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Stability of minimal surfaces in spaces of constant curvature

e Bufhosa and M. do Carmo

1. Introduction.

1. Let x : M = M", n > 3, be a minimal immersion of a C*> 2-dimensional
orientable manifold M into.an n-dimensional smooth Riemannian mani-

fold M". Let D = M be a domain with compact closure D and piecewise

smooth boundary dD. Call D stable if it is a relative minimum for the area

function of the induced metric for all variations that leave 0D fixed.

In a previous paper [I] we described the idea of a method to obtain
sufficient conditions for the stability of D and applied it to the cases where
M" is the 3-sphere S3(a) with constant curvature a > 0, the 3-hyperbolic
space H3(a) with constant curvature a < 0, and the euclidean space R”,
n > 3. In this paper, we present a more detailed description of the method
and apply it to the case where the ambient space is a Riemannian manifold
with constant sectional curvature a. The results are as follows (K will always
denote the Gaussian curvature of M in the induced matric).

1.2 Theorem. Let x:M > A%a) be a minimal immersion, where A"(a) is
either S™(a), if a > 0 or H"(a) ifa<0. Set c,=3—(2/ (n — 2)), and assume
that D = M is simply-connected. Then:

e ' 8n §
(i) if a>0 and L(2a— K)dM < m—, D is stable,
) o R o e staty
(1) if a an D| | 5T +2, is stable.

Actually, Theorem 1.2 is, modulo a curvature estimate, a particular
case of the following general theorem.

Let x:M —>M", n > 3, be a minimal immersion. Assume

that the sectional curvature of M" is bounded above by a constant a and set

=max (a,0). Let ds* be the metric induced by x on M and assume that tne

Gauman curvature K of the (possibly degenerate) metric do® = (2a* — K) ds*
satisfies K < c. Let D = M be a simply-connected domain. Then:

(i) If M" is analytic and

8

* - ; e ma——————
L(Za K)dM < P
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D is stable.

% : i 8m e
(i) If a+# 0, and L (2a” — K)dM < RV, D is stable.

Since we will show in Sec. 2 that if M" is a space of constant curvature

32, Theor. 1.2 and Theor. 1.4

a# 0, the curvature K<c, =3 — -
below will follow from Theor. 1.3.

1.4 Theorem. Theor. 1.2 holds for minimal immersions x : M - M"(a) into
any n dimensional Riemannian manifold of constant curvature a provided we

8n 8n
replace the bound BAD by 4 +2

1.5 Remark. Theor. 1.3 reduces the problem of finding a simple sufficient
condition for stability to the problem of finding an estimate for the curva-

ture K that is independent of the immersion x (See Remark 4.4.).

1.6 Remark. Theor. 1.2 generalizes Theors. 1.2 and 1.3 of [1]. however,
the bound in Theor. 1.2 for a >0 and n >3 is probably not sharp.
Theorem 1.3 can be used, together with the estimate 2.9 of [1], to prove
Theor. 1.4 of [1].

2. Curvature estimates.

2.1. Let M"a) be an n dimensional Riemannian manifold with constant
curvature a. In this Section we estimate the Gaussian curvature K of a
metric do> on M obtained by a conformal transformation of the metric ds®
which is induced by a minimal immersion x : M — M"(a). More precisely,
we prove the following result.

2.2 Proposition. Let x: M — M"(a) be a minimal immersion, K the Gaus-
sian curvature of the induced metric ds*, and set do* = uds®, where:

un—a.— K aif a0
=0 {uz—K, ifia < 0

Then the Gaussian curvature K of do* satisfies

KS('"=3—n_2'
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Proof. Let us choose an adapted orthonormal frame e, e,,e;,...,¢e, to
x in M"(a), that is, e, e, are tangent to x (M) c M"(a), and let us agree in
the following range of indices:

RArsig ke s 8D (o [l B S ANBSZ =il e

We will denote by h, . the coefficients of the second fundamental form of
x in the normal dlrectlon e, and will write ||B||* = 2a — 2K, hence (2.3)
can be written as

1
(2.5) u=la + 5 ||B|}* > 0.
It is easily computed the curvature K of do? = uds?® is given by (Cf. e.g. [2])

- 1 1
(2.6) K =—K+?<—Au+]—||VuHZ>,
u u

u

where Au is the Laplacian of u and Vu is the gradient of u, both computed
in the metric ds?

From (2.5), it follows that

du = d <'a| Al —Z hm]) Z hmj iajk wk’

ioj iojk

where w, is the pull-back by x of the coframe 6, of e, (since e, is an
adapted frame, w, = 0), and h,,; are the components of the covariant deri-
vative of the second fundamental form of x. Thus the components of the
gradient Vu of u are

(27) Zhwu iajk*

iaj

By taking the covariante derivative D of Vu, we obtain

D(uk) &3 Z hujl hta}k Wy a5 Z huz; htu}kl wl

iajf iajf,

where h,,;, are the components of the second covariant derivative of h,,;.
Thus, the componentes of D (Vu) are

U = Z hlaﬂ, htajk + Z hnzj hla}kl

iaj ioj
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and the Laplacian of u is given by

(28) Au T Z ukk e Z h:a}k 0 Zhiaj Ahiaj’
k

iajk iaj

where Ah, . is the Laplacian of the second fundamental form. We now use
Simons mequahty ([3], pg 41)

2.9) < Yy, Ayps <

iaj

2
> ) IBII* — 2a||BI|

to estimate the second summand of the right hand side of (2.8), and by
(2.5)-(2.9), we obtain

(2.10) KS%+5—2{<2— n]_2>(u—|a|)2—a(u—|a|)}+

s = (o + FIB) Ko+ Z T )

ajk 3]

We need the following lemma.

2 11 Lemma i 4“3”2 Z hm]k i Z(Z'hiaj hiozjk)2 < 0
k iaj

iajk

Proof of the Lemma. Since ||B|* = Zhrps, we have

= o Z hrus Z hlajk &t 2 th] lauk

r,Bs iajk iaj

Thus it suffices to prove that T = 0. Actually we will prove that this is
so for each fixed o

By minimality, and the fact that the ambient space has constant cur-
vature, we have, for each a, that h,,, = — h,,, h,;; = — by, and b,

S S iajic 1
symmetric in latin indices. Thus, on the one hand,

98 i e B 1 h

ras " iajk
rsijk

and on the other hand,
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;(Z hiaj hiajk)2 = Z(hiaj hiajl)z it (Z hiaj hiaj2)2 =
ij ij ij

& 4(h1a1 hlall i hlazlhlall)2 i3 4(hlazl hlalZ aF hla(ZhIazll)Z i

4 (h

lal

i hfuZ) (hlrzll i hlall)

It follows that T = 0 and this proves the Lemma.

To prove that K < c,, we will consider two cases.

First, let a <0. Then u = — K. By (2.10) and Lemma (2.11), we
obtain

Il
I
+
N
T
+
N
St
+
[\
C
S| =
I 4
| W
e~
T
<
==
Q
S

s—l+2+2< _;>:3— £indy

and this proves Prop. 2.2 for the case a < 0.

Now consider @ > 0. Then u = 2a — K. By (2.10), Lemma (2.11), and

Do
the fact that L i, iR , we obtain
2a — K u

220 iy 1 1 2
Ko<t : A 35 {(2— n_2>(2u—2a) —2a(2u—2a)}—

(2:12) = f(u).
Now set 1/(n — 2) = o and observe that

Bre—Qaluss< 4@ = L 2
f(u)=( o) u 2 2oz)au+(6 20) a

u

By noticing that u >a >0, f(a) =1, f'(a) <0, lim f(u) =3 — 2o and

that f'(u) =0 if and only if u= B —-wa/2 - oc) we see that f(u) <
<3-2a=c, From (2.12), K <c¢, and this concludes the proof of
Prop. 2.2.
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3. Proof. Theorem 1.2.

3.1. We first fix our notation and make some general remarks. .

Let x: M — M" be a minimal immersion into an n-dimensional Rie-
mannian manifold. Choose an adapted orthonormal frame e, in a neigh-
borhood of M" and take the range of indices as in (2.4). Consider a domain
D = M and denote by ¥V =) Ve, a normal vector field that vanishes on

0D. Then the formula for tl:e second variation along V is (See [3])
3.1 V.7 = J (= X VAV, - Y R,; + 0,5 V,V,) dM.
D a ap

Here R agcp 18 the curvature tensor of the Riemannian manifold M,
ZR,M, AV, are the components of the Laplacian of ¥, and

Z hlaj ipj°

where hw are the coefficients of the second fundamental form of x in the

direction e,.
V is called a Jacobi field if, for each a,

(32 — AV, - YRy +0,)V, =0
B

If M" is a real analytic Riemannian manifold, it follows that the minimal
immersion x is real analytic. As solutions of (3.2), Jacobi fields iare then
real analytic normal vector fields.

3.3. Now assume that M" is real analytic and that D = M is not stable.
By Smale’s version of the Morse index theorem ([4], [5]), there exists a
domain D' = D and a Jacobi field V that vanishes on 0D’. Since V is
analytic, it only vanishes along analytic curves and at isolated points. We
assume that 0D’ is the “first” conjugate boundary, that is, that V only
vanishes in D' at isolated points g,, ...,q,. Away from such points, we can
choose the adapted frame e, so that V = ue,, u > 0. This defines a func-

tion u in W = e 49 {q,}, where the 3-component of Eq. (3.2) is given by

s=1

(34) Au + u{le,,e;> + uZle + uZh

13]

Set u =0 if ¥ =0. Thus u is a nonnegative function in D’ that is differen-
tiable in W, satisfies (3.4) in W, and vanishes on 0D’. Notice that u? is
differentiable in all of D'.
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By noticing that

(he, et = — Z]VZ el

)

Zhl31 Z hlllj e Z hla}’

B j s Jya=3

and by setting
z IVN e3|2 it Z 3hlr1]’
i, 0>

we can write (3.4) as

(3.5) Au+uZR,3,3 +u) hl — A%u =0.

iaj
iaj

3.6. Proof of Theor. 1.2. (i) Since S"(a) is real analytic, the assumption that
D is not stable implies the existence of a domain D’ = D and a function

u:D' >R satisfying the conditions described in 3.3. Furthermore, since
the ambient space has constant curvature a, we have R;,, = a, and

Y h, =2a-2K.
iaj

Thus (3.5) can be written as
(3.7 Au + 2(2a — K)u — A*u = 0.

The proof is now similar to the proof of Theor 14 in [1]. Consider
the first eigenvalue 4, for the problem

(3.8) Af + A2a — K) f=0.
We claim that (3.7) implies that A, < 2. To see that, cover the points g, e D’

(See 3.3) be small nonoverlappmg disks D {q,) around g, set D, = v D (g,)
and obtain from (3.7)

ZJ. (2a—K)u2dM2—J uAudM =
D/-D D/-D

’ f Ivall am + f (Vu,my ds,
-D, oD,
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where n is a unit normal vector along the boundary oD,. Since u? is diffe-
rentiable, we obtain, as ¢ — 0,

[, ez ane
D/

1

p (2a — K)u* dM

as we claimed.

Now introduce in M a metric do”> = (2a — K)ds?, where ds® is the
metric induced by x. By Prop. 2.2, the Gaussian curvature K of do? satisfies

K < e —nz—z‘ From Prop. 3.13 of [1], we conclude that A, >

2 },(D*), where 4,(D*) is the first eigenvalue of the Laplacian of a geodesic
disk in a sphere S*( 1/\/a ) with curvature ¢, such that

8n
* _ *) _ i Ak i L (5,
A* = area (D )~J (2a — K)dM < P

D/ n
By using Prop. 3.10 of [1], we compute that, for such a domain,

2 4n — A*
@ A* i

A,(D*) >

Thus
2ipx i A (D) 222,
This is a contradiction, and proves Theor. 1.2 (i).
(3.9) Proof of Theorem 1.2. (ii) Since a < 0, it follows from (3.7) that
(3.10) Au — 2Ku > 0.

Now the proof follows in a way entirely similar to the proof of (i), by repla-
cing 2a — K by — K.

4. Proof of Theorem 1.3.

4.1. Suppose that D = M is not stable. By assuming that M" is real ana-
lytic (Sec. 3.3) and that the sectional curvature of M" is bounded above
by a, we obtain that
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Y h =2R),, ~2K'< 20— 2K

ioj

and that Y R,;;, < 2a. Thus (3.5 implies that

(4.2) Au +22a — K)u >0, in W,

where W is defined in Sec. (3.3).

If M" is not analytic, (4.2) holds for the open set of points U < D’
where u # 0 (See definition of D’ in (3.3)). Since there is a finite member
of conjugate boundaries in D, we can assume that ¢D’ is the first such
boundary, and thus that U is connected. We also can assume that u > 0
on D'. Since u? is still differentiable in D’ and in U

Au? = 2ulu + 2||Vu|

2
)

we can write (4.2) in the form

;—Au2 + 2u*(2a — K) — ||Vu||* = uAu + 2u?*(2a — K) > 0, in U.

Thus, by setting f = u?, we see, by a limiting process, that, in D’
4.3) Af +4f(2a — K) > 0.

In both cases (4.2) or (4.3), we obtain, by using the arguments in the
proof of Theorem 1.2 (See (3.6)) that the first eigenvalue A, of the problem

Ag + A2a* — K)g =0, a’ = max(a, 0),

satisfies 4, < a, where « is equal to 2 or 4 according to M" is real analytic
or not, respectively.

We now observe that the metric do? = (2a* — K)ds® only degenerates
if a = 0. In the analytic case, this happens only at a finite number of points.
We then use Prop. 3.13 and Cor. 3.20 of [1] together with Prop. 3.10 of [1]
to show, in the same way as we did in the proof of Theor. 3.1, that the
conditions K < ¢ and

8n
+ P ——er
I (2a K)dM < , P
D
imply that 4, > 2, a contradiction. In the nonanalytic case, we restrict
ourselves to the case a # 0 and use Props. 3.13 and 3.10 of [I] to show
that the conditions K < ¢ and
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8=
+ =2 PESSTCSI SRS SHIERS g
J‘D’ (2a K)dM < P

imply that 4, > 4, a contradiction. This completes the proof of Theor. 1.3.

4.4 Remark. Theorem 1.3 raises the question of finding an estimate for
K that depends only on bounds for geometric quantities in a general
manifold M" (for instance, bounds for the curvature tensor of M" and some
of its covariant derivates). From the proof of Prop. 2.2, we see that the
search for such an estimate can be reduced to suitable generalizations of
Lemma 2.11 and Simon’s estimate 2.9).
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