;) = 2L(Ady), for i<i<a.

On the other hand, it follows from Reduction 2 and the lists of Proposition
5.3A,B,C,D.E that either y; = 2Ady, or H;=SU(2) and Y, =8u, or Ad +
+4p,. We claim that it is impossible to have any y; =8u, or Ad + 4y, .
Suppose the contrary that (H,,¥,) =(SU(Q2), 8u,) or (SU(2), Ad + 4u,).
Then, by reduction 2, we may reduce to the case H = H . x SU(2) and
Y =2Ad,, +8u, or 2Ad,, + S?u, + 4y, . Simple computations will show
that, in both of the above cases, P,(SO(m)/yH) # 0, which is a contradiction
to the assumption. Therefore, in case Vil =2 Ady,, ¥ =2+ Ad,, and
it follows from Proposition 5.3B,C,D that no H; can be of B,, C,, or D,,
type.
(2) Suppose H=H, x ... x H, is a product of simple Lie groups
and Y, =y |H, = Ad,,,. Then, again it follows from Lemma 5.3 that
L|H) =L(Ady ) for 1 <i<a. On the other hand, it follows from Re-
duction 2 and the lists of Proposition 5.3A,B,C,D,E that either v, =
= Ady, or ; =2A%v, + 2v, when H, = Sp(2), or Y:=4¢, when H, =G,,
or ¥; =4u, when H,=SU(2). Again, it is not difficult to show that v,
must be Ady . For otherwise, one would have P,(SO(m)/yH) # 0.

The rest of the proof is essentially parallel to that of Theorem 1.

Section 6. Characteristic class and local orbit structure. *

The characteristic class theory of equivalent bundles over homoge-
neous spaces provides a powerful tool in the study of local orbit structure,
especially in the setting of differentiable compact transformation groups.
Suppose G/H occurs as an orbit in a given G-manifold M. Then G/H
imbeds in M with an equivariant normal bundle which is associated with
the slice representation, ®_, of G, on the normal vectors of G(x) at x.
Therefore, the restriction of the tangent bundle of M to the orbit G(x)
is given by the following equation:

i't(M) = 1(G(x)) + W(G(x)) = Adg | H — Ady) + a(®,).

Hence, it is rather natural to apply the splitting principle of Borel-
Hirzebruch to evaluate the above equation at characteristic class level
which provides strong restrictions on the possibilities of the orbit type
as well as the slice representation.
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(A) Slice representation and principal orbit type.

Let G be a compact Lie group and M be a connected manifold with
given differentiable G-action. The well-known principal orbit type theorem
of Montgomery-Samelson-Yang proves that there exists a unique minimal
conjugacy class of isotropy subgroups in {G,; xe M} (with respect to the
natural partial ordering induced by inclusion), which corresponds to the
unique maximal orbit type in M called the principal orbit type of M; the .
totality of principle orbits consists of an open dense submanifold with
connected image in the orbit space M/G. Therefore, the principal orbit
type of a given G-manifold M is an invariant of dominant importance. We
shall denote the conjugacy class of principal isotropy subgroups by (H,,)
and that of their connected component of identity by (HY). It follows
from the slice structure that G(x) = G/G, = M is a principal orbit if and
only if the slice representation ¥, is a trivial representation. Therefore,
a principal orbit, G/H,,, imbeds in M with trivial normal bundle. In par-

ticular, if P(M) =0 for k =1,2,3, then it follows that P.(G/H =0 and
hlgrlllc%r allso k&’k()(i/Hg,) =0 for k=1,23. Hence, as an kgm/mehcli)late con-

sequence of Theorems 1, 2, 3 of §3, 4, 5, one has the following theorem
on the possibilities of connected principal isotropy subgroup type for
actions of classical groups on manifolds with vanishing first three Pon-
trjagin classes.

Theorem 4. Let G be SU(m) (resp. Sp(m), SO(m)) and M be a given G-
manifold with P(M) =0, k = 1,2,3. Then the possibilities of connected prin-
cipal isotropy subgroups (HY) is either (Id) or those listed in Theorem 1 (resp.
Theorem 2, Theorem 3).

Remark. In the generic case of H m = Id, examples of various orthogonal
linear G-spaces already show that any homogeneous space of G may
occur as an orbit type of a suitable linear G-space. However, in case
Hy #1d and P,(M)=0 for k =123, then we shall show that the prin-
cipal orbit type imposes a strong restriction on the possibilities of all
other orbit types of such a G-manifold M.

(B) Local orbit structure of G-manifolds with non-trivial
principal isotropy subgroup type.

Let M be a G-manifold with (H,,) # Id, and G(x) = G/G, be an ar-
bitrary orbit in M. Then, it follows from the slice structure around the
orbit G(x), one has the following restrictions on the possibilities of (G,, @,):
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(1) up to conjugation, G >G, o H,,,
(i) the principal isotropy subgroup type of ®, is conjugate to H,,,
(i) i't(M) = 1(G(x)) + W(Gx)) = UAdg|G, — Adg ) + (®,).

As one shall see later, in the case (H,,) is non-trivial and given, the con-
ditions (i) and (ii) are rather restrictive on the possibilities of (G,,®,).
Therefore, we shall first apply Lie group representation theory to con-
ditions (i) and (i) to control the possibilities of such (G,, ®,), and then
apply characteristic class theory to equation (iii) to decide the possi-
bilities of orbit types as well as slice representations. For this purpose,
the following lemmas are rather useful.

Lemma 6.1. Let G be a compact Lie group, ® be an orthogonal repre-
sentation of G and (Hg) be the conjugacy class of principal isotropies of
the linear G-action given by ®. Then, one has the following equation of
restricted representations, namely,

(1.1) ®|Hy, = (Adg | Hg, - Ady,) + trivial representations.

Proof. Let x be a point in the representation space V(®) with G, =H,.
In restricting the given G-action to Hy, the local representation of Hy,
at the origin 0 is by definition ®|H,. On the other hand, the local re-
presentations of Hg at x splits into the sum of the tangent part and the
normal part, namely, (Adg|Hq — Ady, ») and @, which is trivial because
G, =Hyg is principal. Now, the linearity of Hg-action clearly guarantees
that the translation by Ox is Hg-equivariant.” Hence the local represen-
tations of Hg at 0 and x are equal.

Remark. (i) Lemma 6.1 is a special case of the following equation which
relates the slice representation at x to the restricted representation, namely,

(12) ®|G, = (Adg | G, — Adg) + D,

where @, is the slice representation of G, on normal vectors to the orbit
G(x) at x. ;

(i) For a given simple group G, equation (1.1) is extremely restrictive -

that there are only few representations (modulo trivial reps) which are
possible to satisfy equation (1.1) with non-trivial H.

Technically, it is convenient to combine equation (1.2) with Schur
lemma to formulate the following lemma in terms of weight system.
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Definition. Let ® be a representation of G and T be a sub-p-torus of
G(p=0if Tis a connected torus). Then @ | T splits into direct sum of
complex (real if p=2) one dimensional representations. The system of
weights of such representations is called the weight system of ® with
respect to 7, denoted by Q(®; 7).

Lemma 6.2. Suppose Q®; T)/Q(Adg; T) is non-empty and

we {Q@; T)/Q4dg; T)}.

Then there exist x € V(®) such that ker w= G, n Tand rkp(G,, 0 T) < rkpT
for all gegG.

Proof. If there exists y,€ V(®) such that T< G, 2 G, then it follows
from equation (1.2) that

Q@; N\XAdg; T) = QA®,,; \XAdg, ; T).

Therefore, one may reduce the proof of the above lemma to the case that
rk(G,nT)<rk, T for all 0# xe V(®). In this case, the assertion of the
the above lemma clearly follows from the definition of weight system.

Lemma 6.2. provides an effective inductive procedure of finding isotropy

subgroups of lower p-rank if {Q(®; 7)\Q(A4dg; T)} contains non-zero
elements. Combining this with Lemma 1.1, it is not difficult to prove
that Q'(®) must be rather simple in order to have non-trivial principal
isotropy subgroups. We refer to [HH2] for actual proofs of the following
final results of classification.

Theorem 5 [HH2]. Let G be a simple compact connected Lie group and
® be an orthogonal G-action on V(®) with non-trivial principal isotropy
subgroups (Hg). Then ®@ is one of the following four types of representations
modulo trivial representations:

Type 1 — Regular actions (Table 1)

Type 11 — Actions of adjoint type (Table II)

Type 111 — Actions of near adjoint type (Table III)
Type IV — Actions of mixed type (Table IV)
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Table I  Regular Actions
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G ® (Hop) Remark

SO(n) kp, SO(n — k) k<(n—2), dimp,=n

SU(n) k[u.r SU(n — k) k<(n—2); dimep,=n

Sp(n) k[v.]r Sp(n — k) k<(n—1); dimev, =2n

g, ko, SUQ), SUQR) k=1,2; dimo, =7

Spin(7) k-A, G, SUGLSUQR) | k=1,23; dimA, =8

Spin(9) k+Ay Spin(7)*, SU(3) k=1,2; dimAy =16

Sp3)z, kA2, — 1) Sp(1)3, s k=1,2; dim (A%, —1)=14

E; k.o, Spin(8), SU(3) k=1,2;dimp, =26
Table 11  Actions of Adjoint Type

G @ Ho dim ¢

G/Z(G) Adg 12 dim G

SO(n) %, 1) ze-v "—(";J iy

Sp(n)/ 2, (A%v,-1) Sp(1y'/z, n2n—1)—1

Sp(4)/ 2, (A%v, — A%vy) z3 42

SUG®)/,, At z] 70

Spin(16)/;, | A% z: 128
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Table II1  Actions of Near Adjoint Type
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G @ . (Ho) dim ¢
SU(n) (A’u]w suEy"? n(n—1)
SU(n) [S*ualm 4 Y n(n+ 1)
SU(6) [Augln 12 40
SP(3) [A%vs — v3]a 7 28
Spin(10) (A + A SU@4) 32
Spin(12)/Z, [Af]m suEy 64
Eq [¢1]r Spin(8) 54
E, [e:]r Spin(8) 112
Table 1V Actions of Mixed Type
G ") Ho dim ¢
SU@) [Hela + APpy sUQ) 8+6
| Ges | s
kAg + €Ag + mpg G, 16
Spin(8) -SUQ3) 24
k+€+m=2734 SU(Q2) 32
Ag + pg G, 25
Gl N
2A9 + p, SUQ) 41
Spin(9) AGlaT00 © SUQ) 42
[Afoda + 2040 SUQ2) 2k
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Lemma 6.3. Let G be a compact Lie group and M be a given connected
G-manifold. Then the ranks of isotropy subgroups {rk(G,); xe M} have no
gap as a set of integers.

Proof. Let (H,y) be the principal orbit type. Suppose rk G, = rk H, for
all x e M. Then there is nothing to prove. Suppose x is such a point with
rk G, >rk H, We claim that there always exists y with rk Gi=1k G, — 1,
We may assume that G, is already a local minimal among isotropy sub-
groups of that given rank. Then, by restricting the G,-action on the slice
S, to a maximal torus T of G,, it is not difficult to see (cf. Lemma 6.2)
that there exist ye S, with rk G, =rk G, — 1.

Remark. In fact, the above lemma still holds for topological actions on
connected rational cohomology manifold; one simply applies the Borel
formula [ST, p. 175] to the above T-action on the slice S..

(C) Reduction to connected isotropy subgroup type.

In order to simplify some computations, we shall first study the local
orbit structure only up to the connected isotropy subgroup type, namely,
G? and @) =®,|G. Let n: G/G°—G/G, = G(x) = M. Then one may
pull back the tangent bundle and normal bundle of the orbit G(x) up to
G/G?, namely

7i'tM = 1'(tG(x) + o(®,)) = %g.6,o(Adg | G2 — Adg o + @)

(D) In the case that we shall consider in this paper, the manifold M
is assumed to satisfy some vanishing condition. Therefore, the left hand
side of the above equation, n'i'tM, always satisfies the same kind of
vanishing condition. In the general situation, in order to apply the above
equation to the determination of possibilities of orbit type, one needs to
investigate the pull-back 7'i'zM. The following simple observation is a
useful first step for such an investigation.

Observation. Let G/H be the principal orbit type of a given connected
G-manifold M. Then all imbeddings of G/H into M as principal orbits
are obviously homotopic, because the principal orbit type theorem asserts
that G/H— M, — M ,)/G is a bundle over a pathwise connected base
space. Moreover, it follows easily from the slice structure and the fact
that principal orbits are everywhere dense that

G/HcM and G/H- G/G, =G(x)= M

are also homotopic for any xe M.
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As a consequence of the above observation, the image of
H*(M) - H*(G/H) is included in the intersection of all images of
H*(G/G,) - H*(G/H).

Proposition 6.1. Suppose the fundamental class of H*(G/H;: Q) lies in the
image of H*(M; Q) > H*(G/H; Q) for the imbedding of the principal orbit
G/H. Then all orbits in M are of the same dimension as that of G/H and
M= F(H, M) xy, G/H - G/N(H) is naturally a fibration associated to the
Webundle: W=%’Q—»G/H—>G/N(H) with F(H, M) as its fibre.

Progf. Let G(x) be an arbitrary orbit, ®_ be the slice repfeéentation of
G, on the slice S, at x. Then it follows from the slice structure that H is
also the principal isotropy subgroup type of ®, and '

GH> M

!
G/G, ~ G(x)

is homotopic commutative. Therefore -

H*(G/H; Q) — H*M; Q)

H*(G(x); Q)

is also commutative and it follows from the assumption on fundamental
class that G(x) and G/H must be of the same dimension. Hence G° = H°.
Since H® = G? is a normal subgroup of G, and (H) is also the principal
isotropy subgroup type of the slice representation @,, it is easy to see

that H° = Ker ®,, namely, @, : G, — G/G° heeks 0(k), h = dim S,. Hence

(H/H®) is the principal isotropy subgroup type of the representation, ®_,
of G,/GY. Then, it follows from Lemma (6.1) and the finiteness of G,/G°
that Ker @, = H/H® and hence H is itself also normal in G,, namely
H < G, = N(H).

Let Y=F(H,M). Then Y intersects every orbit in M and hence
GxYc GxM—-M is onto. It is obvious that the above map factors
through G x Y- G/H x, Y where W=~LVI@. Since H < G, = N(H)
for all xe M, it is not difficult to check that G/H xyY~ M and hence
M=G/H x Y- G/N(H) is a fibration.

Proposition 6.2. Let M be a given G-manifold with G/H as its principal
orbit type. Let P (resp. W) be the subring of H*(G/H;Z ) (resp. H¥(G/H ; Z,))

aenerated bv its Pontrinain classes (roen Stiofol-Whitnoy rlacenc) tanathoe
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with cohomology operations. Let | (resp. 1,) be the image of H*M;Z) -
= HYNG[H;Z) (resp. HXM;Z,) - H*(GIH;Z,) and

J = {Im(HXG/G ;Z) > H¥G[H; Z); x € M}
Jy = 0 {UmHXG[G,; Z,) > HXG[H; Z,); xeM|.
Then Pl Bamd \Welite ).

Proof. Since G/H imbeds in M with trivial normal bundle, it is clear that
Poc b, Whealy,

On the other hand, it follows from the fact that G/H =« M and G/H —
= G/G, = M are homotopic that I = J and Il ok

Remark. The above propositions indicate that non-vanishing characte-
ristic classes of the principal orbit type G/H, in fact, impose strong res-
trictions on the orbit structure and the topology of the total space M.

Section 7. Orbit strucutures of SU(m) actions on manifolds
with vanishing characteristic classes.
In this section, we shall study the possibilities of local orbit struc-

tures of § U(m)-manifolds M with P(M) =0for k = 1,2, 3, and (HY) # {1d}.

In view of Theorems 1 and 4, (HS,) must be one of the type of linear sub-
groups of SU(m) listed in Theorem 1. Hence, we shall divide our discussion
of this section according to the type of (HS)).

(A) The case HY = u(SU(n)); or 2u,(SU(n)), (n; 3).

Let us first consider the case HY, = p,(SU(n)). Suppose G° is an ar-
bitrary connected isotropy subgroup. Then, up to conjugation, G° > HY, =
=u,(SU(n)). It is easy to see that there exists a unique simple normal
subgroup G, of G% containing H?, and moreover, it is not difficult to
determine the possibilities of G, and the representation ¥ : G, = SU(m)
as follows:

Lemma 7.1. Let (G, SU(n)) be a pair of compact connected simple Lie
groups and Y :G,—SU(m) is a representation G, with Y |SU(n)=p,
modulo trivial representations. Then the possibilities of (G4, ¥) are given as
Jfollows:

e ELACY S i
Gt — {Sp( P L S v _{v, modulo trivial reps.

Proof. It is obvious that ¥ must be irreducible modulo trivial representa-
tions, and the above assertion follows from a straightforward check of
representation theory of simple compact connected Lie groups.
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Theorem Al.Let G =SU(m) and M be a differentiable G-manifold with
P,(M)=0. If HY = p,(SU(n)), then all connected isotropy subgroups of
M, G, are also of the type u (SU()), £ > n, or in the special case n =2,
may also have the additional type v,(Sp(¢)).

Proof. Suppose the contrary that there exist some xe M such that G?
are not of the type u(SU(f)) or v(Sp(f)) for the case n = 2. Let x be a point
such that G is minimal among such isotropy subgroups, and ®, be the
reduced slice representation of G2 excluding possible trivial representation.
Then @, is a representation of G? whose proper isotropy subgroups are
all of the type of u,(SU(f)) or v,(Sp(¢)) (for the case n =2 only), and the
connected principal isotropy subgroup type of ®, is 1 (SU(n)). On the
other hand, it follows from Lemma 6.1 and representation theory that

= | A 1 17 )
@G, = {( £—1) [v: ]U": FOF W orily) (modulo trivial reps).

Then, it is not difficult to see that G2 ~ SU(n) x K, rk(K) = 1 and Ker®, =
= SU(n), for otherwise, there are proper isotropy subgroups in the slice
not of the u, or v, types and hence G is not minimal among such isotropy
subgroups. Now, we shall divide the proof into two cases according to
K~ SUQR) or K ~ S,

(i) K ~ SU(2). Then the representation y : SU(n) x K — G® = SU(m)
is of the form y = p, +y, where Y, is a representation of K only, i.e.
Ker ¥, >5U(n). Let Q(,) ={+w;A} and Q(®,) = {£h} where A is
is the parameter of the Cartan subalgebra of K = SU(2). Then

PY? = g, — (Ewd)« A2,
On the other hand, t+v = — U Adsym + Adg) + a(¢,) and
m*Py(t +v) =i*{—2n0, + 422 — (Zh?). 1?} =
= i*{(=2nZw? — Th? + 4)+ 22} % 0
which is a contradiction to the assumption P,(M)=0.
(i) K~S'. Then the representation y: SU(n) x S! — G% = SU(m)

is of the form y = u, ® ¢ + , where ¢ and y, are representations of S
only. Let Q(¢) = {ai}, Q(Y,) = {w,.} and Q(¢,) = {+h,2}. Then Sy =
(ha+Zw)eA=0;  SY?>=(na® +Iwf)+ 1> —20, Again, t+v=
= — o Adsy(,) + ¢(®,) and hence

n*P,(r +v) = i*{—2no, — Th2)?} =

= i*{—[n(na® + Zw}) + Th?]- A%} £ 0

which is again a contradiction to P,(M) = 0.
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All the above contradictions prove that G? is of the type u, (SU(f))
or, in the case n=2, v,(Sp(()).

Next let us consider the case HY =2u,(SU(n)). Here, there are the
following two possibilities:
(i) The minimal normal subgroup of G° containing Hjy, is non-simple.
(i) The minimal normal subgroup of G containing HY, is simple. In the
first case and n > 3, it is easy to reduce to the previous case of u, to conclude

that SU(n) « SU(¢,) x SU((,) S ey SU(m), or in the case n=2,
SUQ) = Spity) x Spt;) “2F203 sUM), or SUQR) < SO@) < SUM).

Lemma 7.2. Let (G,,SU(n)) be a pair of compact connected simple Lie
groups and Y: G, — SU(m) is a representation of G, with Y |SU(n) =2u,
modulo trivial representations. Then the possibilities of such (G,,¥) are as
Jollows modulo trivial representations:
() G, =SU(), y =2y, or u,, and in the special case n =2 one has the
Jfollowing additional possibilities:

Sp(f) v, or 2y,
(i) G, =4 S0(¢), Y =<p,
o5 ®,, dim ®, =7

Theorem A2.Let G=SU(m) and M be a differentiable G-manifold with
Py(M)=0. If HY =2u(SU(n)), n=3, then all connected isotropy sub-
groups of M are of the type 2u,(SU(f)) with ® = (f — n) it h

Proof. Let G? be an arbitrary connected isotropy subgroup and G be the
minimal normal subgroup of G° containing HY,, ®, be the slice represen-
tation of G?. Then the possibilities of S U(n) = G = SU(m) are as follows:

() SUm) —Es sue) 245 sum),
(i) SUm) —2s sUe) 4o SUM),

(iii) SUm) L2225 5y(e,) x SUWE,) Hat b sym)
The latter two cases can not occur because it is then impossible to have a

representation of G with the prescribe subgroup SU(n), n > 3, as its prin-
cipal isotropy subgroup type. Therefore the only possibility left is

SUm) 2 sUe) 20 sUGm),

(2) We claim G% = G = 2u,(SU(¥)). Suppose the contrary. Then, the
same reason as that of the proof of Theorem Al will show that there exist
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G2 ~SUm) x K, rkK =1. Again, we can divide into two cases to deduce
contradiction. If K ~ SU(2), then ¥:SU(n) x SU(2)— G° = SU(m) is of
the form ¢ =2, +y, (or p, @ 1y +¥,), QW) = {+w,d} and Q@)=
={+hA}. Then

PY? =20, — (Zwj)- 2% and m*P,(t+v)=i*{(~n-Zw? — Th? +4)+ A2} %0,

because ®, is a real representation of SU(2), Zh:>2. If K~S! then
Y:SU(n) x S* > Gf cSUm), ¢ = My @&y + 1, ® St ¥y, QW,) = {Will},
Q(D,) ={xhi}. Then SY' = {n(a+ b) + Zw;}+ A =0, SY? = (na + nb* +
+ Zwf)+ A2 — 40, and again, it is easy to show that m*Py(t 4 v) # 0. All the
above contradictions show that all G must be of the type 2u,(SU(¢)).
Moreover, it is then quite easy to see that 0 = [, ]g modulo trivial
representations This completes the proof of Theorem A2.

(B) The case H® =p, (SO(n)), n> 5.

Theorem A3. Let G =SU(m) and M be a differentiable G-manifold with
P(M=0.IfH = pSO(n)), n =5, then all connected isotropy subgroups
of M, GY, are also of the type pASO(()), £ > n. :

Proof. Let x be an arbitrary point and G be the minimal normal subgroup
of G} containing HY, = p,(SO(f)), and ®, be the slice representation of
G?. Then it is not difficult to show that G = p,(SO({)) is the only possibility.
with p,(SO(n)) as the principal isotropy subgroup type of th[Gf Suppose
the contrary that there exists some point x with G%+# G. Let x be such
a point that G? is minimal among such isotropy subgroups. Then, again,
it is not difficult to show that such G° must be of the type SO(n) x K,
rkK=1. Let y:S0(n) x K—G2=SUm), Y =p,+,, QW,) = {wiA}.
Similar computation as that of Theorem Al will show that n*P(t + v) #0,
which is a contradiction to the assumption P{(M) =0. Therefore all
connected isotropy subgroups, G9, are of the type p,(SO({)).

(C) The case Hy =v, (Sp(n)), n>2
Theorem A4. Ler G =SU(m) and M be a G-manifold with P,(M) = 0. If
HyYy =v,(Sp(n)), n>2, then the connected isotropy subgroups of M, G°,

are also of the type v,(Sp(f)), € > n.

The proof of the above theorem is essentially the same as that of
Theorem Al.
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Theorem*AS.Let G =SU(m) and M be a differentiable G-manifold with
P (M) =0, P,(M)=0. If the connected principal isotropy subgroups (Hy)
are of the type of exceptional compact Lie groups G,, F,, E¢ or E., and
Y: Hy = SU(m) is given by the lowest basic representation modulo trivial
one, then all connected isotropy subgroups are of the same type, namely
G2 ~ H,, for all xe M.

Proof. Suppose the contrary that there exists some x € M with G HY
Let x be such a point with G° of minimal rank. Then, there are the following
two possibilities: (i) G? = Hy x K, rk K =1 and Ker ®, = H,,, (ii) G° =
=Spin(7) and ®, =A,, Hy = G,. In the first case, essentially the same
proof as that of Theorem Al will show it is impossible because it will
contradict to P,(M)=0, P,(M)=0.

In the second case, T + v =7 + a(A;) = ©(SU(m)/A,B,) in KO because
%(A,) =0 in KO. Therefore, the same computation as that of Proposition
3.2B will show that P,(t + v) = P,(t) # 0, which is again a contradiction.

(D) Next, let us consider the case that H,, = Adjoint of a semi-simple
compact Lie group. The main result in this case is the following theorem:

Theorem A6. Let- G =SU(m) and M be a differentiable G-manifold with
P{(M)=0 and P,(M)=0. If the connected principal isotropy subgroups
(Hy) are semi-simple without normal simple factors of A 1-type and
Y:Hy = SU(m) is given by Ady modulo trivial ones, then all connected
isotropy subgroups are of the same type, i.e., G2~ H,, for all xe M.
Proof. (1) We shall first consider the case that H,, is simple and of rank
> 2. Suppose the contrary that there exists xe M with G% 2 H,,.. Let
GY~K; x K, x ... x K, be the local decomposition of such a G° into
a product of simple normal factors. Since

W H R R SR R R R ST

consists of only one non-trivial irreducible copy, i.e. Ady, , it is clear that

H), must lie in one of the normal simple factors, say K,. Therefore, the
principal isotropy subgroup type of ®,|K, is also equal to H,, and it
is easy to see that this is, at all, possible only when K, = H,,. Now, again
assume that x be such a point with G% of minimal rank among such iso-
tropy subgroups. Then G =H, x K,, rkK,=1 and Ker(® ) =H,,
Case (i). K, =S". Then, the representation

Y :Hy x K, » G% < SU(m)

is of the form y = Ady, ® ¢+ ,. Similar computation will show that
n*Py(tr +v) = i*{ —(ka® + Zw} + Zh})A%} # 0, k = dim H,,, which is a con-
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tradiction to the assumption P, (M) # 0. Therefore, this case is impossible
to occur.
Case (ii). K, =SU(2). Then, the representation

Y :Hy x Ky > G° < SU(m)
is of the form =Ady, @ ¥,. Therefore
T+v=—a(Ady, )—(Ady,)+ (@) =0o(),)+o(®,)— Ady,) in KU(G(x)).

An easy computation will show that n*P (t +v) =0 implies that @, =2y,
and ¥, =2u, (modulo trivial ones). Therefore

TPt +v) =i*{(1 - 22)*.(1-42%)"1) =
- i*{(l—4/12+6/14—416+).8)-(1+4/12+16/14+...)} o
=i*{1+64*+...}, and n*P (1 +v) =i*(61%).
In case H,, is not of the following type, namely, SU(3), G, Dy, Fp B
E;, Eg, it is rather easy to see that j*(64%) % 0. We shall compute Py
and Py* for the case that H,, is one of the above type. Observe that

1+ PY?+ PY*+ ... =(1— PH? + PH* — ...)+(1 — 24% + 2%
PY? = —PH? — 2%, PY* = PH* + }* + 22>PH? = PH* — 3}* (mod Py?)

H PH? PH* Py? Py*

SU®B) —60, 902 60, — 242 903 + A* — 12430,
G, —8a, 2242 80, — 242 2202 + A* — 16A%q,
D, 65, 156:% — 66, — 22 1562 + A* + 12435,

14752 47

F, 95, 4“‘ —95, — 22 T+ 180,
E, 20, 2700 ~240,-222 | 2700} + 1* + 484%,
15 — 360, 62442 360, — 242 62407 + 1* — 724%0,
E, ~605, | 176402 | 600, - 222 176402 + 1* — 1204%,

Based on the above results, it is then not difficult to compute the smallest
positive integer d such that dA*e Ker j* for each of the above cases. For
example, in case H=A,, d=4, H=G,, d=16; H=D,, d=8; etc.
In all the above cases, fortunately j*(614) # 0. That is P,(t + v) # 0 which
is a contradiction to the assumption P,(M)=0. Therefore, this case is
again impossible and hence G° ~ H,, for all xe M.
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(2) The general case can easily be reduced to the above special case
that H,, is simple. Suppose

Hy = Hyx Hy X ... H,
GE A K iy R e SR,

are the decompositions of H,, and G? into (local) products of normal
simple factors respectively. Again, the same reason will show that
Gy~ H oy (K K,), and we may reduce to consider the case
GY~Hyx K,,1,rk(K,.,)=1.Ifwe pull back (t+v)over SUm)/H, x K, ,
via the projection

SUm)/H, x K, 4 = SU(m)/H,, x Kg+1 = G(x),

then identical computation will show it is impossible to satisfy both
Py(t+v)=0 and P,(t+v)=0. Hence G°~ H,, for all xe M.

Proposition 7.1. W,(SU(m)/pB,) # 0

Corollary. If W,(M) =0, then it is impossible to have H,, = pB,.
Proof. Let L be the usual Z,-maximal torus of SO(2k + 1) which consists
of diagonal orthogonal matrices. Then

H*By; 7)) = Z,[1y, ¢, ..., ta+1], Zt; =0
and it is not difficult to whow that
T*WoSUmM)/py) = i*(0,), o, = Z Litj.
i<j

Since Ker(j*) is the ideal generated by {03,03, ..., 0%}, it is clear that
J¥(@,) # 0.

Remarks. (i) If M also satisfies the condition W,(M) =0, then it follows
from Proposition 7.1 that the assumption H s contains no factors of A 1-type
in Theorem A6 is ‘automatically satisfied.

(ii) Observe that in the case of SU(n) and ¢ = p, ® u,,

PY? = PAd?, Py* = PAg*.

Therefore, as far as the proof of Theorem A6 is concerned, it does not make
any difference if we change the embedding of some factor of SU (n)-type
in Hy, from Ad to u, ® u,. We shall state such a variant version of Theorem
A6 without proof.
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Theorem A6'. Let G =SU(m) and M be a differentiable G-manifold with
P(M) =0, P,(M)=0. If the connected principal isotropy subgroups (H ;)
are of the following type, namely,
Wi Hy = SOk Vo0 s e SER Y H = S U ()
V= Ky, ® My, ®...D Hy, ® Hy, ® Ad}_],

H is semi-simple without Jactors of A,-type and k; > 3, then all connected
isotropy subgroups G2 are of the same type, i.e., G2~ H,, for all xe M.

As a supplement to Theorem A3, similar computation of second
Pontrjagin classes as in Theorem A6 will prove the following proposition.

Proposition 7.2. Let G = SU(m) and M be a differentiable G-manifold with
Hy = p,(SO@)). If P,(M) =0 and P,(M) =0, then all connected isotropy
subgroups G are of the type p(SO(f.)).

(E) Next let us study the case that Hy, = (v, ®v, ®... ®v,)-(Sp(1)¥),
k> 2. First, let us look at the following example:

Example 1. Let K = SU(K) x Sp(¢) 2224 su(m),
® = Ay, + A%, + Ay,

and a(®) be the associated equivariant bundle over S U(m)/K. Then, it is
easy to see that the tangent bundle t of SU(m)/K is given by

TiNe= a(um®ﬁm‘K_tuk X [y — 5%v,)
and
T+ @) = oty @ | K — gty X iy, — 82v, + A2py + A%f7, + Av,) =
=allA i, + ATl [ K)
which is a trivial bundle by reduction 1.
The above example shows that
G? = SU(k,) x ... x SU(k,) x Sp{¢,) x ... x Sp(t,)
VUl =1, @ ... O, ®v,, ... Dv,,,

SU(m)

and with the slice representation
o, = (Azﬂkl +A0)® ... D (A, + A’L,) @ A @..® 54

is certainly a possibility of local orbit structure for a stably parallelizable
k

G-manifold M with H,, =Sp(1)*. k=X ?‘ + XL .

The following theorem proves that there are no other possibilities.
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Theorem A7. Let G =SU(m) and M be a differentiable G-manifold with
P, (M)=0, P,(M)=0. If the connected principal isotropy subgroups of
M, (Hy), are of the type Sp(1)* with imbedding given by v, ® ... ® Vi,
then the local orbit structure of M is as follows,

G? = SU(ky) x ... x SU(k,) x Sp(£,) x ... x Sp(t)
VU Y= ®.0 P, @ Ve, @ ... ® v, (modulo trivial ones),

SU(m)

Z[%:l + Xf; = k and with the slice representation

D, = (A, + A1) @ ... ® (A2, + A2, @ A, @ ... ®AY,,
modulo trivial ones.
Proof. (1) Let xe M be an arbitrary point and
Goe Kot Ky .. x K

be the decomposition of G? into local product of simple normal factors.
Then it is easy to see that each factor of Sp(1) in H,, lies in only one of
the above simple normal factors and the connected principal isotropy
subgroup of @, | K; = (H,, U K,). Therefore, it follows easily from Table I,
IL, IIT and IV that if (Hy ©K;) = Sp(1)*i, k, >0, then K; =, (SU({)) or
v/Sp(f)) and ®,|K; is given as follows:

(i) in case k;>1, ®, | K;=(A%y, + A%[i,), or A?v, respectively,
(i) in case k;=1, ® | K, = —-2)(u, + i), or 2(¢ —1)v,.

'(2) Now, suppose to the contrary that there exists some point x such
that the local orbit structures at x are different from the type given by
the theorem. Assume x to be such a point and G? is minimal among them.
Then, in view of the discussion of (1), there are only the following three
possibilities, namely,

(i) G2 = Hy x K, rk(K) = 1 and Ker(®,) = H,,,
(i) G = SU@) x Sp(1)*~1), @, | SU@) = 2(u, + f1,),
(ii)) G = Sp(2) x Sp(1)*~ 1, @, | Sp(2) = 2v;.

An almost identical proof as that of Theorem A6 will show that case (1)
is impossible. Hence, the proof of Theorem A7 is reduced to showing that
case (i) and case (iii) are again impossible to occur.

Case (ii). Then the sum of the tangent and normal bundles of G(x) is given
as follows as an element of K?)(G(x)):
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T+v=olu, ® 4, |G- Adge. ) + o2(u, + f1y) =
= ol(A%p, + A2LL,)| GO — 2A%u, + 2u, + ,) =
= a2uy + fty) — 2A%py).

Therefore, it follows from reduction 4 that

*P (t+v) =i* {(1 + G2 _*j 64)3 (l, %: 02—#03%9-4_)3} o
*

(1420,+(02—4a,)+...)*
=Rt 120 401 )0

Hence n*P,(t +v) = i*(120,) # 0, which is a contradiction to the
assumption P,(M) = 0. That is case (ii) is impossible.

Case (iii). Then, the sum of the tangent and normal bundles of G(x) is
given as follows as an element of KNO(G(x)):

T+ v =av, — A?v,).

Hence n*P,(t +v) = i*(120,) # 0, which is a contradiction to the
assumption P,(M) = 0. That is case (ii) is impossible.

Case (iii). Then, the sum of the tangent and normal bundles of G(x) is
given as follows as an element of KO(G(x)):

T+ v =alv, — A?y,).
Therefore,
m*P,(t +v) =i*{(1-6,46,)-[1-26, + (62— 43,)+...] !} =
=i*{1+65, + ...}.

Hence, again n*P,(t + v) = i*(65,) # 0, which is again a contradiction to
the assumption P,(M)=0. This completes the proof of Theorem A7.

(E) Finally, we shall study the case that H m is abelian, ie., H,, are
sub-tori of SU(m). Again, let us begin with the following example:

Example 2. Let K =SU(m) be an arbitrary compact connected sub-
group of SU(m) and a(Ady) be the associated equivariant bundle over
SU(m)/K of the adjoint representation of K. Then, it follows easily from
reduction 1 that

(SUmM)/K) + a(Ad,) = «(Adsyem | K) = 0 in KUSU(m)/K).

Suppose M is a given differentiable SU(m)-manifold with (M) =0 in
K'TJ(M ) and (H,,) = (T) are subtori. Then, it follows from the above com-
putation that the following local orbit structure is certainly a possibility,
namely,
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GY = K with the given Tas its maximal tori, and the slice
representation ®, = Ad,.

The following theorem proves that this is the only possibility.

Theorem AS8. Let G =SU(m) and M be a differentiable G-manifold with
Py(M) =0, P,(M) = 0. If the connected isotropy subgroups of M, (H,,) = (T)
are subtori of rank > 2, then the local orbit structure of M is as follows,
namely, G are subgroups with T as their maximal tori and D, are given
by Adgo modulo trivial ones.

Proof. The key step is to show that rk(G°) = rk(T) for all x e M. Once this
is proved, then it follows from the fact HY = Tthat ®, = Adge modulo
trivial ones. Suppose the contrary that there exist some xe M with
rk(G2) > rk T, and assume that x be such a point with G° to be minimal
among such isotropy subgroups. Then, the slice representation @, at x
satisfies the following rather restrictive conditions: (i) the conected prin-
cipal isotropy subgroups of the linear action ®, are subtori of G? of corank
one, (i) all isotropy subgroups of the linear action are of corank one
(in G?). The following lemma determines all such linear actions:

Lemma 7.3. Let G be a compact connected Lie group and ® be an almost
Jaithful real representation of G on R". Suppose that all proper isotropy
subgroups of the linear ®-action are of corank one, i.e., rk(G?) = (rk(G) — 1)
or G, =G fol all xeR", and the principal connected isotropy subgroups
are subtori of corank one. Then (G, ®) must be one of the following list:
(1) G = 504), ® = 2P, (modulo trivial ones),
(2 G=UQ), ® =p, + fi, (modulo trivial ones),
(3) G =S, ® = any non-trivial representation,
4 G =SUQ2), Q®) N AG) = ¢.
Proof of Lemma 7.3. Since adding and subracting trivial representations
-do not give the essential orbit structure of the given linear action, we may
assume that ® consists of no copy of trivial representation. Let Q(®) be
the weight system of ®. Because rk(G2) = (rk(G) — 1) for all xe R" — {0},
Q(®) consists of no zero weight and hence Q(®) N A(G) = ¢. The case
that rk(G) = 1 is obvious; we shall from now on assume that rk(G) > 2.
Then it follows from the fact that Hg =T, rk(T) =rk(G) — 1, that

(i) ®| T= Adg| T modulo trivial ones, and

(ii) the directions of weight vectors in Q(®) are mutually conjugate
with respect to W((Q), namely, the perpendicular directions of T's. Based
on the above severe restriction on the weight system, it is then an easy
exercise in representation theory to show that (1) and (2) are the only
such possibilities.
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Now, let us continue the proof of Theorem AS8. It follows from Lemma

7.3 that the possibilities of local orbit structure at such an x are given as
follows:

(i) G2 =Hy x K, rk(K) =1 and Ker(®,) = K ,

(i) G = SO@4) x T,, ®, = 2p, (modulo trivial ones)
(iii) G2 = UQR) x Ty, @, = u, + Ji, (modulo trivial ones).
An almost identical proof as that of Theorems A6 and A7 will show that
case (i) is impossible to occur. We shall show that cases (ii) and (iii) are
also impossible.

Case (ii). Then
T+v= _OC(Adsom)) 7= OC(2P4) == PZ(T +v)#0

which is a contradiction to the assumption P,(M) = 0.
Case (iii). Then

T+v= “‘a(AdU(z)) ar a(ﬂz ar ﬁz) : Pl(T i V) 7 0

which is again a contradiction to the assumption P,(M)=0.
All the above contradictions prove that it is impossible to have G°
with rk G2 > rk H,, and hence the proof of Theorem 8 is thus complete.

Concluding Remarks of §7. (i) There are still a few special cases such as

(Spin (8), A" + A7), (Sp(2), v, + A%v,), (G, x G,, ®, + @), etc. which are

not covered by the discussion of this section. In fact, those cases can also
be treated by the same kind of procedure and computations, and in most
cases, one will be able to show that all orbits are of equal dimension,
namely, G° = HY, for all xe M.

(ii) In the above investigation of various cases, it is quite clear that
the conditions: (i) G =G} > Hy, and (ii) Hy = H$_ are very restrictive
both on the possibility of G? and that of ®@,. This strong grip on the pos-
sibilities of G? and ®, makes the later computations of characteristic
classes feasible and fruitful.

Section 8. Orbit structures of Sp(m) actions on manifolds
with vanishing characteristic classes.

In this section, we study the orbit structures of Sp(m) actions on
manifolds satisfying suitable vanishing conditions on its characteristic
classes such as P;(M) =0 and P,(M) =0. We shall only consider the case
that the connected principal isotropy subgroups (H,) are non-trivial, i.e.
dim HY, > 0.
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The main result of this section is the determination of local orbit
structures for differentiable G-manifolds M with P, M)=0,¢=1,2,3
and non-trivial connected principal isotropy subgroups of M (H,,). We
shall divide the discussion according to the types of (H,,) and state the
results separately as the following theorems:

Theorem C1. Let G = Sp(m) and M be a differentiable G-manifold with
P(M)=0. If the principal connected isotropy subgroups of M, (H,,) =
=vSp(k)), k=2, then all connected isotropy subgroups GY are also of
the type v(Sp({.)).

Proof. Suppose to the contrary that there exists some xe M such that
G? are not of the type w(Sp(£,)). Let x be such a point with G° minimal
among such isotropy subgroups. Then it follows from Lemmas 6.1 and
6.2 that

G2 =Spk) x K, rk(K) =1 and Ker(®,) = Sp(k).
(1) Suppose K ~ SU(2).
Y :Sp(k) x K > G° = Sp(m)
is of the form Y =v, @ y,, where ¥, is a representation of K only.
Let Q,) = {+w;A} and Q@,) = {£h}. Then
Py? = — 5, — Zw2i?
T + V= — O((Adsp(k)) o a(AdK) + OC((DX),
i*Pi(t+v) = j*{2(k + 1), + 442 — 7
=¥ -2k +1)-Zw?i? — ZhiA? + 422} # 0
which is a contradiction to the assumption P,(M) =0.
(i) Suppose K =S*. Then the representation
b : Splk) x S — G < Sp(m).
is of the form ¥ = v, @ Y,, where y/, is a representation of S! only. Let
QY,) = {+wid} and Q@,) = {£h}. Then
m*Py(t +v) = i*{2(k + 1)5, — 0o
= *{(-2(k + ) Zw? — 2t =10
which is again a contradiction to the assumption P (M) = 0.

The above two contradictions show that it is impossible to have such
G?, and hence all G° must be of the type v(Sp(f,)).
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Theorem C2. Let G = Sp(m) and M be a differentiable G-manifold with
Py(M) =0, P,(M)=0. If the principal connected isotropy subgroups of M
(Hy) =v; @ ... ® v,(Sp(1)¥), k =2, then the local orbit structure of M is
as follows:

GY =V, @ ... ® v (Spky) x ... x Sp(k,))

and O =AM, ®...0 A*v,. modulo trivial ones.

Proof. The proof of Theorem C2 is quite similar to the proof of Theorem
A7 in §7.
Let xe M be an arbitrary point and

GIo4 gt PR KO

be the decomposition of G? into local product of simple normal factors.
Then it is easy to see that each factor of Sp(1) in H,, lies in only one of the
above simple normal factors and the connected principal isotropy sub-
groups of @, |K;=(HyNK,). Therefore, if (HynK)=Sp(1), k>0,
then K; =v,(Sp(f)) and @, | K, is given as follows (modulo trivial reps):
(i) in case k; > 1, K; = Sp(k) and @ | K; = A%y,

(ii) in case k;=1, @ | K; = 2(f — 1)v,.

Now, suppose to the contrary that there exists some point x such that the
local orbit structures at x are different from the type stated in the above
theorem. Assume x is such a point and G? is minimal among them. Then,
there are only the following two possibilities, namely,

(i) G = Hy x K, rk(K) = 1 and Ker(®,) = H,,,

(i) G = 8p(2) x Sp(1y ", ©, L Sp2) =2y,

However, the same proof as that of Theorem A3 will show that the above
two cases are both impossible to be compatible with the assumption
P(M) =0 and P,(M) = 0. Therefore, the local orbit structure at every
point xe M must be of the type stated in Theorem C2.

Theorem C3. Let G =Sp(m) and M be a differentiable G-manifold with
P,(M)=0, P,(M)=0. If the principal connected isotropy subgroups of
M, (Hy), are subtori of rank at least 2, then rk(G®) = rk H,, for all xe M
and ®, = Adg,_ modulo trivial representations.

Proof. The proof of Theorerh C3 is essentially the same as that of Theorem
A8 and hence is omitted.

Theorem C4. Let G = Sp(m) and M be a differentiable G-manifold with
P,(M) =0, P,(M) =0. If the principal connected isotropy subgroups (H M=
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=20,(G,) (resp. W, + ‘;1) (E¢), dim Y, =27, or ¢(E,), dim &, =56),
then all connected isotropy subgroups are of the same type, and hence M is
a fibration over G/N(H),

M = G/H x ,F(H, M)~ G/N(H).

Proof. Suppose to the contrary that there are some xe M such that
G? & H,,. Let x be such a point with minimal G? among that of Theorem
C4. Again, assume G° is minimal among those isotropy subgroups # HY,.
Then either () GI=HY x K, rkK =1, or (i) G2 =(Spin(7),2A,) and
Q, =A,, H)y=H, =(G,, 20,). The second case is impossible because
straightforward computation will show that

UG(x)) + ¥(G(x)) = (Sp(m)/2A,B3) + «(A,)

has non-zero second Pontrjagin class, which is a contradiction to P,(M) = 0.
In the case G} = HY; x K, rk K = 1. The same proof as that of Theorem
A5 will show that P, (t+v)# 0 if K =S!. Now, we shall prove that
K ~SU(2) is again impossible as follows:
(1) Hy =2®,(G,), G°~ G, x SU(2). Then the representation
Y :G, x SUR) > G° = SU(m)

is either @, @ v, @ y, or 2@, @ y¥,, where Y, is a representation of
K-part only. Straightforward computation will show that P(t+v)=0
implies that

Y =20, + v, and ®, = 2v, (modulo trivial reps).

Therefore, Py? =40, — A2, Py* = —42%¢, + 602 ond

T+ V= —a(dds,) — «(Adg) + a(2v,).
Applying the splitting principle to the computation of P,(t + v), we have
TP (T +v) = i*{(1 — A% (1 — 44?)1 (14+80,+2202+..)7 1) =

= M1 =242+0%) (1+422 +160% +...) (1 — 80, + 4202 + .. )} =
= i*{1+ (222~ 80,) + (94* — 16220, + 4202) + ...}

Hence,

T¥*Py(t+v) = i*{94* — 16420, + 4203} = i*{51* — 4202} =
= i"{-1203} = *{263} # 0
which is a contradiction to the assumption P,(M) = 0. Therefore, the G,-
case of this theorem is proved.
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(2) Hy = (Y, +¥,) E;. Then the representation
Y :E¢ x K- G2 < Sp(m)

is of the form ¥ =(y, + Wl) @ ¥,, where ¥, is a representation of the
K-part only. Again, it is not difficult to show that P,(t + v) =0 implies
that Y, =v,, ie, ¥ =, +¥,)+v, and ®, =2y, (modulo trivial reps).
Therefore, PY? = — 120, — 2%, PY* = 12w,4% + 66w?, where w, is the
first Weyl invariant of E6 (cf. §2 Lemma E6). Again

T+ v=— oz(AdE6 ) — a(Adyg) — a(2v,)
and it follows from the splitting principle that

TP (1 +v) = i*{(1 — A2)%(1 — 44%)7 (1 - 240, + 2700% + ...)"1} =
=M{(1+242+92* + ..)(1 + 24w, + 30602 + ...)} =
= *{1 + (247 + 24w,) + (94* + 482%w, + 3060w2) + ...}.

Therefore,
*P,(t + v) = j*{91* + 48/12col + 306w?} =j*{Siv 306w} #0

which is again a contradiction to the assumption that P,(M)=0. Hence
the Eg-case of this theorem is also proved.

The case HY, = E, is essentially the same as the above two cases and
hence omitted.

Remark. Again, we shall leave out the discussion of a few special cases
listed in (iv) of Theorem 2. Basically, the same kind of procedure and
computation apply and there are no special difficulties in those cases.

Section 9. Orbit strucuture of SO(m) actions on manifolds
with vanishing characteristic classes.

In this section, we investigate the local orbit structure of SO(m)-mani-
folds M with Pi(M) =0 for k = 1,2, 3 and (HS,) # Id. In view of Theorems
3 and 4, (H},) must be one of the types of linear subgroups of SO(m) listed
in Theorem 3. For simplicity of presentation, we shall only state the
results about the following major, general cases (and leave out a few
special cases):

Pn(SO(n)), 2p,(SO(n)), nz 3
2v(Sp(n)), n>2

Hy, =< Ady or 2A4d, for H semi-simple
torus of rk>2
Sp(1y



158 Wu-Yi Hsiang

Theorem B1. Let G = SO(m) and M be a given G-manifold with P,(M) = 0.

If HY =p,(SO(n)) (resp. 2p,(SO(n))), n>5, then all connected isotropy
subgroups of M, G2, are also of the same type, namely,

G? = p(SO(t,)) (resp. 2p(SO(¢,))), £, > n.

The proof of Theorem B1 is essentially the same as that of Theorem
A3 and hence is omitted.

Theorem B2. Let G = SO(m) and M be a given G-manifold with P,(M) = 0.
If Hy =2v(Sp(n)), n>2, then all connected isotropy subgroups of M are
also of the same type, namely, GO = 2v(Sp({.)).

Again, the proof of Theorem B2 is essentially the same as that of
Theorem A4; all involve similar computations as that of Theorem Al.

Theorem B3. Let G = SO(m) and M be a given G-manifold with P (M) =0,
Py(M) =0. If the connected principal isotropy subgroup type (HY) is semi-
-simple without normal simple factors of Ay-type and  : HY = SO(m) is
given by Ad or 2Ad modulo trivial representations, then all connected iso-
tropy subgroups are of the same type, i.e., GO~ HY, for all xe M and M
is a fibration over G/N(HY,).

Proof. In the case y : Hy, = SO(m) is equal to Ad,,M, the proof is essentially
the same as that of Theorem A6. Let us consider the case ¥ =2Ad. Suppose
to the contrary that there exists some G # HS,. It is not difficult to show
that G? = HY, x K,rk K = 1. Again, we shall divide into two cases according
to K=5' or SU(2) to deduce contradiction.

() GY=H3 x S', ¢ : G2 = SO(m), ¥ = Ad ®ré + ¥, where ¢ may be
trivial. Then, similar computation as that of Theorem A6 will show that
P(t +v) #0, which is a contradiction.

(i) G = HYy x SUQ), ¥ : G° = SO(m),yy =2+ Ad + 2y, (modulo trivial
Frl?}?resentations) where i/, is a complex representation without zero weights.

en

PU? = 5 (Py?) = PH* + Py},
hence, 7*P,(t +v) =i*(— PH? + P®?) = i*(Py2 + PO?) =0 only when
Y, =2u,, ®, =2y, Therefore

Py* = 2PH* + (PH?) (PH?) + 8%+ PH? + 6%,
Py? = PH? + 2)2 -
T*Py(r +v) = i*{—PH*+ PH?. PH* + PH?.(2)%) + 9/*} %0

(mod Py, Py*), which is a contradiction to P,(M) =0,
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Theorem B4. Let G = SO(m) and M be a given G-manifold with P,(M) =0,
P,(M) =0. If the connected principal isotropy subgroup type of M, (HS)),
is of the type Sp(1) with the imbedding given by 20V + ... + v¥) (k > 2),
then the local orbit structure of M is as follows:

G —SUk) % ..o STED X Sp) % .., % Splly)

U=+l + g, Iy, + 20, + .+ 2v,,
SO(m)

b3 I:%] + Z¢; = k and with the slice representation

R A A AR A, + .+ A
modulo trivial ones.

Theorem BS. Let G = SO(m) and M be a given G-manifold with P,(M) =0,
P,(M) =0. If HY, are subtori of rank > 2, then all isotropy subgroups are of
the same rank as that of Hy and ®, ( G? = Ad modulo trivial representations.

The proofs of the above two theorems are essentially the same as that
of Theorems A7 and AS8.

Concluding Remarks to §9. Similar computations can be applied to deter-
mine the local orbit structures of SO(m)-manifolds whose connected prin-
cipal isotropy subgroup type (H$,) are of those special cases listed in (vi)
and (v) of Theorem 3. For example, in the cases H, = (Spin(8),A* + A7)
or (SU(S), us + 1is) it is not difficult to prove that all orbits must be of equal
dimension, and, in the case HY, =(SU(Q3), 3 + li3) or (SU4), u, + Ji,),
then G? = (SU(n), u, + 1) for 3<n<S5.

Section 10. Concluding Remarks.

(A) Throughout this paper, we only consider the connected compo-
nents of isotropy subgroups of manifold M with a given action of a classical
group G. Of course, after one determines the connected isotropy sub-
group types (G?), one may proceed to investigate the isotropy subgroup
types (G,) themselves. Technically, it is rather natural to study the possibi-
lity of the p-primary component of G,/G? separately by computations of
mod p Pontrjagin classes or Stiefel-Whitney classes for the case p=2.
Similar to the computations of Pontrjagin classes by means of symmetric
products of weights and roots, one may reduce the computations of mod
p Pontrjagin classes or Stiefel-Whitney classes by means of p-weights and
p-roots with respect to chosen maximal p-tori of G .. However, a more
efficient way to accomplish the step or determining {G.! from that of
{G?} is usually by menas of cohomology theory of transformation groups.
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For example, in the case of actions of classical groups on spheres or acyclic
manifolds studied in [HHI], one first determined the possibilities of (G°)
by computations of Pontrjagin classes and then, proved that in fact
G*=GY by suitable application of the Borel-formula of cohomology
theory of transformation groups. This is a natural combination of the
characteristic theory of local orbit structures and the cohomology theory
of global orbit structures [cf. H3].

(B) There are many natural concrete problems to which one may

apply the results of this paper. In fact, this paper was partially motivated
by the following problems:

Problem 1. Let G be a given simple, compact, connected Lie group and
H be a non-trivial subgroup of G, M = G/H. Is it true that the only non-
-trivial differentiable G-action on the manifold M is the transitive one?

Problem 2. Let G be 4 given simple, compact, connected Lie group and
® be a non-trivial, non-transitive differentiable action of the group G on the
manifold G. Is it true that the principal orbit type must be G/ T and its orbit
structure models after that of the adjoint action of G?

Some of the basic testing cases for Problem 1 are that of real, complex
or quaternionic Stiefel manifolds. The results of this paper consist of an
important step towards a successful solution of Problem 1 for most of
Stiefel manifolds. We shall discuss such applications in a separate paper.

(O) In case the given manifold M satisfies some vanishing condition
such as P(M) =0, k =1,2,3, then the results of this paper are directly
applicable and constitute a convenient groundwork for further application
of cohomology theory of transformation groups. In fact, even in the general
case that M does not satisfy conditions of vanishing characteristic classes:
those homogeneous apaces with vanishing characteristic classes listed in

Theorems 1, 2 and 3 are still the majority of the possible candidates of

principal orbit types for actions of classical groups. Because in the other
possibility that the principal orbit type G/H, has non-vanishing characte-
ristic classes, it follows from Propositions 6.1 and 6.2 that those non-
-vanishing characteristic classes of G/H will impose strong restrictions on
the cohomological structure of the total space M as well as possible orbit
structures. In general, for a given manifold M and a given compact, con-
nected simple Lie group, there are only rather limited possibilities for
principal orbit types of G-actions on M. Moreover, once the principal
isotropy subgroup type (Hy) is given and non-trivial, then the following
three conditions become extremely restrictive and handy: (i) G > G2 Hy,
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(i1) the principal isotropy subgroups of the slice representatiop @, belong
to (Hy) and (iii) i'tM =1+ v =(Adg|G, — Adg ) + o(®D,). Sult.ab.le com-
bination of Lie group representation theory and characterlstfc class
theory provide a powerful tool for the determination of local orbit struc-
tures. The result of this paper is only the beginning of such an approa.ch
which is equally useful in the study of orbit structures on manifolds with
non-vanishing characteristic classes.

(D) From the viewpoint of geometry and topology of homogfapeous
spaces, the result of this paper indicates the effective computability of
characteristic classes of homogeneous spaces on the one hand, and on the
other hand, it also points out that characteristic classes provide a collection
of highly resolutive invariants which can be very useful for top910gical
classification of compact homogeneous spaces. Let us conclude this paper
with the following conjecture:

Conjecture. Two homeomorphic compact homogeneous spaces are neces-
sarily diffeomorphic.
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