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Invariant polynomials and zonal spherical functions

Cary Rader

0. Introduction.

The main result of this paper is a derivation of the Plancherel measure
for zonal spherical functions on a rank one semi-simple group. Of course
this is an old result of Harish-Chandra [WII, p 338]; the point here is that
the techniques used are entirely elementary. We apply the formulas for
inversion of the Abel transform to the inverse Fourier transform of ¢ ().
The operations for inverting the Abel transform can be carried out under
the integral for the Fourier inversion (f € CX(G//K)) and then we obtain
the Plancherel measures as the Taylor coefficients of certain hypergeometric
functions.

The first section is devoted to deriving an analogue of a theorem of
Mather and Schwartz for semi-simple Lie groups (of any rank). We find
that the space of linear combinations of zonal spherical functions which
occur as matrix entries of finite dimensional representations forms a free
polynomial algebra. Then if ¢, ..., ¢, are generators, any f e C/(G//K)
can be written in the form f(x) = F(¢,(x), ..., ¢g(x)) where Fe CC“'(R’L).

In the second and third sections we derive again some results of Nolan
Wallach (with some modest simplifications). In the second section we give
his proof of a simple lemma (lemma 10) which is the basis for the inversion
of the Abel transform. To add a little spice, we cast the lemma in the setting
of Euclidean motion groups; this gives us the Paley-Wiener theorem for
certain Bessel functions (J, ,,n€ 7). The third section gives Wallach’s proof
of the inversion formula for the Abel transform and of the zonal Paley-Wiener
theorem for rank one semi-simple groups [H2,G]. T have included these
because they are not readily available. The fourth section is devoted to
finding the Plancherel measure in rank one, class one.

The techniques of this paper are quite elementary; the most difficult
facts used are Mather’s theorem and the parameterization of zonal spherical
function [H, ch 10]. (Actually one can give ja proof of Mather’s theorem
in the case used here which is considerably simpler). Aside from this we
use only some standard structure theory for semi-simple groups, regular
singular point theory for ordinary differential equations, and a contour
integral.
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1. Mather’s Theorem and Some Consequences.

Let K7bera compact Lie group and let n: K — L(V) be a smooth
representation, where V is a finite dimensional real vector space. Let P(V)
be the algebra of real valued polynomial functions on V and I(V) be the
subalgebra of K-invariant polynomials (f(n(k) v) = f(v) for all ke K, ve V)
By a theorem of Hilbert, we can choose homogeneous o, ...,q,€I(V)
which (with 1) generate I(V) as an algebra and no proper subset generates.
Define o :V = R* by a(v) = (6,(v), ..., 0,(v)). Then the fact that the o,
generate may be expressed by saying that

F > Fog: PR — I(V)

is surjective.

Let C*(V) be the space of infinitely differentiable complex valued
functions with compact support, endowed with the Schwartz topology,
and let I(V) be the subspace of K-invariant functions.

" Mather’s Theorem. Every f elI(V) can be expressed in the form

f(x) = F(o,(x), ..., 0,(x)) = (6*F) (x)

for some FeC¥(RY. Moreover o*:CZ(R¥) - I(V) is a continuous split
surjection.

For the proof see [M] and [S]. (Actually Mather does not have the
compact support condition, but he shows that ¢ is a proper map which
easily gives the present version of his theorem).

Let G be a connected, non-compact semi-simple Lie group with maximal
compact subgroup K. Let I(G) be the space of K-biinvariant C° functions
on G(f(k,xk,) = f(x) for all k,, k,eK, xeG). Our first objective is to
obtain a result analogous to Mather’s theorem for I(G), where o, ..., 0,
are replaced by certain zonal spherical functions ¢, ...‘,4)1.

Let g = k + p be the Cartan decomposition of the Lie algebra g of
G and let a, be a maximal abelian subalgebra of p. Let X be the set of res-
tricted roots and let X, be the subset A€ X such that 24 ¢%. Then X, is a
root system; let A,, ..., 4, be a simple system of roots for £,. Leta = g, + a,
be a Cartan subalgebra containing a, and let ¢ be the set of roots of
the complexification g, with respect to a. Recall that a representation

n:G— L(V) is called class one if it is irreducible and there is a vector

v, €V such that n(k) v, = v, for all ke K. Let () denote the Killing form
on a;.

Lemma 1. (Helgason). A linear function A :a,— C is the highest weight
of a finite dimensional class one representation if and only if
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(1) Ala, =0

(@) (AIA)/NA]A) is a non-negative integer for each i =1,...,8
Proof. A proof of Helgason’s theorem appears in [WI, p 210], but, since
it relies on facts which are rather deeply embedded in Helgason’s book,
I think it is worthwhile to give a simplified proof. First, since the center
of G lies in K, there is no loss of generality in assuming that G is a connected
subgroup of the simply connected group G, with Lie algebra 9.5 SEeteiy
be the finite dimensional holomorphic representatlon with highest weight AA

Let M be the centralizer of a, in K and let M° be its identity compo-
nent. Choose a root vector X, eg such that

[H.X ] = A(HY,  (Hea)
AJH) =2 where H, = [6X, X, ]€a,

We may define exp(n,/— 1H) in G,. The essence of Helgasons proof is
the following structural fact:

M=M°-C where
= {exp(n/— 1 H)| H = nH, with n.e}.

First it is clear that if C = G then M°-C < M. To show that C < G

it suffices to show that exp (n,/— 1 H)e G for eachi = 1, ..., %. Since S22, C)
is simply connected, there is an analytic homomorphlsm ¢ :SU2, R) —
such that the differential ¢, of ¢, satisfies

L ol 1 00
¢'<O _1) Hl’ ¢( O>:X" d’,(_ 1 O)-——BXl
Then

exP("v_l Hi)=¢i(exPnV_l<(l) —0)>=¢i<—(1) —?)EG'

Conversely let Z(a,) be the centralizer of the complexxflcatlon a, in
G.. Then Z(a,,) is connected (the centralizer of a torus in a complex group)
and it is clear that M < U n Z(a ) where U is a compact real form of G,
for which K = U n G. Now any element zeU n Z(a,) can be written in

the form°
z=mexp(n/— 1 H), me M° and Hea,

and we may as well assume that m = 1. Let ¢ : G, > G, be the real analytic
automorpohism generated bv the coniugation of a with reenect ta o If
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zeG then a(z) = z; thus

exp (n,/— 1 H) = o(exp (n\/— 1 H)) = exp(— ny/ — 1 H),

that is exp (Zn\/——l H) = 1. Obviously this implies that (QH) e Z for all
integral Q on a, so to show that exp(n\/——l H)eC it suffices to find
integral €, such that {Q|H ;> =9

Using the Killing form, we shall identify a, with a subspace of a.
Then the H, may also be defined by H,ea, and

BIHY = AB2)(3)3)  (for all feay).

Let o, ....,0 be & simple system of roots for ¢ with the property that
A = aja, orl—2a|a for i=1,...,2 [WL p 23] Define h,ea, by

<B|h,> 753 z(ﬁlal)/(a,‘lai) @=Ll

To compute H, in terms of h; there are three cases to consider.
(1) If 4, = aja, with oo; = a; then H; = h; (Identifying a,, < a’, we
have A, = o, so H; = h; is clear).
(2) If 4, = aja, and ou; # o, then H, = h; + oh; (In this case we have
(aoa)) =0 and (ociat)-—Z(,lli), because 2,1 ex [WL p 33, 21]. Now 4, =
= Yo, + o) and {Plh; + oh;) =2Pla; + o0, )/(ozloz = 2(BI}«, +ooz)/(,l|l))
(3) If A, =2aja, then H, = h, + oh; (Here (ajoo;) <O and (o) =
= (4/4,) and 4, =« + oa; [WI p 33 21] Thus {plh, + oh;) = 2(Blo; +
+ oa)/(ao) = CBIHY..
Finally if Q,, ..., Q, are the fundamental weights corresponding to a,, ..., o
then for i, j = 1 ,% we have [WIL, p 23]

p
QIH ={Qjh; + oh) = (Qjlh) = 6,;
in case 2 and 3, and similarly ((21.\Hi> =9, in case 1.

Now let us return to the proof of Helgason’s theorem. Actually Helgason
proves his theorem under the additional assumption that A is dominant
integral, but this follows from condition 2 in the statement of the lemma.
Condition 1 says that A = gA and condition 2 is the same as (A|H,) € 27.
Thus

(ALY = X Alh, + oh) = KAIhY e 7
or

(AhDS = (AIhD e27 (if oa. = h).
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Let n,:G— L(V) be a finite dimensional representation with highest
weight A, and let v, be a highest weight vector. We may assume that V
carries a positive definite Hermitian inner product (,) such that the adjoint
of m(x) im0 '=m (0 1)

Following Helgason [WI, p 210], let G = KAN be the Iwasawa de-
composition and write x = k(x) exp H(x) n(x) for the corresponding decom-
position of x € G. Normalize the Haar measures on K and M so as to have
total volume one, and normalize the Haar measure on N so that the follo-
wing integration formula holds [WII, p 73]:

J f(k)dk=ff f(r(rn) m) e 2P HD dpy dn (n=0n".
K NJm

Since nA(AN) vp € Cv, we see that V is spanned by the =,(k)- vA(keK)
Thus 7, is a class one representation 1f and only if

B, = f nA(k) - v, dk # 0.
K

Assume (as we may) that v, is a unit vector and set c(A)

= (04, D), SO m,
is class one if and only if ¢(A) # 0. For convenience set i1 =

0
On~'. Now
(mp(k(m) m) vy, 0,) = (n (7 n(R)~" exp(— H@) m)v,,v,) =

= (m\(m)v,, m (1) v,) o AHm) T (m\(m) vy, ) o~ AHG)

Thus we have

A) = J (mp(k,) vy, molky) v,) dk, dk, =
K xK

3 J f (mA(k(R) m) v, v, )e ™ 2PH® dm dn
NJM

T J‘ (n/\(m) Ups UA) dm- f e~ (A+2p)H(n) dn.
¥ N

Now the second integral (over N) is always convergent and positive (the
integrand is positive) [WIL, p 73 and WI, p 215]. Thus ¢(A) # 0 if and
only if the first integral (over M) is non-zero. But by Schur orthogonality,
this-integral is non-zero if and only if n,(m) v, = v, for all me M, and the
hypotheses of the lemma are precisely the necessary and sufficient condi-
tions that this hold. Namely Ala, = 0 if and only if v, is fixed by M° and
({AlH;» € 2Z if and only if v, is fixed by C.
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Let L denote the set of linear functions A :a, — R satisfying the second
condition of lemma 1. Define A, ..., A €l by

(A,’/:J)/(;tjl/‘j) = 5,-1'»

so L is the set of non-negative integral linear combinations of the A, ..., A,.
If AeL we shall denote by the same symbol the complex linear extension
Acg = C with Ala, =0 Let 7, G — L(V) be the finite dimensional class
one representation with highest weight A€ L, and let v e V be a K-fixed
unit vector. The corresponding zonal spherical function is

d),\(x) = (RA(X) Vo U())-

In particular we have the zonal spherical functions ¢, ..., ¢, correspon-
ding to the fundamental spherical weights A, ..., Ay.

We shall need some information on the shape of the functions ¢,, A € L.
First we define a partial ordering on L: if A,A,eL write A, <A, if
A, — A, #0 and is a non-negative integral linear combination of the
positive roots in  (not just ¥,). As usual, for A€ L, there are just a finite
number of A’e L satisfying A’ < A [Hu, p 70]. Let W, denote the Weyl
group of g with respect to a, [H, p 244]. For AeL define 0, :4 - R
(A =expa,) by

2 oA@) = [W(A)] ' Z{e=* "% e W}

where W(A) = {weW|w-A = A} and [X] = card X. Since G = KAK,
we see that ¢, is uniquely determined by its restriction to A.

Lemma 3. Let AeL. Then there are constants c¢(A) >0 and b(A’) = 0.

(AMeL, A" < A) such that

d),\(a) = C(A) oA(a) ap ZAreL, A <A b(A’) UA/(a)

for allae A.

Proof. Let m, : G — L(V) be the finite dimensional class one representation
with highest weight A, and suppose V is equipped with a positive definite
Hermitian inner produt ( , ) such that the adjoint of =m,(x) is =m,(x)* =
= my(6x~"). Let p,,...,p, be the distinct dominant a,-weights in ¥V and
let P(u,) be the orthogonal projection onto the eigenspace in V' correspon-
ding to ;. Since M centralizes a,, P(u;) commutes with the n,(m), me M;
thus the expression

nA(W) P(ﬂi) 1IA(W_ 1) = P(w- “i)
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makes sense (we W, = M*/M where M* is the normalizer of ¢_in K). Now
the other weights of a, in V are of the form w-y, (we W,i=1,...,q9) and
it is easy to see that P(w- ) is the corresponding orthogonal projection.

Now let v e V be a K-invariant unit vector. Then for each i — e . q,
P(p;) vy is an M-invariant eigenvector of exp(a,). Thus we see that if
P(u;) - vy, # 0 then pu, must satisfy the integrality condition of lemma 1, that
is g€ L. On the other hand, it follows as usual that each A — y is a
non-negative integral linear combination of the positive roots of o [Hu,
p 108].

Now for ae 1 = exp a, we have

PA@) = (mp(@) vy, v5) = Z,, (P(w- p) vy, v,) e =% #ellosa>

Hi

= ZA/ ZweWs [W(A,)]‘l (TCA(W) P(A/) nA(W_ 1) s UO) e<W‘A lloga> __

== Z:A’eL, AlSA (P(A') Uo» Uo) UA’(a)-

VAT < A set
b(A") = (P(A") vy, v5) = (P(A) vy, P(A') 1) = 0.

On the other hand for A’ = A, let v, be a highest weight vector of unit
length and set

oA) = (P(A) v, P(A) vg) = (0, )" = { j (v my(K) 1, dk}2 :
K

= f (mpky) v, mp(ky) ) dy i, = j e~ A+20H0n ) gy )
K xK N
(Here we have used the fact that the space of K-invariant vectors in V is

is one dimensional - [WI, p 210]; the last equality was proved in the pre-
ceeding lemma.).

Let us note that the constant ¢(A) is explicitly computable [WII, p 326].
Also the sums ¢, have another significance which is of some interest. Let
A denote the semi-direct product of 4 and W, (with W, acting on A as usual).
For any A :a, —» C define 6, by the same formula 2. Then the functions
oA(_l)‘1 "o, are precisely the zonal spherical functions for 4 (with respect
to the maximal compact subgroup W).

Let,al,...,al be the sums (2) corresponding to the fundamental
spherical weights A, ..., A,.

Lemma 4. The space of finite linear combinations of the o,(A€L) is> a
free polynomial algebra on the generators Oy, ..., 0y (pointwise multiplication).
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Proof. (see [St, p 62]). If A, A’eL then

oy 0, = [WA] ' [WA)]' S exp w(A + sA').

s, weW
Choose w, € W, so that M, = w (A + sA’) is dominant. Then A e\ o MyB
=(A—=wA) + (A —w;sA’) is a sum of positive roots, and it is a non-
trivial sum unless w, € W(A) and w,se W(A') [Hu, p 68].. Similarly we
see that W(A + A') = W(A)n W(A)). Now M =A + A’ if an.d. only if
s = w; 't for some w, € W(A) and te W(A') and any decomposition of s
like this is of form s = (uw,) ' (ut) with ue W(A + A’). Thus

card {MIM_ = A + A"} = [W(A)] [W(A)]/[W(A + A)].
From this we see that

G i By T h R A B <o, G Tp-

Now if AeL write A =n A, + ... + ngAy so L g’{“,...,a L 4+ sum of
smaller (<) terms, and the result follows by induction on <.

Let us write P(4/W,) for the polynomial algebra generated by o, ..., a,
of lemma 4. Also let P(G//K) denote the vector space over R or C spanngd
by the zonal spherical functions ¢,, AeL. The field was left vague in
lemma 4 because it holds over any field (the ¢,, are integers). But for P(G//K/)
we need the fact that R or C are of characteristic zero (the c(A) and b(A')
of lemma 3 are rational with nontrivial denominators).

Corollary 5. The space of finite linear combinations over R or C of the
zonal spherical functions ¢,(A€ L) is a free polynomial algebra in the gene-
rators ¢, ..., ¢, (pointwise multiplication). .
Proof. [St, p 63]. Let B:P(G//K)— P(A/Ws). b'e'the. linear extension of
B(p,) = dplA. In lemma 3 we observc?d. that f§ is injective and actually does
take its values in P(4/W,). Thus to finish the proof we have oply to show
that B takes ¢,, ..., ¢, onto generators of P(A'/Ws),'or, what is the same
thing, that each g, can be written as a polynomial in the f(¢),), ..., f(¢y).
But lemma 3 says that

0 ('(Ai)il B(,) — DRI C(Ai)_l b(A") Tin
By induction on <, we may assume that ¢,(A’ < A) can be written as a
polynomial in the B(¢)) with A; < A,

Now we have a real analytic map ¢ : G — [R* defined by

¢(X) ¥ (¢1(X), veey d)ﬂ,(x))
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This map is far from surjective: since the coeficients of lemma 3 are non-
negative and each o, =21 on a positive Weyl chamber and o(1) =1, we

see that each ¢ (x) > 1. Obviously ¢(x) depends only on the K-double
coset containing x, but also.

Corollary 6. I/ KxK # KyK (x, y€ G) then ¢(x) # ¢(y).

Proof.  The proof is identical to that of lemma 6.20 in [H. p 433]. (We may
assume that G < G, a complex simply connected group, and then the
matrix entries of finite dimensional representations of G are dense in the
Schwartz topology on C*(G).

Next we will need to know about the Jacobian of the mapping ¢.
Lemma 7. [er H 15---» Hy be a basis for a, and define
J(a) = det (H, - @ (a)) (ae A).

Then

J(a) = T {sinh (llog aylie X5

(no multiplicities in the product) where
C— 2 [T {cAYli=1,...,8) - det CAJHD> # 0

(n=[Z7 ).

The proof of this lemma is identical to that of lemma 8.2 in [St, p 70].

Let g = k + p be the Cartan decomposition, so K acts on p via the
adjoint representation of G. Let I(p) be the algebra of K-invariant real
valued polynomial functions on p, and let I(a,) be the real W -invariant
polynomials on a,. To apply Mather’s theorem in this context we need.

Lemma 8. (Chevalley). (A) The operation of restriction p — pla, maps
I(p) isomorphically onto I(a,) [H, p 430].

(B) I(a,) is a free polynomial algebra in 3 generators [WI, p 134].
Wi, o Py €l(a,) are a (minimal) set of homogeneous generators i f and

only if
det (H; p(H)) = cHZEU CAIH) (c #0)

[C, p 134].
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Finally we come to the promised version of Mather’s theorem for‘G.
Let I(G) be the space of C* functions f on G satisfying f(k xk,) = f(x)
(ky, k, € K. xeG), equipped with the Schawartz topology.

Every f €I(G) can be expressed in the form
f(x) = F(@(x), ..., ¢9(x)) = ¢*F(x)  (X¢G)

for some F e C;“(P’L). Moreover the map ¢* :C}(RR) — I(G) is a continuous
split surjection.

Proof. Define the map f— f :I(G) » I(a,) (the space of Ws'inv.ar.iant G
functions on a,) by iy ==l (expiH)dLewopd, ot ,lng bg the minimal set
of homogeneous generators of I(a,) in lemma 8, and define p :a, - R% by
p(H) = (p,(H), ..., py(H)). Applying Mather’s theorem in this context, we
obtain a split surjection

Frs Fop:CXRY - I(a,).

We can also use Mather’s theorem (the original version without the compact
support condition) to write ¢, = ¢, o p (where ¢, are the fundamental zonal
spherical functions). Thus we obtain a C* map ¢ : IR* - R? with ¢ = ¢ o p.
However, since the ‘51- extend to entire functions on a,. 1t is easier simply
to construct ¢ directly.

First note that lemma 8 and [H, p 429] imply that p:a, » CYis a
(surjective, branched) convering with finite fibers. If Ae L and ¢, is the
corresponding zonal spherical function, let ¢,; denote the homogeneous
component of degree i in the Taylor series of ¢,. Then it is clear that
each ¢,; is a W-invariant polynomial and Z¢,, converges to ¢, uniformly
on compacta. Let ¢,, be the (unique) polynomial on C% such that ¢ AT
= ¢,;op. Then the series Z¢,, converges uniformly on compacta to give
an entire function ¢, : C* — C such that ¢, = ¢, op. Applyingto ¢, ..., ¢,,
we obtain a holomorphic map ¢ :C* — C¥% such that ¢ = ¢ o p.

Next we note that the Jacobian determinant of ¢ is given by

J¢ = cIl {sinh A/AAeX]} (¢ # 0).

In particular J¢ does not vanish on a neighborhood of the image R of
pia, IR%, so ¢ is locally one-to-one near R. Corollary 6 shows that ¢
is one-to-one on R, and lemma 3 implies that ¢ is proper on R. We wish
to find a neighborhood of R on which these properties still hold.

Let d(x,y) = |x — y| on R% and set

)
v,,= {x |x| < r and d(x,R) < %)) !
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Fix r = r, and suppose ¢ is not one-to-one on R U U, , for all n. Then we
choose x, e U, , and y,eR U U, , such that ¢(x,) = ¢(y,) and x, # y, for
all n. Now clearly ¢ is proper on R U U, , so the y, lie in the compact set
d)"(d)(Ur,n)) N(RoU,, Thus we may as well assume that X, converges '
to x and y, converges to y in R. But then ¢(x) = ¢(y) so x = y. Since
J¢(x) # 0 we can choose a neighborhood of x on which ¢ is one-to-one.
But then x, =y, for n sufficiently large, contrary to hypothesis. Thus we
can choose U, = U, , (n large) so that ¢ is one-to-one and proper on R U U,
Replace R by R U U, and repeat the argument with Ty EqsietcaidUsing
induction and a sequence r, > oo, we obtain a neighborhood U = U U,
of R such that ¢ is one-to-one on U. : :

Now ¢(U) is a neighborhood of the image #(a,), and o :p(U)> U
is defined and analytic. Thus we see that

FHF°¢0p:F°d;:Cj°(P9“)—>I(ap)

is a split surjection. In particular for fel(G) = CX(G//K) we have
f(exp H) = Fo ¢(exp H) (for all He a,)

which implies that f(x) = Fo ¢(x) for all xe G. The splitting of the sur-
jection

F Fo¢:C*RY) - IG)

is given by f - n(f) where 7 :Ia,) » Cj“([R’L) is the splitting for ¢* (i.e.
¢* on = id). :

Note that the proof above also shows that any W-invariant C*
function on 4 = exp a, can be extended to a (unique) function in I(G).

2. The Proof of Lemma 34.

Of course, there is no lemma 34, but | thought this was a very catchy
title. The object of this section is to obtain a simple lemma about an integral
transform; it appears in [Wa 2]. It is amusing to set the lemma in the
context of Euclidean motion groups.

Recall that the Euclidean motion group H is the group of isometries
of R" with respect to the standard distance |a — bl; we shall consider the
identity component. Fixing an origin in R", we can realize H as the semi-
direct product of the compact group K = SO(n) of rotations around the
origin and the normal subgroup P ~ R" of translations: the multiplication is

(k, x)- (ky, x,) = (kky, k7' - x + x;)  (kk, €K, x,x,€P).

Let 4 be a one dimensional vector subspace of P, let H:P — 4 be the
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orthogonal projection, let N be the kernel of H, and extend H, to the group
H!=iKsxPtby. H(kyx)=H(x)

Recall that a zonal spherical function ¢ on H is a function of the form
¢(x) = (n(x) vy, v,) (xe H) where n:H — L(V) is an irreducible (TCI)
representation (not necessarily unitary) on a Hilbert space ¥, and ¢, is a
unit vector which spans the space of K-invariant vectors in V. In the
present context we can also characterize them as functions satisfying
Palkxk,) = ¢,(x) (k,k, e K,xe H), $,(1) =1 and ¢,/P is a rotation inva-
riant eigenfunction of the Laplace operator with eigenvalue — A? [H, p 401].
Thus ¢, is some sort of Bessel function [V, p 5531]:

$ax) = T(1/2) /AN D2J . (Ar)
where xe P, 1> = |x|> = x} + ... + x}-and AeC. Again, if he A is a unit
vector and if we identify A € C with the linear function A : 4 — C, th — At,
then we have the formula

PAx) = f ARG g,
K

Now the ring of K-invariant polynomials on P is R[r?] where r’(x) =
=|x|> = x? + ... + x2. Mather’s theorem the tells us that we can write
any fel(H) = C*(H//K) in the form fix) = F(r?) for some Fe C*(R).
Now the spherical transform of f is given by

P i) f o el

PRI 5ot f I o= 22 (AP F(r?) 7% dr =
0

= f Ll d D dy o

= J . (S"Z)j F(t* + v?)u" % du dt.

0

TR

(Here we have used integration in polar coordinates twice, on the second
line for P ~ R" and on the fourth line for N ~ R" " !. Also u represents
the radius in N and ¢ is a parameter for 4 as above). Motivated by the last
line, we now make the.

Definition. If feC*(R"), R* = [0, oc), define

T(f) (@) = 001(5"“1)j“ fe +u?)u ' du.
0
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The following lemma appears in [Wa 2].

Lemma 10. T, :C®(R*) - CX(R*) and T,o D = D o T,(D = d/dt). Moreo-
ver : 3014

B DT T

(2 T, :CP(R*)—> CP(R") is bijective with inverse (— 1/=D)",

(3) T,,,, is bijective 'with inverse

(= 1/aDy** o T, = T,o(— 1/nDy'*1.

Proof. The first statement is clear; in fact if supt f < [0,a] then supt
T(f) < [0,a]. Also T,oD = D oT, says merely that it is permissible to
differentiate under the integral sign (and D/t + u?) = 1). The assertion (1)
is just integration by parts, once you recall the formula for the volume of
the sphere, vol (5"~ 1) = 2n*2I'(n/2)~'. For (2) we use (1) and >

(= 1/m) DT,(f) (1) = 2Jw — [t +v?)udu = f(2).
0
For (3) we use (1) and T, 0T, = T, and then (2):

TUHE) 2 4Jw fm f(x + u? + v dudv = T,(f) ().
0 0

As a corollary we have the following Paley-Weiner theorem for Bessel
functions. :

Corollary 11. Let  be a complex valued function on C = {A|A:4A—C
is real linear}. Then s is the spherical transform of some f elI(H) if and
only if :

(1)  is holomorphic and Y(A) = Y(— A).

(2) For each m =0,1,2, ... there is a constant C, > 0 such that

WA < Cy(1 + [A) ™™ exp (2R [m Al

Proof. As we have seen, the spherical transform of f e I(H) is given by

o0

falt) = ‘[ el () 8
Now by lemma 10, T,_,(F)(t?) is an arbitrary C® function of t?, and by
Mather’s theorem applied to the group t — + ¢ acting on the line R, we
see that t » T,_,(F)(¢?) is an arbitrary even C* function. Now the result
follows from the classical Paley-Weiner theorem for the line.
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Note that by the first line of the proof of lemma 10, the R which occurs
in corollary 11 can be taken to be

R = inf {r| f(x) = 0 whenecer |x| > r}.

It is also possible to obtain the Fourier inversion formula for these Bessel
transforms (by methods similar to those of the next section) and to study
other function spaces (by extending the domain of T); however I choose
not to do so.

3. The Paley-Weiner theorem for rank one semi-simple groups.

The results of this section (as well as the previous one) are due to Nolan
Wallach [Wa 2]. Let G be a semi-simple Lie group and fix an Iwasawa
decomposition G = KAN and write x = x(x) exp H(x) n(x) accordingly (x € G,
k(x)e K, H(x) e a,, n(x)e N). We assume that G is connected and dim 4 = 1.
We also have the Cartan decomposition G = KAK, so define A(x) by x = k,
exp A(x) k, (xeG, k,, k,eK, A(x)€a,; note A(x) is only determined up
to the action of W, up to a + sing).

As usual, for H €a, set 2p(H) = tr(ad H|n). Then the zonal spherical
functions are given by

¢A(x) =Jv eUA—PHEK) gl
K

[H, p 432]. Using the integral formula associated with the Iwasawa decom-
position [H, p 373], for fel(G) = C*(G//K), we have

PAf) = J P A(x) f(x)dx =

=f e"<“|">'e<”'”>"[ f(exptHexp X) dX dt.
n

— oo

Thus define [H, p 378]

F(t) = e<”’”>‘f f(exptHexp X)dX.
n

We wish to study the Abel transform f ~ F,:I(G) - I(a,) in some detail.
(In the case where G = SO (n;1) it can be shown [V, p 524] that

¢4 (exp tH) = (3sinh t)! ~"2[(n/2) 2} ", (cosh 1)
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where {AlH) = 1 and £ is the associated Legendre function and we have
identified iA with (iA|H) e C. If we write f(exptH) U F (cosh t) and make
use of the integral formula associated with the KAK decomposition [H,
p. 382] we find that

G ) =2~ Y3(m — 13- U2g2 j " (= 1D P, () Fx) dix)

1

In order to compute F,, we will apply Mather’s theorem. Referring
to the proofs of corollary 5 and theorem 9, we see that any f € I(G) can be
written in the form f = F o where Fe CX(R) and ¢ is the K-biinvariant
extension to G of the function

a(a) = cosh (A,|log a) (ae A)
(where A, is the fundamental zonal weight) Now let % = {4, 1/2} be the
set of positive restricted roots (so 1/2 may not be present). Define p =

= m(4/2) = dim#*? and q = m(4) U dimn*. Define the quadratic form Q
on the Lie algebra g of G by

0(X) = — (2p + 89" B(X, 6X)
(where B is the Cartan Killing form; note that p may be zero but g > 0).
Note that A, = A. It is convenient to parameterize A by exptH where
(A HY =2
Lemma 12. (I) If p=0 and X en’ then
o(exptHexp X) = cosh 2t + e*Q(X).

() If p#0, Xen*? and Y en* then
1 26
o(exptHexp(X + Y)) = 2<cosht + TQ(X) e’) -1+ Q(Y)e*

Proof. (I) Fix Xen*. Then X, 60X and H span a Lie subalgebra of g
which is isomorphic to si(2, R). Now we can assume that G is embedded
in a simply connected complex group. Then there is a homomorphism
p:S22, R) -G such that fo0 =60f and

ﬂ(g 2 )—exptH (@ =€) and ﬁ(o ‘11>=epr

where g is determined (almost) by

o =0.(g &) -5
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(Note that Q o is a multiple of the corresponding function Q, on si(2, R)
and Q(H) =Q, (1) _(1) =1 so the constant is one) Now ooff is a
K-biinvariant function on S2(2, R) (K, the maximal compact subgroup)
which agrees on A with

a 0

0=

2

2

a aq
0} tant

= cosh (Alloga) + ;—e*’"""g” q* = cosh 2t + e*Q(X).

cosh (Alloga) = %(a2 +a?= é_
HS

Thus

o(exptH exp X) =

L |
2

HS

(IT) Now suppose p # 0 and fix X en”? and Y en’. Then like above
[Wa 1, p 257] there is a homomorphism S : SU(2,1) » G such that f.60 =
= 0o and

BlexptH,) = exptH, f(exprA) = exp X, p(expisB) =exp Y

where
0 0 0 0., =141 0 00
H. =180 301, A= 0 0]}, B=|0 -1 1
0 1 10 1 00 05—l o

Similarly to the above we find that r and s are determined by
2r* = Q(X) and 2s*> = Q(Y).

Now again o of is biinvariant with respect to the maximal compact sub-
group of SU(2,1) and agrees on A with

) 11 0 0 : 1
cos h{AltH,> = cosh2t = — || 0 cosh? sinht L,
2 : 2
0 sinht cosh¢ | HS

2
straightforward but slightly arduous computation, that

1
We find that exp(rd + isB) =1 +rAd + (— rt + is)B and then, after a
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’exptH1 (1 +r4 + (%r2 + is)B)
|

= cosh2t + rP(e® + 1) + %r“ez' + 2s5%e? =

2

1

o(exptHexp(X + Y)) = 5

e
ns 2

= 2<cosht + —}Q(X) e‘>2 — 1+ Q(Y)e*.

(Hint: where a = exp tH,, first show that 4, a- 4 and a- B are orthogonal.)
Now we can compute F () (defined at the beginning of this section).
If fel(G) write f = F oo(Fe C®(R)). We normalize the Lebesgue measure

on n* and n*/? to be the Euclidean measures corresponding to the Euclidean
structures defined by Q.

Lemma 13. (i) If p =0 then
F, (1) = T(F) (cosh 2t)
(i) If p#0 then
F(t) = 2°T((T,F) o U)(cosht), where U(x) = 2x* — 1.

Proof. (i) First note that {p|H)> = q. We compute the integral over 5 in
polar coordinates. Thus

F 1) =" j F(cosh 2t + e*Q(X)) dX =
n
= e vol (S7~ ’)J F(cosh 2t + e*r?)ri~' gr =
0
= vol (S"")f F(cosh 2t + u*)u?™ ' du = T(F)(cosh 2t)
0

(where r = Q(X) and u = €'r).
> 1
(i) Now suppose p # 0, so{p/H) = 5P +a Let r* = Q(X) and s* =
= Q(Y). Then

F () = v J F(2(cosht + %e’Q(X))Z — 1+ Q(Y)e*)dXdY =
n

78
e R vol (S~ 1) vol (S 1) x
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X J f ‘F(2(Cosht + %—e’rz) 1l ebed!s) rP 50T dndse=
o Jo

= 2P vol (SP~ ") vol (877 ') x
X J J F(2(cosht +-r?)? — 1 4+ s))rP s ' drds =
= 2? T((T,F) o U) (cosh t).

Corollary 14. A complex valued function  on {A|A :a, — C is real linear}
is the sphericall transform of some f elI(G) if and only if

(1) ¥ is entire and Y(A) = Y(— A).

(2) For all m>0 in 7Z there is a C, > 0 such that

W(A) < C,(1 + |A)""exp (2R [Im Al),

for all A.

Proof. When p =0 one merely has to observe that T(F) (cosh 2¢) is an
arbitrary CZ function of cosh2:, and by Mather’s theorem (applied to
W, acting on a,) this is an arbitrary even C function of t. When p # 0.
Note first that cosht + r? > 1 always, and U:x—2x*—1.is a dlffeo-
morphism on a nelghborhood, say (L, o0), of this domain. Thus (T,F)o U
is a typical function in C2( [3, ) and then, as above, F ;(t) is an argltrary
even function of t e R. Now the result follows from the classical Paley-Wiener
theorem upon observing that

PAf) = r ¢! <M1 F (1) dt.

If one exercises more care in keeping track of the supports, it can be
shown that the R which figures in the corollary is given by

R = sup {t| f(exp tH) # 0}.

The proof given above is due to Wallach [Wa 2] and the result is originally
due to Helgasson [H 2] and Gangoli [G].

4. The zonal Plancherel theorem in rank one.

The objective of this section is to obtain the Plancherel measure for
inversion of the spherical transform on a rank one semi-simple group.
The result, of course, is due to Harish-Chandra [WII, p 338, 303]; the point
here is that we obtain it by entirely elementary methods.
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Let G. be a connected rank one semi-simple group, and, without loss
of generality, assume that G is a real subgroup of a simply connected
complexification. Let # = {A:a, - RIA is real lmear} Recall that the

Plancherel measure is a positive measure u(v)dv on & such that (with A =
=VA))

fx)'= f o ,(f) B,() u(v) dv

for all fe I(G). Note that it suffices to obtain the formula for x = 1. Then
for any other x consider the function

) j f(xky) dk.
K

We have f(x)= f(1) and ¢,(f) = ¢(f),(x"") = d,(f) §,(x), so the

result for y = 1 implies the formula for all x.

Now since F, is an even function we change the formula for ¢ (f)
into a Fourier cosine transform:

o LS} = 2f F (1) cos (2vt) dt
0
Then we may invert the cosine transform to obtain

F (1) = % jw o, (f) cos (2vt) dv.
0

The idea is to apply the inversion formulas of lemma 10 to the formulas of
lemma 13, and apply these operations on t under the integral sign in the
proceeding expression. This is permissible since ¢ (f) is rapidly decreasing
in v (corollary 14). The problem splits into four cases according to the parity
of g and 1p

For the first case, assume that p =0 and g is even. Define ¢, on
F x {zeRiz > 1} by

¢,(v, cosh 2t) = cos (2vt)

Then we have

F/(6) = T(F) (cosh 20) = — r 6.(f) (v, cosh 21) dv

and with ¢ = 2n
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S EGEEE

al~

f(1) = F(cosh0). = (—

o (‘ %> fi ) D7 - oy, 2) dv

&

(where D'} - g(z) = ((d/dz)" - g) (1)). Thus to compute the Plancherel measure in

this case we must find the Taylor series at z =1 of ¢ (v, z) = cos (vcosh™! z).

To find the Taylor series of ¢, we use.
Lemma. 16. ¢§(v, z) satisfies the ordinary differential equation
(2 = 1) ¢ + 2 + V', =0
v, 1) =1, di(v, 1) = — v2

Moreover if ¢ denotes the kth derivative of ¢, with respect to z, then
there is a constant C, > 0 such that

lpg'(v, 2) < C(1 + W)**(1 + 2)7*

for all veF and all z > 1.
Proof. We have

cos 2vt = ¢(v, cosh 2t) — 2vsin 2vt = ¢i(v, cosh 2t) 2 sinh 2t — 4v? cos 2vt =

= — 4v2¢ (v, cosh 2t) = P(v, cosh 2t) 4 sinh? 2t + ¢ (v, cosh 2t) 4 cosh 2t.

Now the differential equation follows upos replacing cosh2t by z in the
fourth equality above, and the initial condition results from applying
I’Hospital’s rule to the second equality.

" As for the inequality of the lemma, the cases k = 0 and k = 1 follow
easily from the first two equations above. For genera] k, assume first that
z>a>1; in this case we can obtain the stronger inequality

k
(17) PPy, 2) < (Z J_' }) C(1+ )y +2)7*

(where C, > 0 depends only on k). To get this, we change the differential
equation into a recursion relation by differentiating with respect to z, k
times:

(18) (22 = 1) %*D + 2k + 1)z %" + (v + k*) ¢ = 0.
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Now for z >a > 1 we have
z2 -1 <(@+ fa—- 1)1 + 22
Assuming the inequality (17) for k and k + 1 we have

¥+ D, z)| < (22 — 1)"H{(2k + 1) z|p%* Vv, 2)| + (v* + k?) 19¢®(v, 2)} <

< Z“:i 1+ z)‘Z{(Zk Al ¢ z)CHl(

a+1 14|y !
a—1 1+:z

2 2 a+1.1+|v|k
+(v+k)c"<a—1 1+z =

k+2
< (Zf i) {2k + 1) C,, (L + WD +

+ (VP +K)CA+ A+ 27?2

The inequality (17) now follows by induction. To obtain the inequality
of the lemma near z = 1 we must first solve the differential equation.

Lemma 19. ¢, has the Taylor eScpansion, valid for |z — 1| < 2, given by

Po(v, 2) = i afz— 1y

n=0

where

L(n+iv)I'(n —iv)(— 1)"ﬁ :
@) I'(=ivn!'T <n + %) 2

o

Proof. One merely applies the standard theory of regular singular points
to the: differential equation in lemma 16 at z =1 [WW, p 197]. The
indicial equation reads (2a — 1)a = 0 and we must take o = 0 to satisfy
the initial conditions. Then the recursion relation is

an+1 o7 ST an'(vz + nz)/(zn + 1)(" 35 1)
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which gives the result. (Alternatively, note that the substitution w = (1 — z)
changes the differential equation of lemma 16 into the hypergeometric diffe-
rential equation, and the the initial conditions imply that

do(v, 2) = LF (iv, — iv, 5: (1 — 2)).
See [WW, p 283])
Completion of the proof of lemma 16. Now we note that for z > 1 and

sufficiently near one, the Taylor series for ¢ is an alternating series.
Explicitly, the ratio of successive terms is given by

m+1)(z=Da,, /n+1—-ka,=(—130:z—-Dm* +v)n+1—-k(@n+3)
Now it is not hard to see that

(n* +v)/n+ 1 — k)(n + %) < + vz)/(k + %) (n > k)

for k > 2 (graph it). Thus we see that when
0<(z—1) <tk + 1/2)/(k* + v?)

Fhen the Taylor series for ¢ is an alternating series. In particular |¢®)(v, )|
is dominated by the first non-zero term (at n = k), that is

Tk + iv) Tk — iv) /n
Iiv) (= iv)T <k + L) Qk

[0, 2)| <

2
< (k* + v < k(1 + |v))%*
forik > 2, 1'€ 26 ars k' L2 IR2 & )it

This gives the inequality of lemma 16 when 1 <z <a. To get it for all
other values of z we substitute this value of ¢ into the inequality (17).
Note that

(@a+ Vfa-1) = (k + % + 2k* + vz)/<k + ;_)

and this, together with (17), gives the result of lemma 16.
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Note that the inequality in lemma 16 justifies performing the diffe-
rentiation under the integral sign in (15). Before we state the Plancherel
theorem in this case, p = 0 and g even, let us note that we have implicitly
chosen a Haar measure for G. Namely dx = e*? dk da dn where dk has
total volume 1 and da and dn are the transport of the Euclidean measure
determined by Q.

Lemma 20. For G = SO(2n + 1, 1) the zonal Plancherel measure is given
by

iy = j o (f) u(v) dv

where

i I'n+ iv)I'(n — iv)
I'iv)T(— iv)F(n + 17> 28

wy) =m

Proof. Use the formula for a, of lemma 19 in formula 15.
Now let us turn to the next case, p =0 and g = 2n + 1 is odd. The

formula analogous to (15) is

1 d n+1
(21) f(l) T <— N —F) Tl T2n+1(F) (Z)\z=1 T

o vdz

=2(— 1)"*! (%)n Jw o (f) <-déz_>n J: do(v,z + u?) dul,_, dv.

The inequality in lemma 16 implies that it is permissible to exchange the
order of integration with respect to v and u and to differentiate under the
integral sign. Explicitly, set

¢,(v,2) = Jd (v, z + u) du.
0

Then lemma 16 gives us

% (%)" ¢,(v,2) < r lge+ D (v, z + u?) du <

0

= Cn+1(1 + ]vl)3n+3j‘ du/(l g u2)n+1 <
0

< CL+ PP + 272
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(where, in the first inequality, we have interchanged the order of integration
with respect to u and differentiation with respect to z, which is again
justified by the inequality of lemma 16.) Thus again we can find the Plan-
cherel measure in this case by computing the Taylor series for ¢,.

Lemma 23. The first Taylor coefficient for ¢, is

v sin 2vt
dt

1 T 4
v,1) = — = — ——vytanhnv.
?:0-1) d s L sinh ¢ 2.2 :

Proof. We have

¢, 1) = Lm Po(v, 1 + u?) du
and
@o(v, cosh 2t) = — v sin (2vt)/sinh 2.
The first equality follows upon making the substitution
u = /2sinht, 1 + u? = cosh 2.

As for the evaluation of the integral, we shall not stop to do it here, but
will compute a similar integral later in lemma 29 (see [WIL, p 340)).

Lemma 24. ¢ (v, z) satisfies the ordinary differential equation
7, ” ’ 1 2
(z — o7 + 224 + T"'v ¢, =0

o,(v1) = — (n/Zﬁ) v tanh 7.
Thus ¢, has the Taylor series expansion

dv2)= Y afz—1y

n=0

1 > 1 3 n+ 1
F<n+7+zv)l"<n+7—w>(—l) m
a, = : vtanh. v (z — 1] < 2).

r(% b )r(% gt iv> 2n)? 2,/

~
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Proof. From formula 18 we see that ¢, satisfies the differential equation
(ZZ—1DA"+@+bA +cA=0

with a =3, b=0 and ¢ =1 + v2. Moreover ¢, satisfies the inequality
|A®(Z) < C(1 + 2) %1 (z > 1). Now ¢, = B when A = ¢, where

B(z) =fw A(z + u?) du.

0

Because of the inequality, the formulas of lemma 10 remain valid, and in
particular

B(z) = — 2J Az + v uldu = 4/3j A"(z + u?) u*du.
0 0
Thus we obtain

oe}

(2% - DB'(z) = f ( +u)? = DAz + ) +
0

+ W — 20z + uH) A"z + u) du =

=Jw —[(@a=1)(z+u? +blA(z + u?) —<%+ C)A(Z+ u?) du
0

and

[l@—-1)z+b]B(2) = Jw [@—1D)@E+u) + b4 + ) +
0

+ %(a — 1) Az + v?) du.
Thus B satisfies

@ -1)B@+(@a—-1)z+bB +<%+c—%a>B=O.

This gives the differential equation of the lemma when a =3, b =0 and
¢c=1+v2

To solve the differential equation we apply the theory of regular
singular points at z = 1. The indicial equation reads 20> = 0 so one solu-
tion is holomorphic and the other.has a logarithmic divergente at z = 1;
since ¢, is clearly bounded, we must take the holomorphic solution. Then
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the recursion relation reads
2
a,,=—a, ((n + —%) + v2>/2(n + 1)2
This, together with the value for @, given in lemma 23, implies the result.

Corollary 25. For G = SO(2n + 2, 1) the zonal Plancherel measure is given

by
'y Lww)r ]
n+2 v n+7—1vv

uyv) = g gz - v tanh nv.
(s I s o Ll n \pnt1
F(z +1v>r<2 1v>2\/§n.n

Now we turn to the «ase p # 0. Then p = 2k is even and g = 2n + 1 is
odd [WI, p 33]. (These computations break into two cases later according
to the parity of k.) Define A4,(v,w) and B,(v,w) (w > 1) by

A2 oty =2 oh e (2= 1)

B,(v,w) = f A (v, w + u?)du.

0

Now with w =2z — 1 or z = \/3(w +1), lemma 16 tells us that
4,00, W)l S €L 2 4 2) 75 20 5
< C(1 + P31 + w) %!

In particular the integral defining B, converges. We shall also need estimates
for the & th derivatives (with respect to w) A® and B®.

For this, note that if w = 22> — 1 then d/dw = (4z)"'d/dz. Then by

induction .
L+1 -1 L+1-m

d L Z ¢ Z—Q,-l—m _d_

dw w0 dz

Applying this to ¢¥ we have, by lemma 16,

AR 52 _ iy _I_.LQH ®(y, 7)| <
|4, 22 )l |4z r ¢o'(v, 2)| <

E=) |cm| Z—R,—l—m Ck+2,+1—m(1 5 |v|)3k+32,+373m(1 2 Z)—k~2—1+m <

SoGig( b [k 1284 ant12had,
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Substituting z = /%(w + 1) we have

JA®, W < Cogll + ™31 + W)™ 24271 (w2 1)

This inequality allows us to differentiate under the integral in computing
B®. Thus

B®, w)| < f A+ b
0

< Ck.?,(l i ’v|)3k+32+3J‘ (1 B4 uz)-%k—l—l du <
0

Recall the formula for F, derived in lemma 13. Thus if we know .F
then we can compute f(1) U F(1)as. follows: First set G,(cosht) = F (t

<~

~—

- (by Mather’s theorem, since F, is even). Next define G,2z* — 1) =

= (d/dz)* G,(z) (p = 2k). Then

PV Bl o r (%)m G,(w + u?)dul,_,

0

(where g = 2n + 1). Now with

F (1) = -:?J‘w ¢ (f)cos (2vt) dv

the above inequalities imply that we can perform the operations on F,
under the integral sign, on cos (2vt), to obtain

(26) fl) =474 n)"""’lifn ¢,(f) BP(v, 1) dv.

n

(Note that ¢,(2v, cosht) = cos(2vt)) Thus we see that to obtain the Plan-
cherel measure in the present case, we need the Taylor coefficients of B,
at w=1.

To obtain the Taylor series for B, we use the differential equations.

Lemma 27. A, satisfies the differential equation

2
(w? =4yt (4 3w+ k) 4 +<v2 +<%k+ 1) )Ak .
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and the recursion relation
8w+ 14, + 124, =4, .,

B, satisfies the differential equation
1
wW* = 1)B; + ((k +2)w + k) B, + <v2 + T(k + 1)2>Bk =0

and the recursion relation
8w + 1) B, + 8B, = B, ,,.

Proof. Let us abreviate the notation and write ¢ for ¢¥(2v,z), AX for

AP(v,2z2 — 1), and w =222 — 1 so d/dw = (4z)" ' d/dz. Then we have
oD = 424,
%D =44, + 4°2°R,
e+ = 42 x 324, + 43234].

Applying formula 18, we get

1

0:42

[ = DD + @k + 3z ¢ + @7 + (k + 1) @4 "] =
0 0

— 4287 — 15 QPP L -G g0t — 1 - A+
+ 22k +3)(222 — 1 + 1) 4, + 4* + (k + 1)* + 2k + 3) 4,.

The differential equation now follows upon substituting w = 2z — 1 and
simplifying. As for the recursion relation, we have

Appr = (@42)7 %D = 124) + 162247 = 8(w + 1) A + 124,

The differential equation for B, follows from that for A, and the proof
of lemma 24. As for the recursion relation,

lee]

B, ,(v,w) = j 8(w + u® + 1) Ay(v, w + u?) + 124, (v, w + u?) du =

0

aoC

= 8w+ 1)B; + 12B, — 4f — 2u® Aj(v, w + u?) du.

0
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Now proceed as in the proof of lemma 24 using the formulas of lemma 10.
The next step is to solve the differential equation for By,

Lemma 28. B, has the Taylor expansion, valid for |w — 1| <2,

B(v,w) = ) b, ,(w— 1)
n=0

where
b _ (S D470 +4 4 3k +iv) n+ 4 + 3k — iv) Tk + 200) T(k — 2i)

ko 2 Fnltn + TGk + i T k — ) B
and

F(L + iv)_2 I“(L — iv>‘2 Bo,0 () enge)
2 2
ﬁk =

ra+ivy*ra - iv)‘ZL

57000 (k odd)

(We have yet to compute by, o, and b, o)

Proof. The indicial equation at the regular singular point w =1 reads
20 + k) = 0. Thus the bounded solution B, must be a constant multiple

of the solution corresponding to o = 0. The corresponding recursion
relation is

1 i} $
byyry = = bk,"[<n i +7k> + vz]/Z(n +)m+k+1)

Solving this recursion relation we obtain

1 1 1 1
: s 5
F<n+—2 o k+lv)l“(n+~2 + 5 k 1v>( 1)"k!

ken—= by, o
: 1 1 I 1 i ) 2 ! i
: F7+7k+1vr7+7k—lv nl(n + k)!
Now we evaluate the recursion relation satisfied by B at'w = 1.

bis2,0 = Biys(n 1) = 16B;(v, 1) + 8B)(v, 1) = 32b, , + 8b, ,.
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Applying the preceeding recursion relation to b, , and b, , we get
1 1N 5
<1 o= 7 + 7 k> + v
bk+z,0:8<_ k42 +1>'bk,1=

1 1
2 2 2 2
vi+—(k+1) vi+—(k+1)

k+2 ' k+1 ko

Solving this recursion relation, we obtain for b, , the expression

1 1 1 1 \2
2k <2 2k+1v> F<7+7k_,v> b k
k! 1 1 2 0,0 (k even)
1"( +zv) F(——iv>
< 2
1 1 N | \2
k-1 F(7+7k+lv) F<7+7k—zv)
k! T(1 + i) T(1 — iv)? by, (k odd)

\

Now the lemma follows when this value for b, , is substituted back into

the expression for b, , and the result is simplified using the Legendre dupli-
cation formula

Tz + 1/2) = /x [(22)/2%* 1 I\(2)).

So. now we come to the computation of b, , and b, ,. Substitute u=
2sinhx so 1 + u? =1 + 2sinh? x = 2cosh? x — 1 and

A (1 + u?) = (4 cosh x) ! ¢+ D(cosh x).

This yields

b, o = Bfl) & f A1 + u*)du = J4£ f @%*D(2v, cosh x) dx =
0 0

{ k+1
= f(smhx dx) cos 2vx dx.
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Lemma 29.

byo = — A4£ f 2vsin (2vx)/sinh xdx = — A4£ nv tanh 7y

0

bo=— # L [4v? cos 2vx - sinh x — 2v sin 2vx - cosh x]/sinh3 x dx =

= + # nv3 coth mv.

Proof. [WW, p 118] We shall only prove the last equality; the derivation
of the formula for b, , is similar, but much easier. Substitute e* =t so
dx = 1/tdt. Then

= 4 o
adl b, = 2vCos ... =
) il

:J B + 172007 — it 2387 -0 + D] -1 d
0
For zeC let

(— 2)* = expa{log|z| + iarg(— z)} with —n<arg—z<m
We consider the contour integral

‘[ [A(— 2" — (- 9722 — Dz + 2(— 2> + (- 272 +

(6

+1)z](2 - 1)"3d:

where C is the contour pictured below

(oN
(indentation
atz=1)
C; Ll
c, fﬂ
\
C, L,
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In fact, instead of assuming that v is real, we can make the weaker assum-
ption that v = o + i with || < 1. On the small circle C, centered at the
origin (of radius 4, say) the absolute value of the integrand is < const - §! ~ 2/#!
so the contribution from C, tends to zero as 6 — 0 provided || < 1. On
the large circle C, (of radius R, say), the absolute value of the integrand is
< const- R **?¥! 50 again the contribution from the large circle tends
to zero as R — oo when [f]| < 1.

On the horizontal line L, from § to R just above the positive real
axis with an indentation at z = 1, we make the substitution

—z=te ™ with 0<argt <m.

Then
(—2f=te™ and dz=ade
Similary on L, (just below the real axis) we substitute
—z=te™  with —n<argt<0
(— 2 =tetr® and dz = dt.

Then a one line computation shows that the contribution to the contour
integral from the two horizontal lines converges to

(= 4/\/§V)b1’0.(e2nv — e™2m),

Next we compute the residue at = = — 1 of the integrand. The result is

2v%i = Res,_ _, {4\)((-— :Zi‘: :(1;2:)4\”‘): .\

(G G B % amic Bliid ) }

=17
Finally we must consider the contribution due to the small semi-circles
semi-circles centered at 1. If we make the same substitutions as in the pre-
ceeding paragraph we find the integrands become
[t — D@+ D] 3{[@v + 2i)t2+3 + (— 4y + 2i) g2t ]ty 4
g [(_ 4y + zi)t—2vi+3 = (4V i 21) t—2vi+1]e?2nv}_

(where the top sign refers to the semi-circle above the real axis and the
bottom sign refers to the lower semi-circle). Carrying out a binomial expan-
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ston around t = 1 on each term above, we find that both integrands have
the same Laurent expansion at t =1 up to (1), given by

(eva + e—27“') {%([ o 1)_3 + %([ — 1);2 + Vzi(t o 1)_1} + 0(1)

Thus we can deal with the contribution of the two semi-circles as we would
a pole (of order three, encircled in the negative direction). The contribution is

4 znv2(e2nv o e—ZnV)

in the limit as the semi-circles shrink to 1.
Adding the various contributions to the contour integral, we find that

I vodz =21 - 2v3% = — 4my? =
c

£ (_ 4/\//5 v)bl,o(eZRv =S e—2nv) L 27'[\’2(827“' + e—2nv)
or
b, o = + (v/2/2) nv* - 4 cosh® nv/2 sinh 27y,

Now we are in a position to write down the zonal Plancherel measure
for the remaining rank one groups. But firt it seems worthwhile to simplify
the results. First we note that I'(@ + iv) I'(a — iv) = [I[(a + iv)>. Next note

that
1 ;
‘l’" <7 + lv)

1 v (iv)|? 1 1 TG + )

ITA +w)* TG + )7 — 4aTQWIZ ~ TG + w)* [T

2 '
/ IT(iv)|?> = v tanh 7y

and

[WW, p 239, 240].

(The first formula follows from I'(z) I'(1 — z) = n/sin 7z and the second
is just the Legendre duplication formula applied to [T(2,/— 1 v)2) Making
these substitutions in lemma 20 and corollary 25 and putting the results
of lemmas 28 and 29 into formula 26, we obtain. /
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Theorem 30. The zonal Plancherel measures for the rank one groups are
given by

<2 TGa + )

M) = ) T (iv) 2

(if p=0)

o) = L _ N2 TGa+ip+ P ITGp + 2i)?2
KV = (2m)° T(c) ITE p + )2 TQ2iv) 2

(for p #0). Here q = m(4) and p = m(}/2) and ¢ = 1(dim G — dimK).

(Let us recall that we have normalized the Haar measure dx on G
according to the Iwasawa integration formula dx = e2? dk dadn, where
fdk =1 and da and dn are the transports of the Euclidean measures deter-
mined by the quadratic form Q(X) = — (2p + 8¢) ! B(X, 6X) where B is
the Cartan-Killing form.)

If one expresses the I'-factors as a monic polynomial x (1 or tanh or
coth), then the constant becomes ,/2/(2n)T(c). It is reassuring to note
that Roberto Miatello has obtained recently the constant 1/aT(c), by
entirely different methods. The seeming discrepancy is due to the fact that

his Haar measure (the Riemannian measure coming from Q/vol K) is
ﬁ/2“ x my Haar measure (n is not orthogonal to k).
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