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A note on non-linearizable analitic functions

Pa RerSadt

1.. Introduction.

Let f(2) = 4z + a,2* + ..., where |4 = 1, be a power series with positive
radius of convergence. The local structure of orbits of f is completely deter-
mined when 4 is a root of unity (see [2]). We consider here the case A is not
a root of unity. Our viewpoint consists in finding topological rather than
analytical reasons that in some cases don’t allow f to be linearizable. It
is known that there exists a subset 4 < S' with measure 1 such that if 1€ 4
then f is linearizable in a neighbourhood of 0 (see [7]). What does it happen
if AeS' — 4?7 We should mention first the very interesting fact (of easy
proof) that if f is C°-linearizable near 0, then f is also analytically linea-
rizable. This suggests us to pay attention to the topological behavior of
S/ near 0. We have the following theorem.

Theorem. For a dense subset A of S', given i€ A we can find a convergent
power series f,(z) = Az + a, 2> + ... such that there exists a sequence of
periodic orbits of f, approaching O with arbitrarily large periods. In parti-
cular, f is not C°-linearizable.

This is quite different from classical ideas due to Julia ([5] and [6]). He
studies generic polynomial endomorphisms P(z) = Az + ... + a,z" which
are not linearizable and shows that a periodic orbit appears arbitrarily
close to 0 but the whole orbit probably goes far from, the origin. We present
the proof of this beautiful result at §2.

We would like to note that, in [8], Siegel shows that for a dense subset
A" of S', given A€ A’ there exists f,(z) = Az + a, z* + ... non-linearizable;
the proof involves the non convergence of the associated Schroder series.
So we have an interesting viewpoint duality.

We obtain the power series f(z) mentioned in the above theorem through
a limit process. In [4], Cremer asks for a way of constructing fixed points
of analytical functions that are not centers.

The techniques involved in the proof of the theorem are fairly simple. We
hope they can be improved in order to prove the following.
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Conjecture. Let f(z) = Az + a,z* + ... be non-linearizable, |\l = 1. If A
is not a root of unity, then 0 is accumulated by periodic orbits of f with
arbitrarily large periods.

2. Contrast with classical theory.

We consider here a polynomial endomorphism P(z) = Az + ... + a,z" not
linearizable at 0, n > 2. It has infinitely many periodic orbits; we may
suppose all these orbits hyperbolic (with the exception of 0). It can be
shown that a finite number of them are sinks (see [5]). We look for a
periodic point close to the origin. We proceed as follows:

Step 1. let V be a neighbourhood of O; then # ={P"/V,; neN} is not a
normal family. Let’s distinguish two cases: (i) A is a root of unity. Hence,
by [2] there exists z, em V such that P%z)) - O. If # were a normal
family, it would exist n, - co and an analytic function Q: ¥V — C such that

P™ - Q; but P"(z;) » 0 so Q(z,) = O, contradicting |Q'(0) = 1. (ii) 4 is
not a root of unity. Choose n, — co such that P - Q and (P"%)(0) con-
verges to A, belonging to the Siegel set A. It follows that PQ = QP; but
Q linearizable (and A not a root of unity) implies P linearizable (use formal
series).

Step 2. by a theorem of Montel (see [3], pg. 302), if # (C— u P (V)) >2

n=0
then # is a normal family. So we may take z, € V such that some power
y = PXz,) is a periodic source of P of period m.

PV,

Let V, be a small neighbourhood of y. Again, {P™/V,; neN} can’t be a
normal family (because |(P™)(y) > 1); hence some P!(V,)az,, leIN. Now
take a disk ¥’ = PY(V,) with center z, such that ¥V, = PXV’) is contained
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in V;. By hyperbolicity of the source y some P™(V)) contains V, for
Jj€N. Therefore some power Pi(V') o V', ieN; this implies the existence
of a periodic point of P inside V. We note that these are global arguments;
the periodic orbit we have found is not necessarily close to O.

3. Proof of the theorem.

Let f:V — C be an analytic function defined on an open subset V < C,
OeV. If f'(0) # 0 we know that f is a diffeomorphism in some disk D < V.
There exists ¢ > 0 such that if g : V- C is analytic and |g(z) — f(z)| < ¢ for
zeD (lg — fll, < ¢ then ¢ is a diffeomorphism from D to g(D). Let
N = N(f,D,e) be the set of such analytic functions; we consider only
those which take 0 in O.

Lemma 1. Let A, = f'(0) # 1 be a root of unity: (45 =1, n being the
least integer k > 1 such that A% = 1). There exists a disk D < D and an
analytic change of coordinates G, defined on a neighbourhood of 0 such
that G,-g-G,'(2) = Az + z"*' R(z,g) for zeD and ge N'. Furthermore,
WG deG s o f Fdlla 20 if i fll prt (F= Gy, and each G,
takes 0 in 0).

Proof.

1 — Let’s first prove the lemma for f, and so extend it for g close to f.
Let f(z) = fy(z) = Apz + b3z + ... we look for y, analytic such that
Vo [ 9312 = Az + b 2> + ... = fy(2). Take y,(z) = z + a,2; to find

a,, 'we note that (z + azzz)-().oz + bz + ..) = Qs bl o a0y - oo
+ a,z?) impplies

’"
b2

A, = ——4=—— -
2 2
)‘o_'lo

We continue this way; then we determine a, 2 <i <n — 1, such that if
V(=) =z+a, 7 we have Y,  f, = f,, "y, where f(z) =4,z + b2 + ...
and

b
o

Now if f(2) = 4yz + b™ 2" + ..., we choose

b
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and y,(2) = z + a,z" and get
l//n 1 j;. T f;|+ 1 X lfbn
where

1) Lald
£ =l b2

We finally take F =y, y,_, ... ¥, and so
FAf P ) = 1.7 +0 . Kz f)

It’s obvious that this construction can be extended continuosly to g close

to f.

Lemma 2. Let f(z) = Ayz + 2" ' R(z, f) (A = 1,4y # 1, R(O, f) # 0) be an
analytic function defined on a neighbourhood V of O. There exists a disk
D' < V such that if g(z) = Az + 2" R(z, g) is defined on V and |lg — fllp is
small then g'(z) — z and f"(z) — z have the same number of roots inside D'.
Proof. .

1 — We may suppose that there exists V' = V such that if |[g — fl5 is
small enough then g" is defined on V; let D' < V' be a disk with OeD'.
We have [lg — fllp, = 0=llg" — f"ll,, » 0, and g"(z) = A"z + z"*'R(z,4")
and f"(z) = Az + z"*'R(z, f"). We know that [IR(z,4") — R(z, f")lp, > 0
if llg — fllp, = 0. Now,

9"2) = [ <A = Dzl +12""(R(z, ¢") — R(z, f).
We want to compare |g"(z) — f"(z)l with

|f"(z) — 2l = 12" R(z, f")} ou oD".

Let M = min |R(z, f")} > 0 and |z| = a if zedD’; then

zed D

g9"(2) = f"(2)

L Lt 3 @' |IR(z, ¢") — Rz, [Mlon_.
fr@) -z

= Man+1 Man+1

g9"(2) — ")
f'2) -z

enough. Lemma 2 follows from a well known theorem (see [1], page 152).

From that we get <1 for zedD' if |lg — fllp, is small

'Corollary. Let f and g be as in lemma 1, and n a prime integer. If
llg — fllp is small enough and g'(0) # 4y, then g has a periodic orbit of
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period n close to the origin, and 0 is a fixed point of g. Furthermore, this
periodic orbit tends to 0 if |lg — fll, - 0.

Proof. : .

1 — By lemma 2, we may suppose that f(z) =4,z + z"*' R(z, f) and
g(z2) =iz + "' R(z, f); as f"(z) =z + z"* ' R(z, f") we see that 0 is a
root of f"(z) — z-'with multiplicity n + 1; from that it follows g"(z) — z has
n + 1 roots close to 0. One of them is 0, and the other n roots constitute
the orbit of period n. We note that 0 is an isolated fixed point of f with
multiplicity 1.

Now we construct analytic local diffeomorphisms of C that cannot be
linearized because there exists a sequence of periodic orbits of crescent
period approaching the fixed point 0. We begin with f(z) = ™%z + z"*1
where ™" = 1 and we choose V(4,) < C such that g(z) = e?™*z 4 z"*+!
satisfies the corollary above for Ae V(4,).

Let A, eV(4,) be such that e*™" =1, n >n being a prime integer.
Choose now V(4,) € V(4,) with A,¢ V(4,). We note that (i) in some disk -
around O there exists a periodic orbit of g with perioa n; (i) if V(4,) is
small enough, there exists a periodic orbit of g with period n, inside a disk
strictly cointained in the first one. Continuing this way we get a sequence
Vido) S V(A) < ... = V(A) with 4;,_, ¢ V(1) and prime integers n < n, <
<n, <...<n; with the following property: there exist disks D, = D, =
€ ... € D, with radius (D,) — 0 such that if g(z) = e*™*z + z"*!, e V(4),

then g has inside D, a periodic orbit with period n,. Let ae N V(1) and

i=0
g(z) = e™@z + z"*1. Then, the fixed point 0 of g is accumulated by a
sequence of periodic orbits whose periods increase without limit, and from
this it follows that g can not be linearized. We have |e?™% = 1, and a¢ Q
(see [2]). The construction we have done shows also that the subset of
41eS' such that there exists @ non-linearizable analytic function f(z) =
= Az + ... is dense in S'.
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