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Semi-free S'-action and embedding of four manifolds

Janey A. Daccach

1. Introduction.

A very well known theorem of Whitney asserts that all n-dimensional
manifolds can be embedded in 2n dimensional Euclidean space.

A natural question concerning this matter is: what is the minimum
dimension of an Euclidean space in which a given manifold M can be
embedded?

Massey and Peterson in a joint work (3), among other results obtained
the following:

Theorem. A compact, orientable differentiable n-manifold, can be embedded
differentiably in 2n— 1 dimensional Euclidean space (with the possible
exception of the case n = 4).

In dimension four Boéchat and Haefliger (1) proved the following:

Theorem. A compact orientable differentiable four manifold M* can be
embedded smoothly in R” if and only if there is an integral class We H?
(M; Z) satisfying:

(1) WeX=X? mod 2, for all X e H¥(M; Z)/ Tor

(2) <W?, [M]) = 1, where t denotes the index of M.

Condition (1) is equivalent to saying that w,(M) is the mod 2 reduction
of an integral class.
It is the purpose of this paper to prove the

Theorem 3.4. A compact orientable differentiable Sour manifold admitting
a non-trivial semi-free S'-action can be smoothly embedded in R’.
2. Semi-free S!-action.

An action @:S' x M"— M" is called semi-free if for all xe M — M5!
its isotropy group is {1}.
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We denote by (M", ®) a manifold M, together with a semi-free S!-
-action.

Let M be a closed, compact, oriented manifold, then we say that
(M", ®) bords if there is a compact differentiable, oriented manifold W"*!
and a semi-free S'-action  : S* x W— W, such that (OW, y | dW) is equi-
variantly diffeomorphic to (M, ®).

The pair (M7, ®,) is cobordant to (M3, ®,) if (M,®,) v(— M3, D,)
bords. This relation turns out to be an equivalence relation. The class
of (M, ®) is denoted by [M",®]. A group structure is imposed on the
set of these cobordism class, and the group is denoted by SF,(S?).

The normal bundle of each component of the fixed point set in M”
has a natural complex structure, and denoting by F,_,, the union of the
(n — 2k)-dimensional components, the normal bundle v* of F,_,, in M"
is classified by a map f, : F,_,,— BU(k). Defining

(2]
Mn(U) = kZOQn—Zk BU(k)
we have a well defined homomorphism

B :SF(S') — M,(U)
Another homomorphism
3: M,(U) > Q,_,(BU(1))

is defined by: 0[v¥] s the class of the principal S'-fibration 7 : S(v) - CP(v¥)
where S(v¥) is the sphere-bundle and CP(v¥) the complex projective bundle
associated to v* respectively.

It was proved (4) that the following short sequence

0- skt 25 myw) L0, BUW) - 0
1S exact.
If M" is an oriented closed manifold and ® a semi-free S!-action then
(M)=2X o(F,)
where F, is the y-dimensional fixed point set, 7 is the index; and if n =4p

and (M) # 0 then some component of the fixed point set is of dimension
>2p. See (2).
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3. The proof of the theorem.

Let M* be a compact closed, orientable four manifold in which st
acts semi-freely and non trivially. Then the fixed point set is MS! = F eV Fa
where F, is a disjoint uniop of isolated points P, and F » is the disjoint
union of closed two dimensional manifolds N ?. Each component of the
fixed point set is canonically oriented since the normal bundle v} admits
a U-structure, y =4,2.

A fixed point P; will have orientation +1 if the induced S!-action
on S* =(v{) preserves the orientation on S* induced from M, otherwise
it will have orientation — 1.

Denoting by J;: N7 > M the inclusion we can define a homology
class We H,(M; Z) by

where [N7] is the orientation class of N? and k is the number of 2 dimen-
sional components of M®', and We HXM: Z) is its Poincaré-Dual.

Proposition 3.1. The modulo 2 reduction of W is wy(M) the second Stiefel-
-Whitney class of M.
Proof. First of all let us show that w,(M — M5t) =0.

The semi-free S'-action restricts to a free S!'-action on M — M*,
Then the orbit space M — M5! /S = K3 is a 3-dimensional manifold.
Let = be the orbit map n: M — M5 - K3, so

T(M — M*) ~ n%(T(K?)) + n

where T'is tangent bundle and 7 is the tangent bundle to the fibers. From
this bundle equation we have

wi(M — M®') = n¥(w (K?)) + w(K?) + wy(n) =0
because M — M5! is orientable.
Now

wo(M — M) = m¥(w,(K?)) + w, () - m%(w, (K3))

and from the Wu’s relation
w,y(K?) = w (K3)« w,(K3).

Then

wy(M — M) = m¥(wy(K3)?) + w,(n) n¥(w,(K3)) =

= ”*(W1(K3))‘(7T*(W1(K3)) + wy(n) =0
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Let U be a closed invariant tubular neighborhood of the 2-dimen-
sional component N?. Since w,(M — M%) =0, w,(M) lies in the image of

HXM,M—TU; Z,) » HM, Z,).

Now just as We H*(M; Z) is defined by Poincaré duality, also a
class W e HY(M,M — U; Z) can be -defined by Lefschetz duality so that
W' restricts to W,

Now let us observe that

H*M,M —U;Z) ~ H¥U,dU;Z) ~ _é HA(U, éU}; Z)
since no contribution is given by isolated fixed points.
Next, the component of W’ in H*(U,, U,; Z) under the decomposition
HM,M-U;2) ~ é HXU, ¢U,; Z)
is the Lefschetz dual of N? < int(U,) and is a generator
W, e H(U,cU;2) ~ Z

namely the Thom class for the normal bundle to N2.
Let us view { W/} as a basis for H (M, M — U: Z); and the modulo
2 reductions {p(W/)! as a basis for HX(M, M — U:Z,). A class w' res-
tricting to w, € H*(M; Z,) must have the form
w =ZX.,(W) 1,2,
and since w, = v, we must have

PP | up, [M]) = \’(W’Up(Wi))lM, (M])
for each i. Also
W Up(W))| . [M]) = <p(W)?| 4, [M])
This implies that p(W’) = w’ and so by restricting to M we get p(W) =
=w,(M) as desired.
The proof given above was kindly suggested by Professor Peter

Landweber.
In dimension four we have the exact sequence

04n8F, L M (V) —(l» Q,(CP(x)) -0
where
M (U) = Q,(BU(0) + Q,(BU(1)) + Qu(BU(2))
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An element of Q,(BU(1)) is represented by a pair (N?, f) where
f :N*—> BU(1) is a map.
Let us define a homomorphism

e :Q,(BU(1) - Z

in the following way:
if «, is the generator of H%(BU(1)); Z) ~ Z, then

e[N, f1={f*=, [N])

7 My(U) > Q,(BU(1))

LEet

be the projection on the second factor, and define the homomorphism

h:MJU)— Z
by h=eon
The index of a manifold extends obviously to a homomorphism
1 :SF.> Z

Proposition 3.2. The homomorphism ho and t are equal in SEy
Proof. For each class 6 = [M, ®] we have that 1(f) = P, — P_ where P_
is the number of isolated fixed ponts with positive orientation and P _
are the ones with negative orientation. This follows from the the fact
(M) = X o(F)).
Then
tM,) = ©o(F,) + 1(Fy) = ©(F,).

Now
(s S e

BIM0) =" 3 D]+ Y ]

Since CP(1)—> CP(2) has on its normal bundle a complex structure
conjugate equivalent to the associated line bundle to the principal fi-

bration §3 S2, it follows that
ﬁ[v}‘] e [SZ’ gi]

g;:S* > BU(1)

where

with
—1 if P, has orientation 1
* 20 i
gt [5°] {+1 if P, has orientation — |
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Then

Py +P_) (s )
("5 )= - "5 s
and 0[v?] = [N?, f;] where f; is the classifying map for vZ, because S(v?)
is a principal S'-bundle. Since dof =0 we have that

("8 o+ £ )0

(Pr+P_)

and so Z [S%,9,] +

i=1 j

[N 4] =0

1=~

In terms of characteristic numbers we have

(Pr+P_)

Y g [S?] + [ [N?] = 0

i=1

08 ki o e
j=1

—1(0) + hp(6) = 0.
Then hp(0) = t(0) as desired.
Proposition 3.3. The self intersection number of WeH,(M,Z) is equal

to the index of M.
Proof.

k
The Poincaré dual of W, W, can be written as W= Y. W, where
=
J.[Ni]1=W,n [M]. Since N> A N2 =& then

W Ju [NI]) =0 if i#j
So

WO WIMI) = (W W [M]) = (W, Y I[N =

T( LW 50N = £ N =

r=1

v él W, [ND).

It is known that J¥(W,) is the Euler class of vf; then J¥(W,) = £ X(«)
where f, is the classifying map for v2. Hence we conclude that

Wo W= _; f*@) [N?] = hp[M, d] = «(M).
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Theorem 3.4. A compact orientable differentiable four manifold M* admi-
tting a non trivial semi-free S'-action can be embedded smoothly in R’.
Proof. If ©(M) =0 then M embeds in R’, since indefinite forms satisfy
the Boéchat-Haefliger conditions.

Let us suppose that (M) # 0, then F, # ¢. Considering W= J ol Fa)
and W its Poincaré dual we have:
(1) By Proposition 3.1 the reduction mod 2 of W is w,(M);
(2) By Proposition 3.3 (W2 [M]) = t(M);

So the result follows from the theorem of Boéchat-Haefliger.
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