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Perturbations of — A that grow at infinity in certain directions

Rafael José Iorio Jr.

1. Introduction.

In this article we study the spectrum of the self-adjoint realization of
the formal differential expression — A + g(x,) + V(x,, x,) in the framework
of time independent scattering theory. Here (x,,x,)eR", n=n, +n,
n, > 1, is the laplacian in L*(R"), V(x,, x,) falls off in the x, direction and
is bounded in the x, direction, while g(x,) is bounded from below and tends
to infinity as |x,| — oo, (for the precise conditions see sections 2 and 4).
The main ideas used in this paper come from the works of Kato 7, Kato
and Kuroda 8, and Agmon 1. The ideas and techniques in these articles
have been applied by many authors to a wide variety of differential operators
with great success. For instance, applications to many-particle Schrédinger
operators appear in 3, 4, 5, to uniformly propagative systems in 13, 14 to
Klein-Gordon type equations in 6, and to perturbations of the laplacian
in two-point homogeneous spaces in 12.

The present article is divided as follows: In section 2 we describe que
free operator T,, which is the self-adjoint closure of —A+g(x,) in
L3(R"). The results stated in section 2 are well-known and their proofs can
be found in 2, 9 and 10. In section 3 we introduce some useful function
spaces and study some properties of the free resolvent. In section 4 the
conditions on the perturbation V(x,, x,) are given and the resolvent equation
is discussed. In section 5 we show that the point spectrum of the perturbed
operator is countable and that its singularly continuous spectrum is empty.
Finally there are two appendixes containing the more technical estimates
necessary for the proofs. ;

Along this article the following notations and definitions will be used.

If X and Y are Banach apaces, the set of all bounded (resp. compact)
operators from X to Y will be denoted by B(X, Y) (resp. By(X, Y)). In case
X = Y we write simply B(X) and B,(X). If H is a Hilbert space, its norm
-and inner product are denote by || ||, and (| ), respectively. In case there
"is no possibility of confusion the subscript H will be droped. If T is a
self-adjoint operator in H, we denote its spectrum by X(T). The discrete
spectrum of T, ie. the set of all isolated eigenvalues with finite multiplicity
is denoted by Z(T), while its complement in X(T), the essential spectrum
of T is denoted by X (T). The absolutely continuous and singularly conti-
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tinuous spectra are denoted by X, (T) and Z_(T) respectively. The algebraic
tensor product of two subspaces ¥, and V, of the Hilbert spaces H, and
H, is denoted by V, ® V¥, and its closure by ¥V, ® V,. Integrals .without
explicit limits of integration are to be taken over R® where s will be clear
. from the context. The letter C will denote the various positive constants
whose precise values are of no interest. Finally the positive integers are
denoted by Z*.

2. The Free operator.

Let A, i=12 denote the laplacian defined in CE(R™ and let
q(xl)eLzloc([R"i) be non-negative pointwise. It is wellknown that the opera-
tors — A, +q and — A, — A, + q are essentially self adjoint in CZ(IR™)
and CJ(R") respectively, where n =n, +n,. Let t,, T, and H, denote
the unique self adjoint realizations of — A, +¢9, — A, — A, + gand — A,
in L%(R™), L?(R") and L*(IR"2) respectively. Then we have,

@.1) T,=t,®1,+1, ® H,

Morever, D(t,) © D(H,) is a core for T,. We will assume the following
conditions on ¢,:

(to — 1) Z(t,) consists of an infinite number of positive eigenvalves, 4, <
< 4, < 4, < ..., with finite multiplicity and no finite accumulation point.
(t, — 2) There is an a€(0, 1) such that

b B ol o

i=1

In particular, the series ) (4;)”* converges and (t,” ') is a Hilbert-Schmidt

=1
operator. Also, X(T;) =12e(To) = X(ty) + Z(H,) = [4,, ).

Remarks. 1) Assumption (t, — 1) is satisfied in case g is bounded from
below and g(x,) » o as |x,| » oo (see 10 page 249). In fact we assume

q(x,) > 0 for convenience and the results stated below can be easily modi-
fied to fit the case g bounded from below.

2) Assumptions (¢, — 1) and (t, — 2) are satisfied for example by
q(x,) = Ix,1*> + |x,/*™, m = 2,3, ..., This is well known for |x,|?> and follows
from the mini-max principle (10, page 75) for g(x,).

Let m; be the multiplicity of 4, and let, {¢{’} j =1,...,m, denote an
orthonormal basis of the corresponding eigenspace. With this notation
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the resolvent R, (z) = (t, — z)~' and the spectral family E, (4) can be
written as,

D5 P
59 2 galonlt g
= Rm(Z) hS i;l Z = A
TR

; 2
(2.3) E 4 = { Y Pd) A= 4
A;<4 i

where P, (4,). the projection on the eigenspace of 4, is given by,

mj

24) P2)f =Y (f169) 0, fe L2ARM).
j=1

Let R, (2), 2¢ [4,,0) and E; (%), Z€R, denote the resolvent and spectral
family of T,. Then,

(2.5) Refzy— i P (4) ® Ry(z — 4)
i=1

(2.6) E;(A) =) P (A)® Eyi— 4)

i=1

Here, R(2), z ¢ [0, o0) and E(4), A€ R denote the resolvent and spectral
family of H,. We remark that the series in (2.6) is in fact a finite sum
(since E(A — 4;) =0 for 4 — 4, <0) and that (t, — 2) implies the conver-
gence of the series in (2.2) and (2.5) in B(I*(IR™)) and B(L*(R")) respectively.
That (2.5) and (2.6) do represent the resolvent and spectral family of T
can be easily seen by direct computation or as a consequence of general
results in chapter VI of 2. Note that (2.5) and (2.6) can be rewitten as

(2.5) R, (2 = i ’i SR =L Gy
i=1 j=1
2.6) E,=Y 5 JOE-1)GY

i=1 j=1

where J® e B(L(R™)), L*(R") and G}’ e B(L*(R"), L(R™)) are defined by,
@7 . JNf =6 ® f

(2.8) (G ) (x,) = f dx, P (x,)g(x,, x,)
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Note that G J) f = f, for all feL*(R™), GPJ?P =0 for i #i and
Il 1G]l < 1.
Moreover J G{g = ¢ ® G{’g and we have,

(2.9) TP 119) 2m = 16 ) 2 om
for al feL(R™), ge LR").

Proposition 2.1. X(T)) = Z (T, = [4,, o0).

Proof. 1t suffices to show that the function i€ [a,b] - (E,(A)¢|@) is
absolutely continuous for all ¢ e LAR") and [a,b] = R If b < A, there
is nothing to prove because in this case, E; (1) =0. If b < 4,, an easy
computation shows that,

ErDdl D) iem= T 3 Eolh = 1) GP ¢ GO ) somy

dish j=1

Since the R. H. S. of this equality is a finite sum of absolutely conti-
nuous functions we are done.

In order to simplify the notation, we assume from now on that m, = 1,
i=1,23,.... The normalized eigenfunctions corresponding to A, will be
written @,. We also let J, = JY, G, = G¥. It is a trivial matter to modify
the arguments and results below in order to accomodate the case m; > 1.

3. Function spaces and the Free Resolvent.

Let I3(R™), 6eR denote the set of all complex valued measurable
functions wu(x,) such that,

3.1 ' ||u]|§§ = fdxz(l + 1x,1%)° u(x,)I* < 00
and define ¢, ,(R") = L*(R") ® L5(R™), provided with the norm,
(3.2 : L35 = J‘dxldxz (1 + 1%,)%)2 1 £ (x5 x,)1%

Now let,

9,4R) = {f €%, RN (1 — A +q) fed, (R}
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where the laplacian is computed in the sense of distribuition theory. Note
that D(T,) = 4, ((R") and ¥, ((R") = L*(R"). In what follows M, denotes
the operator of multiplication by M(x,) = (1 + |x,*) ™2

Theorem 3.1. If 6 > 0 the inclusion 4, (R")= %, (R") is compact.
Proof. It suffices to prove that the operator (1 + Ty)~' M, By(L*R") or
equivalently M1 + T,)~' e B,(L*(R"). The proof is similar to that of
theorem (4.1) of the next section and is indicated in appendix 1.

Theorem 3.2. Ry (2)€ B(%, 4(R"), 4, _,R"), 6 > 1/2, z¢ [4,, ).
Moreover if Ae(— o,4)) or A€(Ay Ay,,) for some NeZ™, then

limR; (A +ie) = Ry (4 % i0)
el0

exists in the norm topology of B(%, 4R"), 4, _,R").
Proof. The first statement is equivalent to showing that

M,(1 + Ty) R, (2) M, € B(L*(R")),

z¢ [4,,0). But since, (1 + To) Ry (2) = (1 + z) Ry (z) + 1, it follows that,
M, + T)R; (2)M; = (1 + 2) MR, (2) M; + M2

This proves the first statement. As for the second, if A =Reze(— 0, 4,)
there is nothing to prove. Suppose therefore that Ae(4,,4,,,) for some
NeZ" and write:

N ©
MR (2)M;= Y MyJ;Ro(z — A) G, M, + M, Y JiRyz — 4,GM,.

j=i j=N+1

Consider first the infinite series. Using the properties of J,, G, and the
facts M,J,=J, M;,M;G, = G, M,, |IRy(z — A)Il < (dist (z — 4, Z(Hy))"' <
< (4 — A7, we see that

K K
M X JRz = W) GMI < € 03 IRz /A2 =<
j=N+1 j=N+1

AT il
N

j=N+1

Hence the series converges by (t, — 2). A similar estimate shows that

K
limM, Y J,R,i— 4, + ie)G, M, exists in B(L*(R").
£10 j=N+1
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The results for the finite sum follow from the properties of J, G, the
facts M,J, = J,M;, M,G, = G:M, and theorem (4.1) of 1. In particular,
this theorem implies that

N
im M, ¥ J,RyA — 4 + ie) G, M,

£l0 j=1

exists in B (L*(R") for Ae(dy, Ay, ,)-

4. The Perturbed Operator.

LEet V(5 x5),%, € R" i=12 be a real-valued measurable function
such that,
(41) |V(x1, X2)| = CU(XZ)’ U(Xz) = (Ul(xz) -+ UZ(XZ))(] i ‘x2|2)"ﬂ~1:)
UypelR*9,. U, eLYRY), ¢ >201q > ny /200 = 1)2,'e >0, €0

where o is the number in condition (t, — 2). In appendix 1 we prove the
following result,

Theorem 4.1. Ve B, (¥, _R"), %, _,.,,(R), 6 20.

In particular (taking 6 = 0) it follows that V is T; compact so that the
operator sum T = T, + V is self-adjoint on D(T) = D(T,), £(T) =
= X(T) n(— oo, 4,), (its only possible accumulation point being 4,), and
2(T) = Z/(T,) = [4,, ©). Moreover for z¢ [4,,00) the following identity
holds,

(4.2) 1+ L(z) = (T ~ 2) Ry, (2)

where L(z) = V Ry (2).

Theorem 4.2. L(z)e By(%, ,(R"), z¢ [4,, ). If in addition 1e(— o, 4,)
or A€(Ay, Ay, ) for some NeZ™, the limit

lim L(A + i¢) = L(4 £ io)
el0

exists in the norm topology of B(%, AR
Proof. The theorem follows at once from theorems 3.2 and 4.1.
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5. The spectrum of T in the intervals (4, 4y, ).

First we note that Ae(— oo, 4,) satisties Ty = 1y if and only if
L(A)¢ = — ¢, where ¢ =V and moreover ¢ = R; (z)¢. Our aim in
this section is to prove the analogues of these results for the eigenvalues of
T contained in any of the intervals (iy,4y,,, NeZ". We begin with,

Theorem 5.1. Let Ae(Ay, Ay, ,) for some NeZ" be such that Ty = Ay.
Then L(A £ io) ¢ = — ¢ where ¢ = Vye¥, (R

Moreover Yy = — Ry (4 + io) ¢.

Proof. Since Ty = (T, + V) = Ay, it follows that for all ¢ > 0 we have,

(5.1 Y =Ry (A +ie)V{ F ieRp(u £ i)y,
Therefore,
(3:2) ¢ =Vy=—LA+ie)p FicL(A+ ie)y.

The definition of L(z) and theorems 3.2, 4.1, 42 show that the result

- follows from 5.1 and 5.2 if we can show that

limeR (4 +i0)y =0
el0

in 4, _,(R"). This is done in appendix 2.
Theorem 5.2. Suppose A€(dy, Ay.,) for some NeZ" and Ty = iy. Then
ve9, (R") for some 6 >0 and

Hl//Hz’g < C ||W”o,o

where C is a constant independent of . In particular, if [a,b] c {A s ne 1>
there are only finitely many eigenvalues of T in [a,b].
Proof. Applying (1 + T,) to (5.1) and taking limits as ¢ |0 we obtain.

(1 + Ty = — Vy — (1 + )Ry (i £ io) Vi

By theorem (4.1), Vy €%, , (R") so that to prove the present result it
suffices to show that M;R; (4 + io) Vi e L*(R") for some S€(o,2p). In
order to obtain this result, note first that  also satisfies the equation
(Ty = )Y = — Vy. Applying G, to both sides of this identity we set,

(5.3) ((4; = 4) + H) G, = — G,V
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Taking the Fourier transform of this equation (with respect to x,) we obtain,
(5-4) (A; = A+ Ho)(G,¥) = —(G,VY)

where Iio denotes the operator of multiplication by |p,|% Because
Ve, ,,(R" it follows that G; leeLip(lR"’) and has therefore a well
defined trace on the sphere ipz,'l2 =A— /lj for j =1,2,..., N, belonging to
L*(p,l* = 2 — 4). It follows from (5.4) that this trace must be zero. By
theorem (I X-4.1) page 82 of 9 we have

(5.5) RA— 4, +i0)G,Vyel? (R), j=1,..,N.
0 i J

2p—1
Choose § =2p — 1. Writing the function as

N o
L JRfA =2, £00) GV + ¥ IRk~ 4)G,V

j=N+1

J

we see that the finite sum belongs to %,,5(R"). It remains to show that the
second also has this property. But this can easily be accomplished by the
methods of appendix 1 by noting that (1 — 4) <0 for j=N+1,... and
using

(5.6) RyA —4) = — J exp (4 — /lj)e""° dt

(0]
Finally, suppose that there are infinitely may eigenvalues of T in [a,b].
Then, by theorem 3.1 and the first part of the present theorem nay corres-
ponding orthonormal set of eigenfunctions would have a convergent sub-
sequence, a contradiction.

Theorem 5.3. Suppose (iy, Ay, ,) for some N € Z* is such that L(A + io) ' =
= —¢€Y, (R"). Then the function y = — Ry (4 + io) belongs to D(T)
and satisfies Ty = .

Proof. The definition of ¢, _ (R") implies at once that

(= A+ qeB%, _,(R), 9, _,[R)

20

so that,

(—A+q)(-Rp(A+i0)¢)= —lImTy R, (A +ie)¢ =

el0

=—¢— AR (A+i0)¢

L S
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where the limit is taken in 4, _(R") and we used theorem (3.2) and the
results in appendix 2. But Vi = — V Ry (4 +i0)¢ = ¢. Thus,

(5.7) (—A+qQ¥=—-Vy+ W

Therefore ye%, ,(R") is a solution of (— A + g + Vi) f = To_ shoyv
that y e D(T) = D(T,) it is enough to prove that ¥ € I*(R") because in this
case (1 —A+qy =y + M — Vyel’R"). In order to show ¥ e I*(R"),
note that for all ¢ > 0 we have,

ellRp, (A +i8)dll> =) [(Ry (2 +ie)dl D) — (§| Ry (4 + ie) §)]-
Since ¢ = Vi this may-be rewritten as
ellRp (4 + ie)gll? =ImO(VRyA+ie)e,¥)

where 0(f,g) = [ dx, dx, f(x,,x,)g(x,,x,) for all fe¥%, : ge%, (R").
Taking limits as ¢ | 0 we obtain,

lim & |Ry (A + i8) $l|> = ImO(V Ry (4 + i0) ¢, ) =
el0

=Im(— ¢,¥) = Im(| dx,, dx, Vi ® ) ix . x0") =0

since V is real valued. Since

oc

IRz (2 BlI> = ¥ IIRy(= — 4) G; lI* = ,.; IRo(z = 1) G; ¢II*

j=1
for Imz # 0, it follows that

) lim&:IIRO(A—,lj+i.s)dob||2 gl =2 e N

el0
Since p > 1/2 and (G,;9) eLf,(IR"z), (G;¢), the Fourier transform yvith respect
to x,, has a well defined trace on the sphere lp2=A4—24,j=1, ey N.
By (5.8) this trace is zero. Now, methods similar to those of appendix 1
show that,
(A) Ry — 1) G;e B9, 4R"), BR), j=N+1, N+2.., 04

o j=;+1 J;Ry(A — 1) G; converge in the norm of B(%, ,(R").

Hence, repeated application of theorem (I X-41) page 82 of 9, theorem 4.1,
a), b) and ¢ = Vy implies after a finite number of steps that y € ¥, (R')
for some y > 0 and we are done.
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Theorem 5.4. Let Q, be the set of all eigenvalues of T contained in
(An,An+,)- Then for any L e(dy, Ay, )\ Qys the resolvent R(z) = (T — z)7},
Im z > 0 has boundary values,

RA+io)=Ry(A+io)(1 +L(A+io)"

as an operator in B(9, (R"), 4, _ (R"). Moreover,

ZAT) N (Ay, Ay yy) = (Ays Ay s 1)\QN‘

Proof. The first part of this result follows from theorems 3.2, 4.2, 5.1 and

5.3. As for the second, let [a,b] = (4, 4y, )\ Qy and ¢ € %,.,(R"). Applying
Stone’s formula we obtain: '

b

(B(le,b) §1 6) = 5o j (Rylh+ i0) -

a

R4 —i0) ¢|¢)di

which implies the result since %, (R") is dense in L*(R").
Theorem 5.5. X (T) = ;
Proof. From theorem 5.4 it follows that

E.(T) < (UIADU (U Q) US/T).
k N=1

From theorem 5.2 we see that the right hand side of this inclusion is at
most countable. Hence X (T)= @ (11, page 211).

Remark. Let A = (u{i )u( U Q,) and suppose that I' is a Borel set

N=
of the real line such that l"m/\ ®. Then the local wave operators
W + (T,,T,: T) exist and are complete. This follows from the results in
sections 2, 3, 4, 5 and theorem 4.6 of 8.

Appendix 1.

In this appendix we prove the compactness propreties stated in
theorems 3.1 and 4.1. To prove theorem 4.1 note that it is enough to show
that M~ , V(1 + T))"' M; ' e B,(L*R"). We will in fact show that

(A.1.1) MZ5 .,V + T,)" ! My ' e B(LX(R"), y > 0.

—y e
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Since V is a closed operator it is enough to prove,
(AY @, =M_; .. V. R(—w~ )G M, B L)

(B) z 0, converges in the norm of B(LZ(P")).

i=1

Using (4.1) it is easy to see that,

HOs£) (sl = LI, UM_(‘,H)RO(— Y — ) M5 G, f)(x,, x,)l

Hence it suffices prove (A), (B) with Q, replaced by
Qo= 1, UM Gan e M
To do this, recall that

ey Ro(etpsd pes 5 r exp(=(y + A) ) e dt

0

and consider
S() J U (Ms)e ‘H"M‘;IG,..

We will show that 5(t)e B,(L*(R"), that

(A1.3) f Texn(= @ + WS M < o

0

and that this integral satisfies an appropriate estimate in terms of 4, so
that the series Z Q, converges in the norm of B(L*(R"). To do this note

first that if KeBO(L (R"2)), the operator J, KG,e B,(L*(R"). Hence we
examine the operator K= UM~ ;. e *" M ! This operator has kernel,

el = 0|2 e
S Ul (U + xgl?) @92 exp (P2 2 80D (g .y e

where a and b are positive constants. This kernel can be estimated by,

a IUl(xz)‘ st ‘Uz(xz)‘ 54 6/2 (" ‘xz W y2‘2) )
2 (] T |x2|2)5/2 (1 h |x2 y2| ) ‘ bt

Let 4y, & = 1,2 denote the integral operator with kernel

at™"2(1 + |x,/3) 7% Upx,) (T + Ix; — y,1"2 exp (= [x, — y,/*/B0).
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Then, using Holder’s inequality and Young’s theorem on the convolution
(9, page 28) we get:

(A.1.4) g fll, < CIMI K Fl[Ugll s fIl, ™2

for all f e L(R">) where,

N 2
ki) = (1 + ;2 exp -2
(A.1.5)
T g Al o) = (Afd SR
A s’S_.q if =0

and || - ||, denotes the norm in L(R"), I < 6 < oo. To see that 4, is compact,
let {g;}, {k;} be sequences in CF(R™) converging to M, and k in L*(R™)
and L'(R") respectively. Then the operators A}’ with kernels at~"?
U{x,)g,(x,) kj(x, — y,) converge to A, in the norm of B(L*(R™)) by
(A.1.3) as j — oo and are Hilbert-Schmidt for each fixed j. A similar appro-
ximation argument holds for A,, the only difference being that in this case
we approximate U rather than M.

Next let m > /2 be a positive integer so. that (1 + |x, — y,|)¥* <
0+ Ix, — y,/*)". Using this estimate, spherical coordinates, the bino-
minal theorem and the integration formula

fw duexp(—u)u’ =1 'Tx Mo+ 1), 1>0,0> —1

0

(where I' stands for the Gamma function) we obtain,

(A.1.6) ([l ey Cpyle) Vet v

where p,(t) is a polynominal with positive coefficients. Hence (A.1.3) implies,
(A.1.7) l4g)l < ClIIM|| U]l P(2)"" £7"22,

Therefore;

IS0 < CIMI (Ul . p,(®) + 1U,ll, h(e) £™"%9)

where h(t) = p(t)'" with r=' =1 — g~'. Thus,

(A.1.8) J e" Ut p (1) dt < sup(e”"p,(t) jw st BeCl
0 0

t>0

: o : o 1
Moreover, using Holder’s inequality with respect to t, with % and

1 : y
B= =g conjugate exponents, we obtain,
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e o}
(A.1.9) f g O A pp) pmnal2a
0
SR R P o«
< e daks dt:| [J e‘?‘/ah(t)l/at—nz/zqa <
0 0
- 1 -
b e e

since the integral involving ¢~"%*% converges because ‘q > n,2a. Thus,
(A.1.3) holds. Finally, an easy computation shows that,

HZQfH2<Z HUM—(,;+5) ( ')’—-Ai)Mé_lGifHZS

< If11? Z IUMZL,  Ro(— v — 4) M 112

i=

Using (A.1.2), (A.1.3), estimates (A.1.8), (A.1.9) and assumption (¢, — 2)
we conclude that the sum on the right hand side of this inequality tends
to zero as N, K — oo. This concludes the proof of theorem 4.1.

As for theorem 3.1 one has to show that M1 + T,)'e B (L*R")).
This can be handled as above by using (A.1.2) and stimating the operator
M, e *Ho whose kernel is

(_ |x2 7=y y2|2) 3
pt

—t,%(l ut |x2\2)"’/.2 exp

Appendix 2.

Let Ae(Ay, Ay, ) for some NeZ*. We will prove that limsR A4 T

tie)y =0in ¥, _(R") for any Y € L*(R"). This result is equlvalent to
proving that hmaM (1+ T)R; (A i)y =0 in L*IR". Since (1 +

+ TR (4 £ w) =(+A+ie)R; (A tie) + 1 it is enough to show that

lime M; Ry (4 + ie)y =0 in L2(IR") We write M, R, (2 + ig)y as follows,
el0

0

N . - .
(A21) Y MJRyA— A+ 8 GY+ ¥ MJR(— A+ ie) Gy

j=1 j=N+1
and observe that

; K/ K
(A22) |} MJR(A— A +i8) GfIIP < IIfI1? ¥ IMReA — 4, + ig)|>.
1=K

j=K
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By assumption (t, — 2), the fact that 1 — 4;<0 for j >N + 1 and
estimate (A.2.2) we conclude that the infinite sum in (A.2.1) converges to
some element of L*(R") as ¢ | 0 so that its product with ¢ tends to zero as
¢} 0. To control the finite sum in (A.2.1) note that by (A.2.2) it is enough
to prove that &*|M,R (4 — it ig)|2 >0 as &0 for j =1,2,..., N. Since
for zeC, Im:z # 0 we have |[M;R,(2)ll = |IRy(Z) M,|| and

[Im 2| - |Ry(2) M, §l|*> = Im (¢ | M,Ro(2) M, ¢) < [IM,R,(2) M|l ||$]I>

for all ¢ e L?(R"), the result follows from proposition 2.3 of 3 (because
A—=4;>0for j=1,2,...,N and |[M,R,(z) M,|| equals the norm of R(z)
as are operator from L3(R™) into L3(R")).
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