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On Q-stability of flows
I P. Malta

1. Introduction.

In this paper we consider a C" flow ¢ on a compact manifold M,
whose Birkhoff center is a disjoint union of the set F of (hyperbolic) fixed
points of ¢, and a hyperbolic set A. We give an extension for flows of the
correspondent result for difffomorphisms in [2]." That is, if the Birkhoff
center of ¢ is as above and has no cycles, then it coincides with the non-
wandering set of ¢. In particular, ¢ is stable with respect to its non-wan-
dering set, (X¢), that is, ¢ is Q-stable.

Smale’s Axion A’requires:
(@) Q is a disjoint union of the set of critical points F and the closure
A of its periodic orbits.

(b) each element of F is hyperbolic and A is a hyperbolic set for ¢.

We define c(¢), the Birkoff center of ¢, as the closure of the set
{xe M|x & a(x) N w(x)}, where a(x) and w(x) are the a-limit and -limit

sets of x, respectively. We prove the following theorem.

Theorem A. If the Birkoff center of ¢, c(¢), is a hyperbolic set for ¢ and
has the no cycle property, then ¢ satisfies Axion A’ and it is Q-stable.

To prove theorem A we need first, as in the case of diffeomorphisms,
to obtain a decomposition of c(¢) into a finite number of disjoint hyperbolic
sets for the flow, each of then having local product struture. For this, we
use a version for flows of Anosov’s Closing lemma for ¢(¢). With this result
the same proof of the Q-Decomposition Theorem for flows satisfying
Axiom A’ [4] yields a decomposition of ¢(¢) into hyperbolic sets with local
product structure. Next we apply some results in [2] to ¢, the time one
map of the flow ¢. First we prove that ¢(¢) coincides with the Birkoff
center of ¢,, c(¢,), i.e, with the closure of the set {xe M |x € o, (x) N w,(%)},
where a,(x) and w,(x) are the a and w-limit sets of x for the diffeomorphism
¢,. From results in [1], a hyperbolic set for the-flow ¢, with local product
structure is an isolated set for the diffeomorphism ¢,. As defined in [2],
we say that a compact set K = M is an isolated set for a homeomorphism
f of M if it is invariant by f, (ie. f(K) = K), and there exists a neighbo-
urhood U of K such that K is the maximal invariant set for f in U, that
i5, L IRUYEK.
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These results and the assumption of no cycle gives us a decomposition
of c(¢,) into disjoint isolated sets having no cycles. From Lemma 5 below,
we conclude that c¢(¢,) coincides with the non-wandering set of ¢,, Q,, and
obtain a filtration for Q, = X¢,). We finish the proof of Theorem A
using Lemma 4, which says that if there exists a filtration for Q,, then
Q = ¢) coincides with Q, = Q(¢)).

I would like to thank J. Palis for profitable conversations.

2. Main Theorem.

Here we give the proof of Theorem A. First we establish some notation,
and give some well known results which will be used later.

Throughout, ¢ is assumed to be a C" flow, r > 1 on a compact C*
manifold M without boundary. For each xe M, we denote by o(x) the
orbit of x by ¢; ie, o(x) = {¢(x)|teR}. For a subset D = M, D will
denote its closure in M, and int D will denote its interior in M.

A compact invariant subset A = M is said to be hyperbolic for ¢ if,
for every t > 0, T¢, leaves invariant a continuous splitting.

T\M=EQ®E®E

expanding E* and contracting E°, where E? is the tangent bundle to the
orbits of the flow.

Through each point xe A we have C injectively immersed manifolds
W¥(x), W*(x) tangent to E , E°_ at x. For small ¢ > 0 we denote by W*(x)
the closed e-disc in W*(x), centered at x, [1], [4].

Let W*A) = v W*x), Wi(A) = U W*(x). Similarly we define W* (A)

xeA xeA
and W° (A).
We say that A has local product structure if

W (A) A W (A) = A

for some ¢ > 0.

According to a result in [1], if A is a hyperbolic set for ¢, having
local product structure, then A is an isolated set for ¢,, and W3(A) =
={xeM|w,(x) = A} = {xe M|w(x) = A}. That is, the unstable mani-
fold of A coincides with the unstable space associated to the isolated set
A for ¢, as in [2]. Similarly for W*(A).

Using this fact and the following lemmas we will prove Theorem A
by applyng to ¢, the results proved for difffomorphisms in [2].

On Q-Stability of flows 21

Lemma 1. Let xeM and y = {¢p(x)|0 <t < 1}. If o(x) > o(x) then for
each pevy, there exists qey such that g€ w,(p). :

Proof. Let t, - o0 as n — oo such that ¢, (p) > p as n > oo. Let
0 <4, <1 such that t, + 6, = k, e N. Put Y, o ¢k,, (p) We may assume
that y, —y. We claim that ye o(p). For if y¢ o(p), let F be a flow box
such that ¢ (p)eF for — 1 <t <1 but y¢F (if the orbit of x is a periodic
orbit the result is trivial). Since ¢, (p) = p, we have ¢, (p)€F for large n
and so y,€F for large n. Thus yeF which is a contradiction. But y is a
fundamental domain for o(p), that is, there exists n, € Z such that ¢, (y)ey.

S0 B (V) = Bpgsi (P) Dy(¥) €Y.

Lemma 2. The Birkhoff center of ¢ coincides with the Birkhoff center of ¢,
time one map of the flow.
Proof. All we need to show is that, if xew(x) then X € w,(x).

If pew,(p) then o(p)€ w,(¢,(p)) for every te R So it suffices to prove
that there exists pey such that pPew,(p), where y = {¢(x)|0 <t <1}
From Lemma 1 we can construct a sequence p,, such that p, =x and
P,€®(p,_,) Ny for n > 1. Since p,ew(p,) if n > k, we may assume that
p, — p€y. We claim that pe w,(p). All we need to show is that, given ¢ > 0
and an integer N > 0, there exists k > N such that d¢,(p), p) < & where
d is a metric on M. For this, given ¢ > 0, let § > 0 be such that if Is| <&
then d(g, ¢(q)) < ¢/2. Since p,, pey and p, — p there is a number n, such
that d(p, ,p) < &2 and Pny = $/p) for |t| < 6. Since P, € ®,(p, ) for every
n > n, we conclude that Pewl(l’no)~ So there exists k > N such that

d(d’k(l’,.o), p) <¢/2. Thus we have d(¢,(p), p) < d(¢,(p), ¢k(P,,O)) 1 d(d’k(l’,,o), p<
< d¢(p). d(d,(p) + &2 < & since lt| < 6.

Let L, = L(¢,) the limit set of ¢, that is, the union of the closure of the
sets {xeM|3yeM such that xea,(y)} and {xeM|3IyeM such that
x€w(y)}.

Lemma 3. Suppose L, < AU ... UA,, where {A}i=1,...,k is a disjoint
Jamily of isolated sets for ¢,. Let xeM. I S o(x) = A, then ai(x) c A
Similarly if a(x) = A, then o(x) = A

Proof. First we prove the following assertion: there exists 6 > 0 such that
if |s| < 0, then w (¢ (x)) = A,. To see this, let U be a neighbourhood of
A, such that N ¢,U)=A;, and Un(u A) = ®. Let ¢ >0 such that

1
nel J#i

the set B(yv; gl= 7 e_M|d(y, z) < e} is contained in U for every YEA,
‘ ; %

Take y,,...,), €A, such that V = B(y;;€/2) o A;. Let n, 20 be such
j=1

I



22 I. P. Malta

that ¢ (x)eV for every n > n,,
d(g, $(q)) < &/2V qe M. Then, given n = n,, we have ¢, (x)e ¥, so there is
y; €A, such that d(¢,(x),y;) < &2 Thus d¢,¢(x),y,) < d,.(x),,(x) +
+ d,(x), y;) < dp (¢ (x)), $,(x)) + ¢/2 <e That is, ¢,(p(x)eU for every
n > n,. Consequently o, (¢(x)) = A,, proving the assertion.

We consider now the curve y = {¢(x)|0 <s < !}]. Foreachj=1..k
let 4;={yeylmw,(y) nA;. Since {A;} j=1,....k is a family of disjoint
isolated sets for (,bl, we have that w ( ) € A for some j, for every ye M,

28 hust =i A;. From the above assertion A; is an open set in ¥, for
ji=1

each j=,...,k. Thus we conclude that y = A, since the sets A, for
j=1,...,k are all disjoint and xe 4,. We have just proved that for each
y ey there exist an open segment B, in the orbit of x B, = {o,)/Isl < &})
and a number n(y) > 0 such that ¢,(B) < V for every n > n(y). Since y
is compact there is a number n, > 0 such that ¢,(y) = V for every n > n,,.
So ¢(x)eV for every t > n, which implies that w(x) = A,.

We now prove that the existence of a filtration for the non-wandering
set Q, of ¢, implies that the non-wandering set Q(¢) of the flow coincides
with Q.

Lemma 4. Let Q = A, U...UA,, where {A} for 1 <i<k is a family
of disjoint isolated sets for ¢,. If there exists a filtration for Q,, that is,
a family of compact sets ® = K, <, ..., < K, =M such that ¢,(K,) < int
K, and o ¢ (K; — K;_;) = A, then Q(¢) = Q,.

Proof. We will show that if, x ¢ Q,, then x is a wandering point for the flow
¢. Let A, such that w,(x) = A, From Lemma 3, w(x) = A;. Let y =

{¢>(x)/0 <lgi=1% i8ince xqéQl, and so y A Qi CD there are numbers
n,, n, > 0 such that ¢_ (y) =« M — K, for every n e n,, and ¢ (y) < int K,
for every n > n,. Let U .be a neighbourhood of ¢_, 0 in M — K, such
that ¢, H (U) c int K,. Thus, if W is a ne1ghbourhood of ¢_, ) such

that qb(W) cUfor 0<s<1, then Wno¢(W)= ® for t > n, + n, pro-
ving our assertion. Indeed if y, and ¢(y) e Wfor t > n, + n,, let 0 <6 < 1
be such that t + 6 = meIN. Thus ¢, (y) = ¢,(¢,(y) e U which is a contra-
diction, since m =t 4+ 6 >t >n, + n, and so ¢, (U) < int K,.

With these lemmas and the facts stated below about the Birkhoff
center ¢(¢p) of ¢, when c¢(¢) is hyperbolic, we can prove Theorem A.

Suppose that ¢(¢) is hyperbolic for the flow. If F denotes the set of
fixed points of ¢, then F is finite, and each element of F is a hyperbolic fixed
point of ¢, since E? =0 for xeF. Continuity of E® implies that F is
disjoint from the closure of (c(¢) — F), which we denote by A
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The first result that we need for ¢(¢) is a version for flows of the Anosov
Closing Lemma, which says that if ¢(¢) is hyperbolic then the periodic orbits
of ¢ are dense in A = c¢(¢p) — F. The proof given by Newhouse [3], for
the case of a hyperbolic a-limit set of a difffomorphyism can be adapted
to obtain the above result for ().

With this result, the same proof of the Q-decomposition Theorem [4],
gives us a decomposition of ¢(¢) into a finite number of disjoint hyperbolic
sets for ¢, A,..., A, each of them having local product structure. Thus,
from the results stated before, each A; is an isolated set for ¢, and WHA) =

{xeMlcxl(x)C:A} WiA) = {xeM|w,(x) = A}

Definition. ‘A cycle for c(¢) = A, U... UA, is a sequence. A, ,...,A; =

= A; such that there are points x,,...,x; with x,¢ O A, alx,) < A,

=1 "

and o(x,) < Ai"+1 for 1 <n<j.

Next we use a filtration lemma and a theorem for the Birkhoff center
of a homeomorphism of M, which are proved in [2] (Lemma 1.8 and
Theorem A), to get the following results for ¢,.

Lemma 5. If o(¢,) has a decomposition c(¢,) = A, U ... U A, into disjoint
isolated sets for ¢, having no cycles, then '

(@) There exists a filtration for c(¢,);

(b) ce,) = Q¢
We now prove Theorem A.

Proof of Theorem A. From the facts above and Lemma 2 we have that
c(¢,) has a decomposition c(¢,) = A, U... U A, into disjoint isolated sets
for ¢,. By assumption, this decomposmon does not have cycles. Using
Lemma 2 and Lemma 5, we conclude that c(¢) = Q¢p,). Then, applying

Lemma 4 we get Q¢,) = Q(¢), and so c(¢p) = ¢p). Thus ¢ obeys Axiom
A" and has the no cyle property, and so, from [4] ¢ is Q-stable.

Next, we give a corollary of Theorem A. We recall that a flow ¢ is
called a Kupka-Smale flow if it satisfies:

(@) The periordic orbits of ¢ are hyperbolic:
(b) The transversality condition.

If in addition €)X¢) is the union of a finite number of periodic orbits,
then ¢ is said to be a Morse-Smale flow.

As an immediate consequence of Theorem A we have the following
result.
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Corollary. [If ¢ is Kupka-Smale flow and c(@) is the union of a finite number
of periodic orbits, then ¢ is in fact a Morse-Smale flow.

Finally, we observe that, as in the case of dioffeomorphism [2], we
have for flows, a partial converse of Theorem A. In fact, the proof given
in [2] (Theorem C) for diffeomorphisms can be adapted to obtain the
following result for flows.

Theorem B. If c(¢) is a hyperbolic set for the flow, and ¢ is Q-stable, then
¢(¢) has the no cycle property. In particular c(¢p) = o).

As a consequence we get:

Corollary. Let ¢ be a C" flow such that c(¢) is the union of a finite number
of periodic orbits. Then ¢ is Q-stable iff @) = c(¢p) is hyperbolic and has
the ho cycle property.
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