10 < 70 - 12 & 72 - 12 References 21/2 + Florer H. P. Des Zentren enrithredischen Zelterperbands (in Signestic) und virgen 3] Kakutani S. Concrete représentations of abstract M-spaces, Ann. of Math. 42, 994-103 (1941)), direct S. (.) concrete représentations of abstract M-spaces, Ann. of Math. 42, 994-103 [4] Meyer M., Le stabilisateur d'un space gratory répiglée G. Re Acad i Spi Paris 2883 sorte 839-841 (1976). [5] Schaeler H. H. Banach lattices and positive operators, Springer, Heidelberg 1974. Amer Math Soc., 41, 375-481 (1937). Sulphorn Wickstead A. W., The structure space of a Banuch lattice, L. Math. Pures Appl. Wolff M., Uher das Spektrum von Verbandshomomorphismen in Banachaerhänden, Math. 2.2. Proposition. Let \$\(\mathbf{E}, \pi\) be a Bayach lattice algebra with or algebra. First pay you popul, multistant amail that revessed and the latest we also be a bayach lattice and the latest we also be a latest of the l generated by e is dense in E), then it is also the norming order unit of E. Entransmitted (E, *) has multiplicative modulus and apply (2.1). Let allowed the abeliance kpace of E (see |S|). With the norm defined by the gauge "Gnelletta" of the operation [-e,e], the ideal $E_i = \bigcup_{n \in \mathbb{N}} n[-e,e]$ generated by e is a Banach lattice isomorphic to C(K) for a suitable compact space K (this follows from Kakutani's representation theorem for AM-someons space K (this follows from Kakutani's representation theorem for AM-spaces with unit). Since * is bipositive $(E_{\mu}, *)$ is a sublattice algebra of $(E_{\mu}, *)$. It follows from (1.4) that $(E_{\mu}, *)$ is isomorphic to $(C(K), \cdot)$. Since $(E_{\mu}, *)$ has multiplicative modulus also (E, *) has multiplicative modulus, by the join continuity of multiplication. Corollary. Let (E,*) be a flentich lattice eigebra with an argebraic satisfactory E,*) contain a nontrivial closed subjective of the companie to $(C(K),\cdot)$ for a sidiable compact space K. This because E an isometry. If the norm of E is ordercommuous, then it is signal projection band. Proof. Let D be the closure of the ideal E = U st is a Banach lattice algebra satisfying the concernance space such that (D, \bullet) and $(C(K), \cdot)$ as Banach lattice algebras. Our second material that the norm of C(K) is order continuous θ Remark. Let (X, \Omega, \omega) by a measure operation and X contains more than one point. Moreover, ## On Ω -stability of flows I. P. Malta ### 1. Introduction. In this paper we consider a C^r flow ϕ on a compact manifold M, whose Birkhoff center is a disjoint union of the set F of (hyperbolic) fixed points of ϕ , and a hyperbolic set Λ . We give an extension for flows of the correspondent result for diffeomorphisms in [2]. That is, if the Birkhoff center of ϕ is as above and has no cycles, then it coincides with the non-wandering set of ϕ . In particular, ϕ is stable with respect to its non-wandering set, $\Omega(\phi)$, that is, ϕ is Ω -stable. ## Smale's Axion A'requires: - (a) Ω is a disjoint union of the set of critical points F and the closure Λ of its periodic orbits. - (b) each element of F is hyperbolic and Λ is a hyperbolic set for ϕ . We define $c(\phi)$, the Birkoff center of ϕ , as the closure of the set $\{x \in M | x \in \alpha(x) \cap \omega(x)\}$, where $\alpha(x)$ and $\omega(x)$ are the α -limit and α -limit sets of x, respectively. We prove the following theorem. **Theorem A.** If the Birkoff center of ϕ , $c(\phi)$, is a hyperbolic set for ϕ and has the no cycle property, then ϕ satisfies Axion A' and it is Ω -stable. To prove theorem A we need first, as in the case of diffeomorphisms, to obtain a decomposition of $c(\phi)$ into a finite number of disjoint hyperbolic sets for the flow, each of then having local product struture. For this, we use a version for flows of Anosov's Closing lemma for $c(\phi)$. With this result the same proof of the Ω -Decomposition Theorem for flows satisfying Axiom A' [4] yields a decomposition of $c(\phi)$ into hyperbolic sets with local product structure. Next we apply some results in [2] to ϕ_1 , the time one map of the flow ϕ . First we prove that $c(\phi)$ coincides with the Birkoff center of ϕ_1 , $c(\phi_1)$, i.e., with the closure of the set $\{x \in M | x \in \alpha_1(x) \cap \omega_1(x)\}$, where $\alpha_1(x)$ and $\omega_1(x)$ are the α and ω -limit sets of x for the diffeomorphism ϕ_1 . From results in [1], a hyperbolic set for the flow ϕ , with local product structure is an isolated set for the diffeomorphism ϕ_1 . As defined in [2], we say that a compact set $K \subset M$ is an isolated set for a homeomorphism f of M if it is invariant by f, (i.e. f(K) = K), and there exists a neighbourhood U of K such that K is the maximal invariant set for f in U, that is, $\bigcap_{n\in\mathbb{Z}} f^n(U) = K$. These results and the assumption of no cycle gives us a decomposition of $c(\phi_1)$ into disjoint isolated sets having no cycles. From Lemma 5 below, we conclude that $c(\phi_1)$ coincides with the non-wandering set of ϕ_1 , Ω_1 , and obtain a filtration for $\Omega_1 = \Omega(\phi_1)$. We finish the proof of Theorem A using Lemma 4, which says that if there exists a filtration for Ω_1 , then $\Omega = \Omega(\phi)$ coincides with $\Omega_1 = \Omega(\phi_1)$. I would like to thank J. Palis for profitable conversations. #### 2. Main Theorem Here we give the proof of Theorem A. First we establish some notation, and give some well known results which will be used later. Throughout, ϕ is assumed to be a C^r flow, $r \ge 1$ on a compact C^∞ manifold M without boundary. For each $x \in M$, we denote by o(x) the orbit of x by ϕ ; i.e., $o(x) = \{\phi_t(x) \mid t \in \mathbb{R}\}$. For a subset $D \subset M$, \overline{D} will denote its closure in M, and int D will denote its interior in M. A compact invariant subset $\Lambda \subset M$ is said to be hyperbolic for ϕ if, for every t > 0, $T\phi_t$ leaves invariant a continuous splitting. $$T_{\Lambda}M = E^u \oplus E^{\phi} \oplus E^s$$ expanding E^{μ} and contracting E^{s} , where E^{ϕ} is the tangent bundle to the orbits of the flow. Through each point $x \in \Lambda$ we have C' injectively immersed manifolds $W^u(x)$, $W^s(x)$ tangent to E^u_x , E^s_x at x. For small $\varepsilon > 0$ we denote by $W^u_{\varepsilon}(x)$ the closed ε -disc in $W^u(x)$, centered at x, [1], [4]. Let $W^u(\Lambda) = \bigcup_{x \in \Lambda} W^u(x)$, $W^s(\Lambda) = \bigcup_{x \in \Lambda} W^s(x)$. Similarly we define $W^u_{\varepsilon}(\Lambda)$ and $W^s_{\varepsilon}(\Lambda)$. We say that Λ has local product structure if $$W^{\mathfrak{s}}_{\varepsilon}(\Lambda) \cap W^{\mathfrak{u}}_{\varepsilon}(\Lambda) = \Lambda$$ for some $\varepsilon > 0$. According to a result in [1], if Λ is a hyperbolic set for ϕ , having local product structure, then Λ is an isolated set for ϕ_1 , and $W^s(\Lambda) = \{x \in M \mid \omega_1(x) \subset \Lambda\} = \{x \in M \mid \omega(x) \subset \Lambda\}$. That is, the unstable manifold of Λ coincides with the unstable space associated to the isolated set Λ for ϕ_1 as in [2]. Similarly for $W^s(\Lambda)$. Using this fact and the following lemmas we will prove Theorem A by applying to ϕ_1 the results proved for diffeomorphisms in [2]. **Lemma 1.** Let $x \in M$ and $\gamma = \{\phi_t(x) \mid 0 \le t \le 1\}$. If $\omega(x) \supset o(x)$ then for each $p \in \gamma$, there exists $q \in \gamma$ such that $q \in \omega_1(p)$. Proof. Let $t_n \to \infty$ as $n \to \infty$ such that $\phi_{t_n}(p) \to p$ as $n \to \infty$. Let $0 < \delta_n < 1$ such that $t_n + \delta_n = k_n \in N$. Put $y_n = \phi_{k_n}(p)$. We may assume that $y_n \to y$. We claim that $y \in o(p)$. For if $y \notin o(p)$, let F be a flow box such that $\phi_t(p) \in F$ for -1 < t < 1 but $y \notin F$ (if the orbit of x is a periodic orbit the result is trivial). Since $\phi_{t_n}(p) \to p$, we have $\phi_{t_n}(p) \in F$ for large n and so $y_n \in F$ for large n. Thus $y \in F$ which is a contradiction. But y is a fundamental domain for o(p), that is, there exists $n_0 \in \mathbb{Z}$ such that $\phi_{n_0}(y) \in y$. So $\phi_{n_0}(y_n) = \phi_{n_0 + k_n}(p) \phi_{n_0}(y) \in y$. **Lemma 2.** The Birkhoff center of ϕ coincides with the Birkhoff center of ϕ_1 , time one map of the flow. *Proof.* All we need to show is that, if $x \in \omega(x)$ then $x \in \omega_1(x)$. If $p \in \omega_1(p)$ then $\phi_t(p) \in \omega_1(\phi_t(p))$ for every $t \in \mathbb{R}$. So it suffices to prove that there exists $p \in \gamma$ such that $p \in \omega_1(p)$, where $\gamma = \{\phi_t(x) \mid 0 \le t \le 1\}$. From Lemma 1 we can construct a sequence p_n , such that $p_1 = x$ and $p_n \in \omega_1(p_{n-1}) \cap \gamma$ for n > 1. Since $p_n \in \omega(p_k)$ if n > k, we may assume that $p_n \to p \in \gamma$. We claim that $p \in \omega_1(p)$. All we need to show is that, given $\varepsilon > 0$ and an integer N > 0, there exists k > N such that $d(\phi_k(p), p) < \varepsilon$, where d is a metric on M. For this, given $\varepsilon > 0$, let $\delta > 0$ be such that if $|s| < \delta$ then $d(q, \phi_s(q)) < \varepsilon/2$. Since p_n , $p \in \gamma$ and $p_n \to p$ there is a number n_0 such that $d(p_{n_0}, p) < \varepsilon/2$ and $p_{n_0} = \phi_t(p)$ for $|t| < \delta$. Since $p_n \in \omega_1(p_{n_0})$ for every $n > n_0$ we conclude that $p \in \omega_1(p_{n_0})$. So there exists k > N such that $d(\phi_k(p_{n_0}), p) < \varepsilon/2$. Thus we have $d(\phi_k(p), p) < d(\phi_k(p), \phi_k(p_{n_0})) + d(\phi_k(p_{n_0}), p) < d(\phi_k(p), \phi_t(\phi_k(p))) + \varepsilon/2 < \varepsilon$ since $|t| < \delta$. Let $L_1 = L(\phi_1)$ the limit set of ϕ_1 , that is, the union of the closure of the sets $\{x \in M \mid \exists y \in M \text{ such that } x \in \alpha_1(y)\}$ and $\{x \in M \mid \exists y \in M \text{ such that } x \in \omega(y)\}$. **Lemma 3.** Suppose $L_1 \subset \Lambda_1 \cup ... \cup \Lambda_k$, where $\{\Lambda_i\}$ i=1,...,k, is a disjoint family of isolated sets for ϕ_1 . Let $x \in M$. If $\omega_1(x) \subset \Lambda_i$, then $\omega(x) \subset \Lambda_i$. Similarly if $\alpha_1(x) \subset \Lambda_i$, then $\alpha(x) \subset \Lambda_i$. *Proof.* First we prove the following assertion: there exists $\delta > 0$ such that if $|s| < \delta$, then $\omega_1(\phi_s(x)) \subset \Lambda_i$. To see this, let U be a neighbourhood of Λ_i such that $\bigcap_{n \in \mathbb{Z}} \phi_n(U) = \Lambda_i$ and $U \cap (\bigcup_{j \neq i} \Lambda_j) = \Phi$. Let $\varepsilon > 0$ such that the set $B(y; \varepsilon) = \{z \in M \mid d(y, z) < \varepsilon\}$ is contained in U for every $y \in \Lambda_i$. Take $y_1, \ldots, y_e \in \Lambda_i$ such that $V = \bigcup_{j=1}^{k} B(y_j; \varepsilon/2) \supset \Lambda_i$. Let $n_0 \ge 0$ be such that $\phi_n(x) \in V$ for every $n \ge n_0$, and let $\delta > 0$ be such that if $|s| < \delta$, then $d(q, \phi_s(q)) < \varepsilon/2 \ \forall \ q \in M$. Then, given $n \ge n_0$, we have $\phi_n(x) \in V$, so there is $y_j \in \Lambda_i$ such that $d(\phi_n(x), y_j) < \varepsilon/2$. Thus $d(\phi_n(\phi_s(x)), y_j) < d(\phi_{n+s}(x), \phi_n(x)) + d(\phi_n(x), y_j) < d(\phi_s(\phi_n(x)), \phi_n(x)) + \varepsilon/2 < \varepsilon$. That is, $\phi_n(\phi_s(x)) \in U$ for every $n \ge n_0$. Consequently $\omega_1(\phi_s(x)) \subset \Lambda_i$, proving the assertion. We consider now the curve $\gamma = \{\phi_s(x) \mid 0 \le s \le 1\}$. For each $j = 1 \dots k$ let $A_j = \{y \in \gamma \mid \omega_1(y) \cap \Lambda_j\}$. Since $\{\Lambda_j\}$ $j = 1, \dots, k$ is a family of disjoint isolated sets for ϕ_1 , we have that $\omega_1(y) \subset \Lambda_j$ for some j, for every $y \in M$, [2]. Thus $\gamma = \bigcup_{j=1}^k A_j$. From the above assertion A_j is an open set in γ , for each $j = 1, \dots, k$. Thus we conclude that $\gamma = A_i$, since the sets A_j , for $j = 1, \dots, k$ are all disjoint and $x \in A_i$. We have just proved that for each $y \in \gamma$ there exist an open segment β_y in the orbit of x ($\beta_y = \{\phi_s(y)/|s| < \delta\}$) and a number n(y) > 0 such that $\phi_n(\beta_y) \subset V$ for every $n \ge n(y)$. Since γ is compact there is a number $n_0 > 0$ such that $\phi_n(\gamma) \subset V$ for every $n \ge n_0$. So $\phi_t(x) \in V$ for every $t \ge n_0$ which implies that $\omega(x) \subset \Lambda_i$. We now prove that the existence of a filtration for the non-wandering set Ω_1 of ϕ_1 implies that the non-wandering set $\Omega(\phi)$ of the flow coincides with Ω_1 . **Lemma 4.** Let $\Omega_1 = \Lambda_1 \cup ... \cup \Lambda_k$, where $\{\Lambda_i\}$ for $1 \leq i \leq k$ is a family of disjoint isolated sets for ϕ_1 . If there exists a filtration for Ω_1 , that is, a family of compact sets $\Phi = K_0 \subset ,..., \subset K_k = M$ such that $\phi_1(K_i) \subset \inf_{K_i} \inf_{\Omega \in \mathbb{Z}} \phi_n(K_i - K_{i-1}) = \Lambda_i$, then $\Omega(\phi) = \Omega_1$. Proof. We will show that if, $x \notin \Omega_1$, then x is a wandering point for the flow ϕ . Let Λ_i such that $\omega_1(x) \subset \Lambda_i$. From Lemma 3, $\omega(x) \subset \Lambda_i$. Let $\gamma = \{\phi_s(x)/0 \le s \le 1\}$. Since $x \notin \Omega_1$, and so $\gamma \cap \Omega_1 = \Phi$, there are numbers $n_1, n_2 \ge 0$ such that $\phi_{-n}(\gamma) \subset M - K_i$, for every $n > n_1$, and $\phi_n(\gamma) \subset$ int K_i for every $n \ge n_2$. Let U be a neighbourhood of $\phi_{-n_1}(\gamma)$ in $M - K_i$ such that $\phi_{n_1+n_2}(U) \subset$ int K_i . Thus, if W is a neighbourhood of $\phi_{-n_1}(x)$ such that $\phi_s(W) \subset U$ for $0 \le s \le 1$, then $W \cap \phi_t(W) = \Phi$ for $t \ge n_1 + n_2$ proving our assertion. Indeed if y, and $\phi_t(y) \in W$, for $t \ge n_1 + n_2$, let $0 < \delta < 1$ be such that $t + \delta = m \in \mathbb{N}$. Thus $\phi_m(y) = \phi_\delta(\phi_t(y)) \in U$ which is a contradiction, since $m = t + \delta \ge t \ge n_1 + n_2$ and so $\phi_m(U) \subset$ int K_i . With these lemmas and the facts stated below about the Birkhoff center $c(\phi)$ of ϕ , when $c(\phi)$ is hyperbolic, we can prove Theorem A. Suppose that $c(\phi)$ is hyperbolic for the flow. If F denotes the set of fixed points of ϕ , then F is finite, and each element of F is a hyperbolic fixed point of ϕ , since $E_x^{\phi} = 0$ for $x \in F$. Continuity of E^{ϕ} implies that F is disjoint from the closure of $(c(\phi) - F)$, which we denote by Λ . The first result that we need for $c(\phi)$ is a version for flows of the Anosov Closing Lemma, which says that if $c(\phi)$ is hyperbolic then the periodic orbits of ϕ are dense in $\Lambda = \overline{c(\phi) - F}$. The proof given by Newhouse [3], for the case of a hyperbolic α -limit set of a diffeomorphyism can be adapted to obtain the above result for $c(\phi)$. With this result, the same proof of the Ω -decomposition Theorem [4], gives us a decomposition of $c(\phi)$ into a finite number of disjoint hyperbolic sets for ϕ , $\Lambda_1, \ldots, \Lambda_k$ each of them having local product structure. Thus, from the results stated before, each Λ_j is an isolated set for ϕ_1 , and $W^u(\Lambda_j) = \{x \in M \mid \alpha_1(x) \subset \Lambda_j\}$, $W^s(\Lambda_j) = \{x \in M \mid \alpha_1(x) \subset \Lambda_j\}$. **Definition.** A cycle for $c(\phi) = \Lambda_1 \cup \ldots \cup \Lambda_k$ is a sequence. $\Lambda_{i_1}, \ldots, \Lambda_i = \Lambda_{i_1}$ such that there are points x_1, \ldots, x_j , with $x_n \notin \bigcup_{k=1}^j \Lambda_{i_k}$, $\alpha(x_n) \subset \Lambda_{i_n}$ and $\omega(x_n) \subset \Lambda_{i_{n+1}}$ for $1 \le n \le j$. Next we use a filtration lemma and a theorem for the Birkhoff center of a homeomorphism of M, which are proved in [2] (Lemma 1.8 and Theorem A), to get the following results for ϕ_1 . **Lemma 5.** If $c(\phi_1)$ has a decomposition $c(\phi_1) = \Lambda_1 \cup ... \cup \Lambda_k$ into disjoint isolated sets for ϕ_1 having no cycles, then - (a) There exists a filtration for $c(\phi_1)$; - (b) $c(\phi_1) = \Omega(\phi_1)$. We now prove Theorem A. **Proof of Theorem** A. From the facts above and Lemma 2 we have that $c(\phi_1)$ has a decomposition $c(\phi_1) = \Lambda_1 \cup ... \cup \Lambda_k$ into disjoint isolated sets for ϕ_1 . By assumption, this decomposition does not have cycles. Using Lemma 2 and Lemma 5, we conclude that $c(\phi) = \Omega(\phi_1)$. Then, applying Lemma 4 we get $\Omega(\phi_1) = \Omega(\phi)$, and so $c(\phi) = \Omega(\phi)$. Thus ϕ obeys Axiom A' and has the no cycle property, and so, from [4] ϕ is Ω -stable. Next, we give a corollary of Theorem A. We recall that a flow ϕ is called a Kupka-Smale flow if it satisfies: - (a) The periordic orbits of ϕ are hyperbolic; - (b) The transversality condition. If in addition $\Omega(\phi)$ is the union of a finite number of periodic orbits, then ϕ is said to be a Morse-Smale flow. As an immediate consequence of Theorem A we have the following result. 24 **Corollary.** If ϕ is Kupka-Smale flow and $c(\phi)$ is the union of a finite number of periodic orbits, then ϕ is in fact a Morse-Smale flow. Finally, we observe that, as in the case of dioffeomorphism [2], we have for flows, a partial converse of Theorem A. In fact, the proof given in [2] (Theorem C) for diffeomorphisms can be adapted to obtain the following result for flows. **Theorem B.** If $c(\phi)$ is a hyperbolic set for the flow, and ϕ is Ω -stable, then $c(\phi)$ has the no cycle property. In particular $c(\phi) = \Omega(\phi)$. As a consequence we get: **Corollary.** Let ϕ be a C^r flow such that $c(\phi)$ is the union of a finite number of periodic orbits. Then ϕ is Ω -stable iff $\Omega(\phi) = c(\phi)$ is hyperbolic and has the ho cycle property. ## References - [1] M. Hirsch, J. Palis, C. Pugh and M. Shub, Neighbourhood of hyperbolic sets, Invent. Math. 9, 121-134 (1970). - [2] I. P. Malta, Hyperbolic Birkhoff Centers, Trans. Amer. Math. Soc. (to appear), and An. Acad. Brasil de Ci., 51, 27-29 (1979). - [3] S. E. Newhouse, Hyperbolic limits sets, Trans. Amer. Math. Soc., Vol. 167, 125-150 (1972). - [4] C. Pugh and M. Shub, The Ω-stability Theorem for flows, Invent. Math. 11, 150-158 (1970). Departamento de Matemática Pontifícia Universidade Católica do Rio de Janeiro Rua Marquês de São Vicente, 209/263 22.453 — Rio de Janeiro, RJ Brasil