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Banach f-algebras and Banach lattice algebras with unit

Laura Martignon

Abstract. We give a necessary and sufficient condition for a Banach lattice
algebra to be representable as a Banach lattice of continuous realvalued
functions on a compact space, endowed with the pointwise defined multi-
plication. Moreover, we give a characterisation of Banach lattice algebras
possessing an algebraic unit.

1. Banach f-algebras.

Let E be a (real) Banach lattice and * : E x E —» E a binary composition
law, such that (E, *) is a Banach algebra. The pair (E, #) is called a Banach
lattice algebra (see Schaefer [5]; 4, ex. 4) if every product of positive ele-
ments is positive. For the characterisation of those Banach lattice algebras,
which can be represented as Banach lattices of continuous realvalued
functions on a compact space, we need the concept of the center Z, of a
Banach lattice E. It is defined as the order ideal uNn[— I, I] generated

by the identity operator I in #(E). With the structure induced from Z(E)
the center Z, of E is a Banach lattice algebra isometrically isomorphic to
(C(K), ) for a suitable space K (we denote with - the pointwise defined
multiplication). It will turn out that a Banach lattice algebra is an f-algebra,
in the sence of Birkhoff and Pierce ([1]), if and only if it is (contractively)
embeddabe in its center. The following characterisation of Z, was announ-
ced by Meyer ([4]) and proven by Wickstead ([7]) for Banach lattices
containing a quasi-interior point. We give a simple proof for the general
case, without making use of representation theorems. We use Schaefer ([5])
as a general reference for the theory of Banach lattices and Zelasko ([9]) for
the theory of Banach algebras.

1.1. Lemma. Let E be a real normed vector lattice and T a bounded posi-
tive operator on E. The following assertions are equivalent:

(1) x Ly implies Tx Ly for all x,yeE
(i) T =|ITII (I is the identity operator of ¥(E)
(i) T maps every order ideal of E into itself.

Proof. We show that (i) = (ii). If T satisfies (i), also T" satisfies (i) for every
neN. Let aeE; then a* La~ implies Ta* La~ and therefore Ta* 1 Ta~.
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This means that T is a lattice morphism ([5]; 2, 2.5). Moreover, we have
(Ta+ a)" = Ta* + a* because (Ta* +a*) L(Ta~ + a”) and the repre-
sentation of (Ta + a) as a difference of two disjoint positive elements is
unique. Similarly, (T"a + a)* = T"a* + a* for every ne N. Suppose now
ITIl <1: for x 20 in E and a = (Tx — x) we get (T2x — x)* =(T(Tx — x) +
+(Tx —x))* = F(Tx — x)* +(Tx — x)*. Since T >0 we have T(Tx — x)* >0
and therefore (T?x — x)* > (Tx — x)*. By induction we prove (T>"x — x)* >

2 (Tx—x)" because (T?"x —x)* =T (T 'x—x)* +(T*" 'x—x)* >
(

>(T?" 'x = x)* > (Tx — x)*. Since (T*"x — x)* is a nullsequence we

have (Tx — x)* = 0, which means Tx < x. For ||T|| =1 write T =

=supA,T, where 0 <4, <1 for every neN and supi = 1; then for
nelN nelN

x >0 we have Tx = (sup). )Xt — sup (4,Tx) < x. We have proven T <

<||T||I for every bounded posmve operator T satisfying (i). The impli-
cations (ii) = (iii) and (iii) = (i) are trivial.

Let E be a real normed vector lattice and T a bounded positive operator
on E. If T satisfies the equivalent conditions of (1.1), we say that T is an
f-operator. For f-operators on C(K), we have the following characterisation.

1 2. Lemma. Let K be a compact space and T an f-operator on C(K). If
x denotes the function 1,(t) = 1 for every te K, we have Tf(t) = T1 <01
for all feC(K), te K.
Proof. Set q = T1,. We know from the proof of (1.1) that T is a lattice
morphism. There exists a function ¢ : K — K, which on the set U =
= {te K|q(t) > 0} is continuous and uniquely defined, such that Tf(t) =
= q(t) f((t)) for all f e C(K), teK (for a proof of this statement see Wolff
[8]). Assume the existence of a t,e U with ¢(t,) # t,. Urysohn’s Lemma
states that we can find functions f and g in C(K) with f | g and
Sf(@(to) = 1 = g(ty). This is a contradiction, since T is an f-operator and
so Tf 1 g.

We introduce now the concept of the center of a Banach lattice, following

Wickstead ([7]). For an extensive treatment of the center of an archimedea
vector lattice see Flosser ([2]).

1.3 Definition. Let E be a real Banach lattice. The center Z; of E is the
order ideal u n[— I, 1] generated by the identity operator I of Z(E).

For a description of the struture of Z, we prove a proposition, which
characterises (C(K),*) as a Banach lattxce algebra.

1.4. Proposition. Let K be a compact space and « C(K) x C(K) > C(K) a
binary composition law on C(K), such that (C(K),*) is a Banach lattice
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algebra. Suppose that 1, (i.e. the function defined by 1 (1) =1 for every
t€ K) is the algebraic unit of (C(K), *). Then * is the pointwise defined mul-
tlpllcatlon ie. (C(K),*) = (C(K),").

Proof. Let f be a positive function in C(K). There exists an ne N such
that f = nl,. The bipositivity of * implies f *g < nl xk*9g = ng, by our
assumption on 1,. The operator T, : C(K) » C(K), defmed by T, 9= f*g
for every geC(K) is an f- operator We deduce fron (1.2) that ( f *g)(t) =

=(f*1)(t)g(t) = f(t)g(t) for every te K. Since the positive cone of
C(K) is generating, we have proven our assertion.

Remark. This Proposition and Kakutani’s Representation Theorem for
AM-spaces with unit ([5]; 2, 7.4) lead to a new characterisation of (C(K), - ):
Let (E,*) be a Banach lattice algebra, such that E is an AM-space with
unit u and u is the algebraic unit of (E,*). Then (E, *) is isometrically
isomorphic to (C(K),") for a suitable compact space K.

L.5. Proposition. Let E be a real Banach lattice. Every operator TeZ,
has a modulus |T| in £(E) and |T|€ Z,. 1f S and T are operators in Z,, the
composition T oS is also in Z,. Endowed with the order, the norm and the
composition of operators induced from L(E), the pair (Zg,0) is a Banach
lattice algebra. Moreover, (Z,0) is isomorphic to (C(K),*) for a suitable
compact space K.

Proof. By (1.1) the set of positive elements in Z, is the set of f-operators
on E. Let TeZg.; it is readily verified that T can be written as a difference
R — S of two foperators R and S. Take xe E, and identify the order
ideal E,, generated by x, with C(K,) for a suitable compact space K,
(see [S], 2, §7). The operator T maps C(K,) into itself. Set g = 1ie
= Rle — Slxs; then (1.2) implies Tf(t) = q(t) f(¢) for every f e C(K), te K.
From this we deduce sup |Tf|=|q| =|T1, | Since E_ is an order
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ideal of E, we have proven ou; first assertion. A moment’s reflection shows,
that if S an T are in Z also TS is in Z,. Because the positive cone of
E is normal, the norm of #(E) and the Minkowski functional of [— I,1]
coincide on Z,;. Endowed with this norm Z, is an AM-space with unit.
Acoording to Kakutani’s theorem ([5] 2, 7.4), there exists a compact space
K such that Z;, and C(K) are isomorphic as Banach lattices. Moreover,
this isomorphysm maps I onto 1,. The fact that I is the algebraic unit of
(Zg, °), and (1.4) conclude our proof.

Let (E,*) be a Banach lattice algebra. If (E, *) is an f-algebra in the

sense of Birkhoff and Pierce ([1]), we say that (E, %) is a Banach f-algebra.
Stated explicitely:
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1.6. Definition. Let (E,*) be a Banach lattice algebra. We call (E, *) a
Banach f-algebra if x Ly implies a* x Ly and x* a 1 y for all x,yeE
and a >0 in E.

Remgrk. 1. (E, *) is a Banach f-algebra if right and left multiplication with
positive elements of E are f-operators on E. :

Rexpark 2. Let E be a Banach lattice. It depends heavily on the Banach
lattice structure of E whether it is possible to define *:E x E — E such
that (E,*) is a nontrivial Banach f-algebra (le. x*y is not zero for all
X, y€E). Birkhoff and Pierce have proven that an f-algebra with trivial
right and left annullators can be embedded in a direct union of totally
. ordered algebras, endowed with the componentwise defined multiplication.
It is clear that not every Banach lattice can be compatible with the structure
qf a Banach f-algebra, since not every Banach lattice admits a representa-
tion as a space of realvalued functions closed under the posintwise defined
multiplication. Note that such a representation implies the existence of

many nontrivial multiplicative linear forms, which are necessarily lattice
morphisms.

7. Homﬁﬁou. Let (E, *) be a Banach algebra with trivial left and right
annulators, i.e. for every acE there exist x, Y€EE such that a*xx # 0 and
y*a#0. The following assertions are equivalent.

(@) (E,*) is a Banach f-algebra

(b) The left and the right regular representations of (E, x) into #"(E) are
(contractive) isomorphisms of (E, *) into (Zi o)

(c) (E, *) can be identified with a sublattice algebra of (C(K),) for a suitable
cqmpact space K. Under this identification the norm of E either coincides
with or is finer than the norm of C(K).

Prgof. (@) = (b) Let A denote the left regular representation of E into (E).
It is clear that A(E) < Zy. Let aeE; we prove that Ala| = |Ad). From the
proof. of (1.5 we know that |(Ag) x = l(Aa)x| = |a* x| for every x >0 in
E. Slnf:e right multiplication with x is an f-operator, it is also a lattice
morphism (see proof of (1.1)). Therefore |a*x| = |a *x, but |a *x =
= (Alal)x, which proves that Ala| = |Aal. It follows readily from the defi-
nition of a Banach lattice algebra, that A is a contractive algebraic morphism
of (E, ) into (Z ). An analogous argument shows that also the right
regular representation P is a contractive structure morphism. Since for
every a€E, a # 0, there exist x,ye E with a* x # 0 and y*a # 0, both
A and P are isomorphisms. :

(b) = (¢) This implication follows from the fact, that (Zg, ©) can be identi-
fied with (C(K),-) for a suitable compact space K (see (1.5)).

()= (a) To prove this, observe that (C(K),') is a Banach f-algebra for
every compact space K.
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1.8. Examples.

1. Let (E,*) be a Banach f-algebra with trivial right and left annullators,
such that E has order continuous norm. Then E is an atomic Banach
lattice. For every 1 < p < oo the pair (2,/) is a Banach f.algebra (here
again - denotes the pointwise defined multiplication). The center of 27 is
isomorphic to 2%.

2. Let X be a locally compact space and C(X) the space of all continuous
realvalued functions on X, which vanish at infinity. Endowed with the
supremum norm and pointwise defined order C(X) is a Banach lattice.
If - denotes again the pointwise defined multiplication, the pair (Cy(X),")
is a Banach f-algebra and therefore it can be (contractively) embedded in
its center. The center of C (X) is C(BX).

2. Banach lattice algebras with an algebraic unmit.

Let (E, *) be a real lattice algebra with multiplicative modulus and an alge-
braic unit e > 0. Birkhoff and Pierce ([1], Theorems 10 and 14) proved
that (E, *) is an f-algebra and, therefore, that e is a weak order unit. If E
is finite dimensional, this implies that e is also an order unit. Otherwise,
this is not necessarily true. Take for example C(R), the continuous func-
tions on R, with the pointwise defined multiplication. It is natural to ask
for additional conditions guarantying that e is also an order unit. Surpri
singly, the existence of a norm on E is already sufficient. We prove the
next Lemma for Banach lattice algebras: that it is true for normed lattice
algebras as well, follows from the standard completion arguments.

2.1. Lemma. Let (E,*) be a Banach lattice algebra with multiplicative
modulus and an algebraic unit e > 0. Then e is the norming order unit of E.
Proof. This Lemma becomes a consequente of (1.7) if we assume that the
right and left annullators are trivial and make use of Theorems 10 and 14 of
Birkhoff and Pierce ([1]). In fact, they assure that, under these conditions,
(E, *) is a Banach f-algebra. Therefore, by (1.7) it is isomorphically embe-
ddable in (Z, *). Clearly, this embedding maps € onto I, and the fact that
it is a lattice isomorphism completes the proof. We give an alternative
simple proof for the general case.

We prove that x >0 and ||x|| <1 imply x <e. Suppose first that
x|l <1 and that x £ e, which means (x —e)* > 0. Since x >0 also
(x + e) >0 and our hypothesis implies that left and right multiplication
with (x + e) are lattice morphisms (see [5] 2, 2.5. We therefore have
x2—-ef=(x+e)(x—e)" =(x+e)(x —e)" >(x —e)* > 0. By induc-
tion we prove
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e =0 Lo et

—e)  >2(x—¢e" >0.

But the continuity of all operations on (E, *) and the fact that ||x|| < I
imply that lim (x>" — ¢)* = 0, which is a contradiction. To prove our

statement for the case that lIx|| = 1, take a sequence (4,) SR with 0 <4, <1
and sup 4, = 1: then x = sup (4,x) <e.

nelN nelN

In the next proposition we no longer require that (E, *) has multiplicative
modulus.

2.2. Proposition. Let (E,*) be a Banach lattice algebra with an algebraic
unit e > 0. If e is a quasi-interior point of E (i.e. the ideal U n[— e, e]

nelN |

generated by e is dense in E), then it is also the norming order unit of E.

Proof. We prove that (E,*) has multiplicative modulus and apply (2.1).
Let K be the structure space of E (see |5/). With the norm defined by the
gauge function of the interval [— e, e], the ideal E, = U n[— e, e] gene-

nelN

rated by e is a Banach lattice isomorphic to C(K) for a suitable compact
space K (this follows from Kakutani’s representation theorem for AM-spaces
with unit). Since * is bipositive (E,, *) is a sublattice algebra of (E, *).
It follows from (1.4) that (E,, *) is isomorphic to (C(K),"). Since (E,, *) has
multiplicative modulus also (E, *) has multiplicative modulus, by the joint
continuity of multiplication.

Corollary. Let (E,*) be a Banach lattice algebra with an algebraic unit
e>0. Then (E,*) contain a nontrivial closed sublattice algebra (D, *),
isomorphic to (C(K),") for a suitable compact space K. This isomorphism is
an isometry. If the norm of E is ordercontinuous, then D is a finite dimen-
sional projection band.

Proof. Let D be the closure of the ideal E = v n[—ee] Clearly (D, *)

is a Banach lattice algebra satisfying the conditions of (2.2). Let K be a
compact space such that (D, *) and (C(K),-) are isometrically isomorphic
as Banach lattice algebras. Our second statement follows from the fact
that the norm of C(K) is order continuous if and only if K is discrete.

Remark. Let (X,Q, u) be a measure space, where p is a diffuse measure
and X contains more than one point. Moreover, let * be a multiplication
on L(X,uw), such that (L(X, p),*) is a Banach lattice algebra. Then (2.2)
implies that (L(X, u), *) does not’contain an algebraic unit.
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