Banach f-algebras and Banach lattice algebras with unit

Laura Martignon

Abstract. We give a necessary and sufficient condition for a Banach lattice algebra to be representable as a Banach lattice of continuous realvalued functions on a compact space, endowed with the pointwise defined multiplication. Moreover, we give a characterisation of Banach lattice algebras possessing an algebraic unit.

1. Banach f-algebras.

Let E be a (real) Banach lattice and $*:E\times E\to E$ a binary composition law, such that (E,*) is a Banach algebra. The pair (E,*) is called a Banach lattice algebra (see Schaefer [5]; 4, ex. 4) if every product of positive elements is positive. For the characterisation of those Banach lattice algebras, which can be represented as Banach lattices of continuous realvalued functions on a compact space, we need the concept of the center Z_E of a Banach lattice E. It is defined as the order ideal $\bigcup_{n\in\mathbb{N}} n[-I,I]$ generated

by the identity operator I in $\mathcal{L}(E)$. With the structure induced from $\mathcal{L}(E)$ the center Z_E of E is a Banach lattice algebra isometrically isomorphic to $(C(K), \cdot)$ for a suitable space K (we denote with \cdot the pointwise defined multiplication). It will turn out that a Banach lattice algebra is an f-algebra, in the sence of Birkhoff and Pierce ([1]), if and only if it is (contractively) embeddabe in its center. The following characterisation of Z_E was announced by Meyer ([4]) and proven by Wickstead ([7]) for Banach lattices containing a quasi-interior point. We give a simple proof for the general case, without making use of representation theorems. We use Schaefer ([5]) as a general reference for the theory of Banach lattices and Zelasko ([9]) for the theory of Banach algebras.

- 1.1. Lemma. Let E be a real normed vector lattice and T a bounded positive operator on E. The following assertions are equivalent:
- (i) $x \perp y$ implies $Tx \perp y$ for all $x, y \in E$
- (ii) $T \leq ||T|| I$ (I is the identity operator of $\mathcal{L}(E)$
- (iii) T maps every order ideal of E into itself.

Proof. We show that (i) \Rightarrow (ii). If T satisfies (i), also T^n satisfies (i) for every $n \in N$. Let $a \in E$; then $a^+ \perp a^-$ implies $Ta^+ \perp a^-$ and therefore $Ta^+ \perp Ta^-$.

This means that T is a lattice morphism ([5]; 2, 2.5). Moreover, we have $(Ta+a)^+ = Ta^+ + a^+$ because $(Ta^+ + a^+) \perp (Ta^- + a^-)$ and the representation of (Ta+a) as a difference of two disjoint positive elements is unique. Similarly, $(T^na+a)^+ = T^na^+ + a^+$ for every $n \in \mathbb{N}$. Suppose now ||T|| < 1: for $x \ge 0$ in E and a = (Tx-x) we get $(T^2x-x)^+ = (T(Tx-x)+ + (Tx-x))^+ = T(Tx-x)^+ + (Tx-x)^+$. Since $T \ge 0$ we have $T(Tx-x)^+ \ge 0$ and therefore $(T^2x-x)^+ \ge (Tx-x)^+$. By induction we prove $(T^{2n}x-x)^+ \ge (Tx-x)^+$ because $(T^{2n}x-x)^+ = T^{2n-1}(T^{2n-1}x-x)^+ + (T^{2n-1}x-x)^+ \ge (T^{2$

Let E be a real normed vector lattice and T a bounded positive operator on E. If T satisfies the equivalent conditions of (1.1), we say that T is an f-operator. For f-operators on C(K), we have the following characterisation.

1.2. Lemma. Let K be a compact space and T an f-operator on C(K). If 1_K denotes the function $1_K(t) = 1$ for every $t \in K$, we have $Tf(t) = T1_K(t)f(t)$ for all $f \in C(K)$, $t \in K$.

Proof. Set $q = T1_K$. We know from the proof of (1.1) that T is a lattice morphism. There exists a function $\varphi: K \to K$, which on the set $U = \{t \in K \mid q(t) > 0\}$ is continuous and uniquely defined, such that $Tf(t) = q(t)f(\varphi(t))$ for all $f \in C(K)$, $t \in K$ (for a proof of this statement see Wolff [8]). Assume the existence of a $t_0 \in U$ with $\varphi(t_0) \neq t_0$. Urysohn's Lemma states that we can find functions f and g in C(K) with $f \perp g$ and $f(\varphi(t_0)) = 1 = g(t_0)$. This is a contradiction, since T is an f-operator and so $Tf \perp g$.

We introduce now the concept of the center of a Banach lattice, following Wickstead ([7]). For an extensive treatment of the center of an archimedea vector lattice see Flösser ([2]).

1.3 **Definition.** Let E be a real Banach lattice. The center Z_E of E is the order ideal $\bigcup_{n \in \mathbb{N}} n[-I, I]$ generated by the identity operator I of $\mathcal{L}(E)$.

For a description of the struture of Z_E we prove a proposition, which characterises $(C(K), \cdot)$ as a Banach lattice algebra.

1.4. Proposition. Let K be a compact space and $*: C(K) \times C(K) \to C(K)$ a binary composition law on C(K), such that (C(K), *) is a Banach lattice

algebra. Suppose that 1_K (i.e. the function defined by $1_K(t) = 1$ for every $t \in K$) is the algebraic unit of (C(K), *). Then * is the pointwise defined multiplication, i.e. $(C(K), *) = (C(K), \cdot)$.

Proof. Let f be a positive function in C(K). There exists an $n \in N$ such that $f \leq n1_K$. The bipositivity of * implies $f * g \leq n1_K * g = ng$, by our assumption on 1_K . The operator $T_f : C(K) \to C(K)$, defined by $T_f g = f * g$ for every $g \in C(K)$, is an f-operator. We deduce fron (1.2) that $(f * g)(t) = (f * 1_K)(t)g(t) = f(t)g(t)$ for every $t \in K$. Since the positive cone of C(K) is generating, we have proven our assertion.

Remark. This Proposition and Kakutani's Representation Theorem for AM-spaces with unit ([5]; 2, 7.4) lead to a new characterisation of $(C(K), \cdot)$: Let (E, *) be a Banach lattice algebra, such that E is an AM-space with unit u and u is the algebraic unit of (E, *). Then (E, *) is isometrically isomorphic to $(C(K), \cdot)$ for a suitable compact space K.

1.5. Proposition. Let E be a real Banach lattice. Every operator $T \in Z_E$ has a modulus |T| in $\mathcal{L}(E)$ and $|T| \in Z_E$. If S and T are operators in Z_E , the composition $T \circ S$ is also in Z_E . Endowed with the order, the norm and the composition of operators induced from $\mathcal{L}(E)$, the pair (Z_E, o) is a Banach lattice algebra. Moreover, (Z_E, o) is isomorphic to $(C(K), \cdot)$ for a suitable compact space K.

Proof. By (1.1) the set of positive elements in Z_E is the set of f-operators on E. Let $T \in Z_E$; it is readily verified that T can be written as a difference R - S of two f-operators R and S. Take $x \in E_+$ and identify the order ideal E_x , generated by x, with $C(K_x)$ for a suitable compact space K_x (see [5], 2, §7). The operator T maps $C(K_x)$ into itself. Set $q = T1_{K_x} = R1_{K_x} - S1_{K_s}$; then (1.2) implies Tf(t) = q(t)f(t) for every $f \in C(K)$, $t \in K$. From this we deduce $\sup_{\|f\| \le 1_K} \|Tf\| = \|q\| = \|T1_{K_x}\|$. Since E_x is an order

ideal of E, we have proven our first assertion. A moment's reflection shows, that if S an T are in Z_E also $T \circ S$ is in Z_E . Because the positive cone of E is normal, the norm of $\mathcal{L}(E)$ and the Minkowski functional of [-I,I] coincide on Z_E . Endowed with this norm Z_E is an AM-space with unit. According to Kakutani's theorem ([5] 2, 7.4), there exists a compact space E such that E and E are isomorphic as Banach lattices. Moreover, this isomorphysm maps E onto E of E are fact that E is the algebraic unit of E of E, E, E, and E onclude our proof.

Let (E, *) be a Banach lattice algebra. If (E, *) is an f-algebra in the sense of Birkhoff and Pierce ([1]), we say that (E, *) is a Banach f-algebra. Stated explicitely:

1.6. Definition. Let (E, *) be a Banach lattice algebra. We call (E, *) a Banach f-algebra if $x \perp y$ implies $a * x \perp y$ and $x * a \perp y$ for all $x, y \in E$ and a > 0 in E.

Remark. 1. (E, *) is a Banach f-algebra if right and left multiplication with positive elements of E are f-operators on E.

Remark 2. Let E be a Banach lattice. It depends heavily on the Banach lattice structure of E whether it is possible to define $*: E \times E \rightarrow E$ such that (E, *) is a nontrivial Banach f-algebra (i.e. x * y is not zero for all $x, y \in E$). Birkhoff and Pierce have proven that an f-algebra with trivial right and left annullators can be embedded in a direct union of totally ordered algebras, endowed with the componentwise defined multiplication. It is clear that not every Banach lattice can be compatible with the structure of a Banach f-algebra, since not every Banach lattice admits a representation as a space of realvalued functions closed under the posintwise defined multiplication. Note that such a representation implies the existence of many nontrivial multiplicative linear forms, which are necessarily lattice morphisms.

- 1.7. Proposition. Let (E, *) be a Banach algebra with trivial left and right annulators, i.e. for every $a \in E$ there exist $x, y \in E$ such that $a * x \neq 0$ and $v * a \neq 0$. The following assertions are equivalent.
- (a) (E, *) is a Banach f-algebra
- (b) The left and the right regular representations of (E, *) into $\mathcal{L}^r(E)$ are (contractive) isomorphisms of (E, *) into (Z_E, \circ) .
- (c) (E, *) can be identified with a sublattice algebra of $(C(K), \cdot)$ for a suitable compact space K. Under this identification the norm of E either coincides with or is finer than the norm of C(K).

Proof. (a) \Rightarrow (b) Let Λ denote the left regular representation of E into (E). It is clear that $\Lambda(E) \leq Z_E$. Let $a \in E$; we prove that $\Lambda|a| = |\Lambda a|$. From the proof of (1.5) we know that $|(\Lambda a)| x = |(\Lambda a)x| = |a * x|$ for every $x \ge 0$ in E. Since right multiplication with x is an f-operator, it is also a lattice morphism (see proof of (1.1)). Therefore |a * x| = |a| * x, but |a| * x == $(\Lambda |a|)x$, which proves that $\Lambda |a| = |\Lambda a|$. It follows readily from the definition of a Banach lattice algebra, that A is a contractive algebraic morphism of (E,*) into (Z_E, \circ) . An analogous argument shows that also the right regular representation P is a contractive structure morphism. Since for every $a \in E$, $a \ne 0$, there exist $x, y \in E$ with $a * x \ne 0$ and $y * a \ne 0$, both Λ and P are isomorphisms.

- (b) \Rightarrow (c) This implication follows from the fact, that (Z_F, \circ) can be identified with $(C(K), \cdot)$ for a suitable compact space K (see (1.5)).
- (c) \Rightarrow (a) To prove this, observe that $(C(K), \cdot)$ is a Banach f-algebra for every compact space K.

1.8. Examples.

1. Let (E, *) be a Banach f-algebra with trivial right and left annullators, such that E has order continuous norm. Then E is an atomic Banach lattice. For every $1 \le p < \infty$ the pair $(\mathfrak{L}^p,/)$ is a Banach f algebra (here again · denotes the pointwise defined multiplication). The center of ℓ^p is isomorphic to ℓ^{∞} .

15

2. Let X be a locally compact space and $C_0(X)$ the space of all continuous realvalued functions on X, which vanish at infinity. Endowed with the supremum norm and pointwise defined order $C_0(X)$ is a Banach lattice. If denotes again the pointwise defined multiplication, the pair $(C_0(X), \cdot)$ is a Banach f-algebra and therefore it can be (contractively) embedded in its center. The center of $C_0(X)$ is $C(\beta X)$.

2. Banach lattice algebras with an algebraic unit.

Let (E, *) be a real lattice algebra with multiplicative modulus and an algebraic unit $e \ge 0$. Birkhoff and Pierce ([1], Theorems 10 and 14) proved that (E, *) is an f-algebra and, therefore, that e is a weak order unit. If E is finite dimensional, this implies that e is also an order unit. Otherwise, this is not necessarily true. Take for example $C(\mathbb{R})$, the continuous functions on R, with the pointwise defined multiplication. It is natural to ask for additional conditions guarantying that e is also an order unit. Surprisingly, the existence of a norm on E is already sufficient. We prove the next Lemma for Banach lattice algebras: that it is true for normed lattice algebras as well, follows from the standard completion arguments.

2.1. Lemma. Let (E, *) be a Banach lattice algebra with multiplicative modulus and an algebraic unit $e \ge 0$. Then e is the norming order unit of E. *Proof.* This Lemma becomes a consequente of (1.7) if we assume that the right and left annullators are trivial and make use of Theorems 10 and 14 of Birkhoff and Pierce ([1]). In fact, they assure that, under these conditions, (E, *) is a Banach f-algebra. Therefore, by (1.7) it is isomorphically embeddable in $(Z_F, *)$. Clearly, this embedding maps e onto I, and the fact that it is a lattice isomorphism completes the proof. We give an alternative simple proof for the general case.

We prove that $x \ge 0$ and $||x|| \le 1$ imply $x \le e$. Suppose first that ||x|| < 1 and that $x \le e$, which means $(x - e)^+ > 0$. Since $x \ge 0$ also $(x + e) \ge 0$ and our hypothesis implies that left and right multiplication with (x + e) are lattice morphisms (see [5] 2, 2.5). We therefore have $(x^2 - e)^+ = ((x + e)(x - e))^+ = (x + e)(x - e)^+ \ge (x - e)^+ > 0$. By induction we prove

But the continuity of all operations on (E,*) and the fact that ||x|| < 1 imply that $\lim_{n \to \infty} (x^{2^n} - e)^+ = 0$, which is a contradiction. To prove our statement for the case that ||x|| = 1, take a sequence $(\lambda_n) \subseteq \mathbb{R}$ with $0 < \lambda_n < 1$ and $\sup_{n \in \mathbb{N}} \lambda_n = 1$; then $x = \sup_{n \in \mathbb{N}} (\lambda_n x) \le e$.

In the next proposition we no longer require that (E, *) has multiplicative modulus.

2.2. Proposition. Let (E,*) be a Banach lattice algebra with an algebraic unit $e \ge 0$. If e is a quasi-interior point of E (i.e. the ideal $\underset{n \in \mathbb{N}}{\cup} n[-e,e]$ generated by e is dense in E), then it is also the norming order unit of E. Proof. We prove that (E,*) has multiplicative modulus and apply (2.1). Let E be the structure space of E (see |S|). With the norm defined by the gauge function of the interval [-e,e], the ideal $E_e = \underset{n \in \mathbb{N}}{\cup} n[-e,e]$ generated by E is a Banach lattice isomorphic to E0 for a suitable compact space E1 (this follows from Kakutani's representation theorem for E2. It follows from (1.4) that E3 is isomorphic to E4, is a sublattice algebra of E5. It follows from (1.4) that E6, is isomorphic to E6, is a sublattice algebra of E8. It follows from (1.4) that E8, is isomorphic to E9, is a sublattice algebra of E9. It follows from (1.4) that E9, is a sublattice modulus, by the joint continuity of multiplication.

Corollary. Let (E,*) be a Banach lattice algebra with an algebraic unit $e \ge 0$. Then (E,*) contain a nontrivial closed sublattice algebra (D,*), isomorphic to $(C(K),\cdot)$ for a suitable compact space K. This isomorphism is an isometry. If the norm of E is ordercontinuous, then D is a finite dimensional projection band.

Proof. Let D be the closure of the ideal $E = \bigcup_{n \in \mathbb{N}} n[-e, e]$. Clearly (D, *) is a Banach lattice algebra satisfying the conditions of (2.2). Let K be a compact space such that (D, *) and $(C(K), \cdot)$ are isometrically isomorphic as Banach lattice algebras. Our second statement follows from the fact that the norm of C(K) is order continuous if and only if K is discrete.

Remark. Let (X, Ω, μ) be a measure space, where μ is a diffuse measure and X contains more than one point. Moreover, let * be a multiplication on $L'(X, \mu)$, such that $(L'(X, \mu), *)$ is a Banach lattice algebra. Then (2.2) implies that $(L'(X, \mu), *)$ does not contain an algebraic unit.

References

- [1] Birkhoff G. and Pierce R., Lattice ordered rings, An. Acad. Brasil. Ci. 28, 41-69 (1956).
- [2] Flosser H. O., Das Zentrum archimedischer Vektorverbande (to appear).
- [3] Kakutani S., Concrete representations of abstract M-spaces, Ann. of Math. 42, 994-1024 (1941).
- [4] Meyer M., Le stabilisateur d'un space vectorie réticulé, C. R. Acad. Sc. Paris 283, série A, 839-841 (1976).
- [5] Schaefer H. H., Banach lattices and positive operators, Springer, Heidelberg 1974.
- [6] Stone M. H., Applications of the theory of boolean rings to general topology, Trans. Amer. Math. Soc., 41, 375-481 (1937).
- [7] Wickstead A. W., The structure space of a Banach lattice, J. Math. Pures Appl.
- [8] Wolff M., Uber das Spektrum von Verbandshomomorphismen in Banachverbänden, Math. Ann. 182, 161-169 (1969).
- [9] Zelasko W., Banach algebras, Elszevier Publ. Comp. Amsterdam-London New York 1973.

Departamento de Matemática Universidade de Brasilia 70.910 Brasilia, DF Brasil