Semi-free S1-action and embedding of four manifolds

Janey A. Daccach

1. Introduction.

A very well known theorem of Whitney asserts that all *n*-dimensional manifolds can be embedded in 2*n* dimensional Euclidean space.

A natural question concerning this matter is: what is the minimum dimension of an Euclidean space in which a given manifold M can be embedded?

Massey and Peterson in a joint work (3), among other results obtained the following:

Theorem. A compact, orientable differentiable n-manifold, can be embedded differentiably in 2n-1 dimensional Euclidean space (with the possible exception of the case n=4).

In dimension four Boéchat and Haefliger (1) proved the following:

Theorem. A compact orientable differentiable four manifold M^4 can be embedded smoothly in R^7 if and only if there is an integral class $W \in H^2$ (M; Z) satisfying:

- (1) $W \cdot X \equiv X^2 \mod 2$, for all $X \in H^2(M; \mathbb{Z}) / \text{Tor}$
- (2) $\langle W^2, [M] \rangle = \tau$, where τ denotes the index of M.

Condition (1) is equivalent to saying that $w_2(M)$ is the mod 2 reduction of an integral class.

It is the purpose of this paper to prove the

Theorem 3.4. A compact orientable differentiable four manifold admitting a non-trivial semi-free S^1 -action can be smoothly embedded in R^7 .

2. Semi-free S1-action.

An action $\Phi: S^1 \times M^n \to M^n$ is called semi-free if for all $x \in M - M^{S_1}$ its isotropy group is $\{1\}$.

We denote by (M^n, Φ) a manifold M, together with a semi-free S^1 -action.

Let M be a closed, compact, oriented manifold, then we say that (M^n, Φ) bords if there is a compact differentiable, oriented manifold W^{n+1} and a semi-free S^1 -action $\psi: S^1 \times W \to W$, such that $(\partial W, \psi \mid \partial W)$ is equivariantly diffeomorphic to (M, Φ) .

The pair (M_1^n, Φ_1) is cobordant to (M_2^n, Φ_2) if $(M_1^n, \Phi_1) \cup (-M_2^n, \Phi_2)$ bords. This relation turns out to be an equivalence relation. The class of (M, Φ) is denoted by $[M^n, \Phi]$. A group structure is imposed on the set of these cobordism class, and the group is denoted by $SF_n(S^1)$.

The normal bundle of each component of the fixed point set in M^n has a natural complex structure, and denoting by F_{n-2k} the union of the (n-2k)-dimensional components, the normal bundle v^k of F_{n-2k} in M^n is classified by a map $f_k: F_{n-2k} \to BU(k)$. Defining

$$M_n(U) = \sum_{k=0}^{\binom{n}{2}} \Omega_{n-2k} BU(k)$$

we have a well defined homomorphism

$$\beta: SF_n(S^1) \to M_n(U)$$

Another homomorphism

$$\partial: M_n(U) \to \Omega_{n-2}(BU(1))$$

is defined by: $\partial[v^k]$ is the class of the principal S^1 -fibration $\pi: S(v^k) \to CP(v^k)$ where $S(v^k)$ is the sphere-bundle and $CP(v^k)$ the complex projective bundle associated to v^k respectively.

It was proved (4) that the following short sequence

$$0 \to SF_n(S^1) \xrightarrow{\beta} M_n(U) \xrightarrow{\partial} \Omega_{n-2} (BU(1)) \to 0$$

is exact.

If M^n is an oriented closed manifold and Φ a semi-free S^1 -action then

$$\tau(M) = \sum \tau(F_{\gamma})$$

where F_{γ} is the γ -dimensional fixed point set, τ is the index; and if n = 4p and $\tau(M) \neq 0$ then some component of the fixed point set is of dimension $\geq 2p$. See (2).

3. The proof of the theorem.

Let M^4 be a compact closed, orientable four manifold in which S^1 acts semi-freely and non trivially. Then the fixed point set is $M^{S1} = F_Q \cup F_2$ where F_0 is a disjoint union of isolated points P_i and F_2 is the disjoint union of closed two dimensional manifolds N_j^2 . Each component of the fixed point set is canonically oriented since the normal bundle v_j^γ admits a U-structure, $\gamma = 4,2$.

A fixed point P_j will have orientation +1 if the induced S^1 -action on $S^3 = \partial(v_i^4)$ preserves the orientation on S^3 induced from M, otherwise it will have orientation -1.

Denoting by $J_i: N_i^2 \to M$ the inclusion we can define a homology class $\overline{W} \in H_2(M; Z)$ by

$$\overline{W} = \sum J_{i*} \left[N_i^2 \right]$$

where $[N_i^2]$ is the orientation class of N_i^2 and k is the number of 2 dimensional components of M^{S_1} , and $W \in H^2(M; \mathbb{Z})$ is its Poincaré-Dual.

Proposition 3.1. The modulo 2 reduction of W is $w_2(M)$ the second Stiefel-Whitney class of M.

Proof. First of all let us show that $w_2(M - M^{S_1}) = 0$.

The semi-free S^1 -action restricts to a free S^1 -action on $M - M^{s_1}$. Then the orbit space $M - M^{s_1}/S^1 = K^3$ is a 3-dimensional manifold. Let π be the orbit map $\pi: M - M^{s_1} \to K^3$, so

$$T(M - M^{S_1}) \simeq \pi^*(T(K^3)) + n$$

where T is tangent bundle and η is the tangent bundle to the fibers. From this bundle equation we have

$$w_1(M-M^{S_1}) = \pi^*(w_1(K^3)) + w_1(K^3)) + w_1(n) = 0$$

because $M - M^{S_1}$ is orientable.

Now

$$w_2(M - M^{S_1}) = \pi^*(w_2(K^3)) + w_1(\eta) \cdot \pi^*(w_1(K^3))$$

and from the Wu's relation

$$w_2(K^3) = w_1(K^3) \cdot w_1(K^3).$$

Then

$$w_2(M - M^{S_1}) = \pi^*(w_1(K^3)^2) + w_1(\eta) \cdot \pi^*(w_1(K^3)) =$$

= $\pi^*(w_1(K^3)) \cdot (\pi^*(w_1(K^3)) + w_1(\eta) = 0$

Let U be a closed invariant tubular neighborhood of the 2-dimensional component N_i^2 . Since $w_2(M - M^{S_1}) = 0$, $w_2(M)$ lies in the image of

$$H^2(M, \overline{M-U}; Z_2) \rightarrow H^2(M, Z_2).$$

Now just as $W \in H^2(M; Z)$ is defined by Poincaré duality, also a class $W' \in H^2(M, \overline{M-U}; Z)$ can be defined by Lefschetz duality so that W' restricts to W.

Now let us observe that

$$H^2(M, \overline{M-U}; Z) \approx H^2(U, \partial U; Z) \approx \bigoplus_{i=1}^k H^2(U_i, \partial U_i; Z)$$

since no contribution is given by isolated fixed points.

Next, the component of W' in $H^2(U_i, \partial U_i; Z)$ under the decomposition

$$H^2(M, \overline{M-U}; Z) \approx \bigoplus_{i=1}^k H^2(U_i, \hat{c}U_i; Z)$$

is the Lefschetz dual of $N_i^2 \subset \text{int}(U_i)$ and is a generator

$$W_i' \in H^2(U_i, \partial U_i; Z) \simeq Z$$

namely the Thom class for the normal bundle to N_i^2 .

Let us view $\{W_i'\}$ as a basis for $H^2(M, \overline{M-U}; Z)$; and the modulo 2 reductions $\{\rho(W_i')\}$ as a basis for $H^2(M, \overline{M-U}; Z_2)$. A class w' restricting to $w_2 \in H^2(M; Z_2)$ must have the form

$$w' = \sum \lambda_i(W_i'), \ \lambda_i \in \mathbb{Z}_2$$

and since $w_2 = v_2$ we must have

$$\langle \rho(W_i)^2 |_M, [M] \rangle = \langle (W'U\rho(W_i)) |_M, [M] \rangle$$

for each i. Also

$$\langle (\rho(W')U\rho(W_i))|_M, [M] \rangle = \langle \rho(W_i)^2|_M, [M] \rangle$$

This implies that $\rho(W') = w'$ and so by restricting to M we get $\rho(W') = w_2(M)$ as desired.

The proof given above was kindly suggested by Professor Peter Landweber.

In dimension four we have the exact sequence

$$0 \to SF_4 \xrightarrow{\beta} M_4(U) \xrightarrow{\hat{c}} \Omega_2(CP(\infty)) \to 0$$

where

$$M_4(U) = \Omega_4(BU(0)) + \Omega_2(BU(1)) + \Omega_0(BU(2))$$

An element of $\Omega_2(BU(1))$ is represented by a pair (N^2, f) where $f: N^2 \to BU(1)$ is a map.

Let us define a homomorphism

$$e:\Omega_2(BU(1))\to Z$$

in the following way:

if α , is the generator of $H^2(BU(1))$; $Z) \cong Z$, then

$$e[N, f] = \langle f^*(\alpha), [N] \rangle$$

Let

$$\pi: M_4(U) \to \Omega_2(BU(1))$$

be the projection on the second factor, and define the homomorphism

$$h: M_{\Delta}(U) \to Z$$

by $h = e \circ \pi$

The index of a manifold extends obviously to a homomorphism

$$\tau: SF_n \to Z$$

Proposition 3.2. The homomorphism $h \circ \beta$ and τ are equal in SF_4 . Proof. For each class $\theta = [M, \Phi]$ we have that $\tau(\theta) = P_+ - P_-$ where P_- is the number of isolated fixed ponts with positive orientation and P_- are the ones with negative orientation. This follows from the fact $\tau(M) = \Sigma \tau(F_k)$.

Then

$$\tau(M_4) = \tau(F_2) + \tau(F_0) = \tau(F_0).$$

Now

$$\beta[M,\Phi] = \sum_{i=1}^{(P_+ + P_-)} [v_i^4] + \sum_{j=1}^k [v_j^2]$$

Since $CP(1) \rightarrow CP(2)$ has on its normal bundle a complex structure conjugate equivalent to the associated line bundle to the principal fibration $S^3 \xrightarrow{\pi} S^2$, it follows that

$$\partial [v_i^4] = [S^2, g_i]$$

where

$$g_i: S^2 \to BU(1)$$

with

$$g_i^*(\alpha)$$
 $[S^2] = \begin{cases} -1 & \text{if } P_i \text{ has orientation } 1\\ +1 & \text{if } P_j \text{ has orientation } -1 \end{cases}$

Then

$$\partial \left(\sum_{i=0}^{(P_+ + P_-)} [v^4] \right) = - \sum_{i=1}^{(P_+ + P_-)} [S^2, g_i]$$

and $\partial[v^2] = [N_j^2, f_j]$ where f_j is the classifying map for v_j^2 , because $S(v_j^2)$ is a principal S^1 -bundle. Since $\partial \circ \beta = 0$ we have that

$$\partial \left(\sum_{i=1}^{(P_{+}+P_{-})} [v^{4}] + \sum_{j=1}^{k} [v_{j}^{2}] \right) = 0$$

$$\sum_{i=1}^{(P_{+}+P_{-})} [S^{2}, g_{i}] + \sum_{j=1}^{k} [N_{j}^{2}, f_{j}] = 0$$

and so

In terms of characteristic numbers we have

$$\sum_{i=1}^{(P_{+}+P_{-})} g_{i}^{*}(\alpha) [S^{2}] + f_{j}^{*}(\alpha) [N_{j}^{2}] = 0$$

$$(-P_{+} + P_{-}) + \sum_{j=1}^{k} f_{j}^{*}(\alpha) [N_{j}^{2}L = 0$$

$$-\tau(\theta) + h\beta(\theta) = 0.$$

Then $h\beta(\theta) = \tau(\theta)$ as desired.

Proposition 3.3. The self intersection number of $\overline{W} \in H_2(M, \mathbb{Z})$ is equal to the index of M. Proof.

The Poincaré dual of \overline{W} , W, can be written as $W = \sum_{r=1}^{k} W_r$ where $J_{r*}[N_{\gamma}^2] = W_{\gamma} \cap [M]$. Since $N_j^2 \cap N_i^2 = \Phi$ then

 $\langle w_j, J_{i*}[N_i^2] \rangle = 0$ if $i \neq j$

So

$$\langle W \cup W, [M] \rangle = \langle W, W \cap [M] \rangle = \langle W, \sum_{i=1}^{k} J_{i*}[N_i^2] \rangle =$$

$$= \left\langle \sum_{i=1}^{k} W_{y}, \sum_{i=1}^{k} J_{i*}[N_i^2] \right\rangle = \sum_{r=1}^{k} \langle W_{y}, J_{y*}[N_{y}^2] \rangle =$$

$$= \sum_{y=1}^{k} \left\langle J_{y}^{*}W_{y}, [N^2] \right\rangle.$$

It is known that $J_{\gamma}^{*}(W_{\gamma})$ is the Euler class of v_{γ}^{2} ; then $J_{\gamma}^{*}(W_{\gamma}) = f_{\gamma}^{*}(\alpha)$ where f_{γ} is the classifying map for v_{γ}^{2} . Hence we conclude that

$$W \cup W = \sum_{j=1}^k f_j^*(\alpha) [N_j^2] = h\beta[M, \Phi] = \tau(M).$$

Theorem 3.4. A compact orientable differentiable four manifold M^4 admitting a non trivial semi-free S^1 -action can be embedded smoothly in R^7 . Proof. If $\tau(M) = 0$ then M embeds in R^7 , since indefinite forms satisfy the Boéchat-Haefliger conditions.

Let us suppose that $\tau(M) \neq 0$, then $F_2 \neq \phi$. Considering $\overline{W} = J_*[F_2]$ and W its Poincaré dual we have:

- (1) By Proposition 3.1 the reduction mod 2 of W is $w_2(M)$;
- (2) By Proposition 3.3 $\langle W^2, [M] \rangle = \tau(M)$;

So the result follows from the theorem of Boéchat-Haefliger.

References

- [1] Boéchat J.; Haefliger A, Plogements differentiables des variétes orientées de dimension 4 dans R⁴, Essays on Topology and Related Topics, Springer-Verlag, Berlin-Heidelberg-New York (1970).
- [2] Kawakubo K.; Uchida F., On the index of a semi-free S¹-action, J. Math. Soc. Japan, vol 23, n.° 2, April 351-355 (1971).
- [3] Massey W.; Peterson F., On the dual Stiefel-Whitney classes of a manifold, Bol. Soc. Mat. Mexicana, 1-13 (1963).
- [4] Uchida F., Cobordism groups of semi-free S¹ and S³ actions, Osaka J. Math., 7, 345-351 (1970).

Universidade Federal de São Carlos Departamento de Matemática CP - 384 13560 - São Carlos - SP Brasil