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The dynamics of a bar in the presence of obstacles*

Claude Do, Marco A. Raupp and Raul A. Feijéo

Abstract.

The dynamic evolution of visco-elastic and purely elastic bars hitting
rigid and elastic obstacles are studied, from either the theoretical, nume-
rical or computational point of view.

1. Introduction.

Many interesting problems in the Engineering Sciences reduce them-
selves to the study of the quasi-static or dynamic evolution of a continuous
medium in the presence of obstacles, the constraints imposed by those
obstacles being of unilateral type. For equilibrium problems, and for the
quasi-static evolution, there are adequate results available. However, in
many concrete situations, it is necessary to take into account the dynamic
character of the evolution. This is the case, for example, of an elastic body
hitting a rigid or elastic obstacle in the course of its evolution: a dynamic
version of Signorini’s problem, where solutions with “shocks” should be
expected.

That is the question we shall discuss in the present paper, with the
restriction of a unique space dimension and the assumption of a visco-elastic
behavior for the body.

More complex examples, but realistic, appear in the structural analysis
of nuclear power plants. For the so called “pipe whip problem”, explained
in [5], the plastic behavior of the material ought to be considered.

In the case of an elastic obstacle, the problem does not pose any major
difficulty. It deserves however being mentioned, in view of the fact that
the rigid obstacle case is treated as a limit case of elastic obstacle, when
rigidity tends to infinity.

In the case of a rigid obstacle, the force law associated to the constraint
can be written in the form

(L.1) — Redp(U),

* This research was supported in part by the Comissdo Nacional de Energia Nuclear
(CNEN) through contract n.° 103989/77.

Recebido em abril de 1979.



56 C. Do, M. A. Raupp and R. A. Feijéo

o being the indicator function of R*, and U the displacement of the particle
getting in contact with the obstacle. Problems of this nature have appeared
in the literature since long ago (J. L. Lions [4], H. Brezis [1]), and recently
M. Schatzman [7] treated the problem in a finite dimensional setting.
From the point of view of Mechanics, this corresponds to the problem of
motion of a rigid solid in the presence of a rigid obstacle. Passage to an
infinite dimensional situation, to be pursued in this piece, may present new
difficulties, and being inside less severe hypothesis than in [7] is advisable.
We shall note that the presence of viscosity terms will be valuable for the
mathematical analysis. The solution, as in [7], will exhibit a bounded mea-
sure to represent the rigid obstacle reaction. Through the computational
simulations, based on the elastic obstacle approximation (rigidity as para-
meter), we will be able to approach the purely elastic body case.

We should also observe that condition (1.1) is not sufficient to describe
the shock phenomena: it is necessary, in principle, supplementary infor-
mation on the dissipation occurring in the contact. This would mean that
the problem considered is physically-ill posed, and a non-uniqueness should
be expected. The penalty method used in the present paper appeals to a
solution which does not dissipate energy in the shock process. But alter-
native penalizations are possible. For example, the rigid obstacle can be
substituted by a visco-elastic one, with rigidity k, supposed to go to oo,
and viscosity £, held constant. With this procedure we reach, in principle,
a different solution. This aspect of the problem is discussed in [8].

The plan of the article is the following:

(2) The physical problem.

(3) Basic theoretical results.

(4) Proof of Theorem 3.1.

(5) Proof of Theorem 3.3.

(6) A numerical scheme. Convergence.

(7) Proof of Theorem 7.1.

(8) Results of some numerical simulations.

2. The fhisical problem.

The bar occupies, in its natural state, the domain Q = (0, L); x denotes
a generic point of Q. The displacements do occur along the bar axis, and
are characterized by a unique scalar function {u(x), xeQ}. Naturally, u
is also a function of time t in the dynamic problems to be considered in
the sequel.

The density p is taken to be equal to 1 in the theoretical analysis. The
stress field inside the bar is a scalar denoted by .
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The bar is supposed to presentea visco-elastic behaviour, so that the
constitutive equation is written

(2.1) o = aE + bE, a>0, b>0,
with

Feu -
22) { a

: oE

2 ot (1)

The situation of an elastic material is the limit case b = 0.

The object of this studay is to analyse the evolution of the bar, under
the action of a certain load, when its motion is constrained by the presence
of an exterior obstacle at x = 0. The obstacle will be elastic or rigid. We
put

2.3) U(t) = u(0, t),
and
2.4) R = — 4(0),

which is the support reation on the bar. Besides R the only external action
to be considered will be a body force described by a density f = f(x, 1).
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Figure 1

) In what follows the dot will denote partial differentiation in time and the prime
differentiation with respect to x.
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In particular, particle x = L is supposed free, that is
(2.5) a(L) =0, Vi,

and the evolution isothermal.

The formulation of the problem depends on the situation to be consi-
dered: in the elastic obstacle case, it is legitimate to search a motion in
which the velocities are continuous. In the case of the rigid obstacle, the
possibility of shock waves ought to be allowed (at least for elastic bars),
and a weak formulation in time is indicated, even though parasite solutions
could be introduced, as observed by P. D. Lax [3].

The following notation will be used:

alu,v).= Jm a E(u) E(v) dx,
(0]

(2.6) <{b(u, v) = JL b E(u) E(v) dx,

0

L
(f,v>=j fvasx.

0

And the initial data wuy(x) = u(x,0), uy(x) = i(x,0) will be supposed to
satisfy

(2.7) U(0) > 0.

In the case of an elastic obstacle, with rigidity k, the force law associated
to the constraint is written

R=0 if U=>=0,
R=—kU Hipmhial bk et (0
that is, denoting by ¢* (resp. ¢ ) the positive part (resp. negative) of ¢,
(2.8) R =kUz.
The theorem of the virtual powers implies
(2.9 (u(t), v) + a(u(e), v) + b(u(t),v) = (f(t),v) + KU (1) V, Vo,

where V = v(0). The functional framework for relation (2.9) will be made
precise in the variational formulation of the problem (Theorem 3.1).

The dynamics of a bar 59

In the case of the rigid obstacle, the force law associated to the cons-
traint is written

(2.10) U =0, R >0, Ril—10,
which is equivalent to
(2.11) U=0, R(W — U) =0, YW >0.

The weak formulation in time of the theorem of the virtual powers
then leads to

A
(2.12) J C— (), 0(t)) + a(u(t), v(t)) + b(i(t), v(t))} dt + (ig, v(0)) =
0

0

= jT (), (D) + R(t) V(2)} dt, Y {u(), te (0, T)}, o(T) =0,

with

(2.13) u(0) = u,,

and
T

(2.14) j R(t) (W(t) — U(@)) dt = 0, VW >0 on (0,7).
0

For this problem, the functional framework will be made precise in
Theorem 3.3.

3. Basic theoretical results.

We first introduce the notation to be used. We put & = L*(), and

denote by (-,-) the usual scalar product on #, with |-| the associated
norm. On the other hand, ¥" will stand for H'() and its usual norm
denoted by || -||. The bilinear forms a(u,v) and b(u, v), defined in (2.6), are

continuous on ¥ x ¥". Furthermore, given A > 0, there exists a >0
(resp. B > 0) such that

(3:1)

a(v, v) + Alv|? > alvll?, Voe?
(resp. b(v,v) + Alv|? = Bllvll?, Yve¥)).

The result describing the mathematical properties of the problem
with an elastic obstacle (2.8)-(2.9) is the following.
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Theorem 3.1. Let k >0, T >0, uy,e?, u,eH and felL*0,T:H) be
given. Then there exists a unique function u such that

(3.2) ue LNOSTAY),

(3.3) $e LY. T #1n L3N0, T: %),
(3.4 u(0) = u,,

(3.5) #(0) = u,,

which verifies relation (2.9) for every ve¥" and for almost every te (0, T).

Remark 3.2. The solution put in evidence by this theorem depends,
naturally, on k. It will be noted u, from now on. Problem (2.10)2.14),
which corresponds to the rigid obstacle, will be treated as a limit case, k — oo.

The result relative to this problem is the following.

Theorem 3.3. The data are T >0, u,e?, with Uy, >0, u,eH and
f€L*0, T #). Then there exists a function u, and a bounded measure R
on [0, T], such that:

(36) ueL®(0,T:¥), ueL0,T;#)AL¥0,T;¥), UeC%[0,T)),

(3.7) u(0) = u,,
(3.8) U>0,
: 3
3.9 J {— @, 0) + a(u,v) + bk, v)} dt + (11y, ¥(0)) =
0
T
=,_[ (fLv)dt + (R, VD,
oo

YvelL*0, T;v), with ve L0, p ; ),
vV eC[0, T)), u(T) =0,

(3.10) (RRW -U) =20, Y W e C°([0, T)), W 2>0.
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Remark 3.4. The support reaction appears here as a measure on [0, T'].
Relation (3.10) is a weakened form of (2.11) (or (2.14)).

Remark 3.5. (,) is the duality between the space of bounded measures

on [0, T} and C°([O, T)).

4. Proof of theorem 3.1.

This theorem is probably classical, or almost, the demonstration being
built through standard arguments.

For the sake of simplicity we take k = 1.

Uniqueness. Let u, and u, be two solutions, and put u = u, —u,. For
A > 0 fixed, define

z,()) = e M uy (1), a =12,
z(t) = e™* u(r).

Writing (2.9) successively for u,,u,, taking the difference and choosing
v = 2, we obtain

¢ + 222 + A%2,2) + a(2,2) + Bz +1Az% 2) = (Z;.~ Z;) Z,

that is,

{1212 + 42212 + a(z) + Ab(2)} + 2421 + b(2) < |Z]1Z] (¥,

0| =
VN

observing that
Z; - Z;|<1Z, — Z,| .

It follows then, using z(0) = 0, 2(0) = 0 and (3.1),

(4.1 212 + alizll® + Ab(2) + ﬂj‘ 2(z)l|* dr <
g 0

t 12 / 1/2
< C(J Hz||2dr) <f Héllzdt) :
0 0

® We put a(v, v) = a(v), b(v,v) = b(v).
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Since 4 is positive, all the terms in the left hand side have the same property.

In particular
t i 1/2 t 1/2
ﬂf lzl> dr < C U llzI1 dr] [I ||2H2dr] )
(1] 0 0

that is,

B t 1/2 t 1/2
U HZIIZdr] < CU ||z||2dr:| 2
0 0

Hence the second member of (4.1) is bounded by

t
@y f I|z||* dx.
0

We have then, from (4.1),
t
alzl|* < Cf llz1|? dr,
0 5

from where we get z = 0, and the uniqueness result.

Existence. It is based on the Faedo-Galerkin method, the limit in the non-
linear term taken through compacity arguments.

Let {w, i > 1} be a sequence of independent vectors in ¥~, with linear
combinations dense in ¥". The initial data u, and i, are approximated by
u,, and u,:u, (resp. u,) is a linear combination of the {w, 1 <i < m}

and u,, —u, in ¥ (resp. u, —u, in H#) as m — co.
Let now

unlt) = 20,0 W,

be the solution of the problem

(4.2) (t,(1), w) + alu, (1), w) + bl (¢), w)) =
=(f@),w) + U, OW, l<j<m,

(4.3) u,0) =u,,

(4.4) ,0) =u,.

The dynamics of a bar 63

We first establish a priori estimations for u,. We multiply (4.2) by
g;n(t), sum on j, and integrate from O to ¢, to obtain:

% {lu, (> + a(u,(t) + [U, (0]} + f b, (1) dr =
0

- j (J@), (@) de + o (il + alt,) + U O,
0

Since u,, > u, in ¥', U,(0) » U(0) in R; hence, the majoration
U, 0) <|U,©0)

assures that the terms in the right hand side of (4.5) corresponding to ¢t = 0
are bounded independently of m. On the other hand we have

t 1 1 t )

(46) | j (f(T.'), um(r)) dr| < a2 |f|iz(0’ T; ) + TJ\ |um(‘c)|2 dr.
0 0

Relation (4.5) then fournishes

I
i, (> < C + J lu, (7)|? dr,
0

so that
4.7 i, () < C,,
where C; = constant in te(0,T) and m > 1. Further, a(ut) and

T
J b(u,(1)) dr are bounded, and then, by (3.1):
0

4.8) llu, Il < C,,
T

4.9) f i, (D)2 < C,.
0

Finally,

4.10) U-(H) < C,,

with all the constants being independent of te (0, T) and m > 1.
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From estimates (4.7), (4.8), (4.9) one can deduce the existence of a
function ue L*(0,t:¥"), with ueL*(0, T;#)n L*0,T:¥), such that, at
least for a sub-sequence,

(4.11) u, — u weak* in L*(0,T;¥),
(412)  u, — u weak* in L=(0, T: ) and weak in L*0, T;¥").

On the other side, it results from (4.8) and (4.9) that

(4.13) U () =€,
T .

(4.14) J Ufn(r) ar < C..
A J

Hence

u —-U weak* in EX(0, ),

i St egk e LT,

which implies

u,-U weak in H'O, T).

But in one dimension,
H'(0,T) = C%([0, T)),

with cofnpact injection. Then

(4.15) U > strongly in CoE P

From this we deduce

(4.16) U, -U" strongly in ~ C°([0, p ]).

Convergences (4.11), (4.12) and (4.16) imply, for j fixed, that

a(u,,, w;) = alu, w)) weak* in [*(0,p),
b(u,,, w;) = b(i, w)) weak in AT
oW~ in e T

) g4 ! ;
(Wi, W) = ‘dt—z(u, w)) in 2'00, T).
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Taking the limit m — oo in (4.2), we obtain
(W, w)) + a(u,w)) + bli, w) = (f, wihe! UalWsi il (8@ @0, T).

Hence, by the density in ¥~ of the linear combinations of {wpj =1}, we
deduce (2.9) valid for every ve¥” and almost every te (0, T).

By classical arguments we can also get (3.4) and (3.5). Then u is the
desired solution.

5. Proof of theorem 3.3.

The proof consists in showing the existence of a solution of problem
(3.6)-(3.10) which is the limit, as k — oo, of solutions of problem (3.2)«3.5),
(2.9). Here the notation of last section will be modified: the solution
generated by Theorem 3.1 is indicated by u, (Cf. Remark 3.2).

A priori estimates 1. We choose v = 4,(¢) in (2.9) to get

3 2O + alw(0) + KU OF) + bilo) = (F0)iy(0)

Integrating this relation over (0,¢) and taking (2.7), (3.4), (3.5) into account
(U, (0) = 0):

(5.1) i, (D)% + alut)) + k(U (1) + 2 f b(i, (1)) dr =
= 2ft (f(@), u ) dr + II'AUI2 + a(u,).
0

The terms in the left hand side being positive, we explore this relation
in the following way. First deduce

i @* < C, + 2ft /@) li(r)l de < C, + f i (z)|? dr,
0 0

which implies, by Gronwall’s lemma,

(5.2) la () < C,. (constant in k and ¢t).
Now the right hand side of (5.1) is bounded, implying

(5.3) KU @) < Cy,

(5.4) f b(i (7)) dr < % Cus
0
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(5.5) aut) < C,.

After (5.2), |u,(t)l is also bounded independently of k and ¢, and hence,
by properties (3.1),

(5-6) I @Il < Cs,
T

(5.7 j ll 0l dr < C,
0

with constants in k and t. Those estimates, together with the trace theorem,
yield

(58) U0 < C,

0

(5.9) j i Ut dt < Cq.

A priori estimates II. We choose in (2.9), for the virtual motion v, a trans-
lation in the direction x < 0, that is, v(x) = V <0, V constant. We get

T
i VJTk UZ @) de = J (f@) 0) dt — (T, ©) + (g, ).
0 0
After (5.2):
(5.10) JT kU () dt < C,.
0

The above collection of estimates imply that:

-

u, remain in a bounded set of (0, T;¥"),
ak ”" i " gt nr Lw((), T, ,#),
uk " e " AL B Lcc(o’ T),
< \/E Uk— ”" st " ”" ” Lq;\(o, T),
(5.11)
Uk " 7 AFD) " i 16 L°°(0, T),
Uk " N " " " LZ(O, T),
! k Uk_ " TRl " s 1 LI(O, T)
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Therefore we can conclude the existence of an element

(5.12) uel*0,T;v),

with

(5.13) ue 0, T: ¥ nL*0, T:7),
(5.14) UeL*0,T),

(5.15) Ue L0, T),

and a‘bounded measure R, such that, at least for a subsequence,
u, > u weak* in I°(0; T; %),
u, —»u weak* in [°(0, T; 5#), and weak in L*0, T;¥"),

(516) U, - U weak* in [*(0, T),

Uk - U weak in L0, T),

\kUk‘ — R vaguely in the space of bounded measureson [0, T].

Those properties guarantee, in particular (J. Necas, [6]), that
(5.17) U, - K strongly in C([0, T)),

and U > 0, due to (5.3).

Let now v be a function in L*0, T;¥"), with v e L'(0, T; ), o(T) = 0
and V e C%[0, T]). We test (2.9) with the virtual motion v(t) and integrate
on (0, T), to get

L { = (@ (0), (1) + a(u, (1), (1)) + blu,(t), v(2))} dt =

i

T
- L (f (@), v(1) dt — (g, v(0)) + J

kU (t) V() dt.
0
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Now we take the limit in this expression, using (5.16), to obtain

(5.19) J (1, 0) + a(u,v) + b(u, v)| dt = jT(f, v) dt'— (1, 0(0) + (R, V!

0

On the other hand, (3.7) is satisfied, since u,(0) = u, for all k.
Let now W be taken in C°([0, T]). The function

g '
o = [BOrusfly =0

0 if &= 0

is convex, hence

1

5 W) — (W e ~ PO G0, P00 WAL

in particular, if we choose W >0 on [0, T],

U (W — Uz 0T O6n ni 10579,

so that
T
j KUAW — L) dt =0,
0

If k > oo, we deduce from the last relation in (5.16) and from (5.17) that

(RW — U >0, Y W e Co([0, T]), W > 0.

6. A numerical sheme. Convergence.

The process itself proving existence of a solution for problem (3.6)+3.10)
suggests a natural scheme for the computation of that solution: to interpret
{u (), ku, (0,1)} as a regularization of solution {u(t), R(t)}, and make discre-
tizations in (2.9) to define the approximated solution {uh AlD), Rh Ak
The “convergence” in the regularization parameter k(— o) would be gua-
ranteed by the argument of Theorem 3.3.

The discretization of (2.9) is done in the following may. At first we

make a change of variables, z(t) = ¢ * u(t), A > 0, transforming (2.9) into
the problem
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(1) (@), v) + A%(z(2), v) +'a(z(t), v) + Ab(z(t), v) +

+ 2A(2(t), v) + ba(t), v) + %z(O, t) v(0) =

(6.1) & = (f (o), v) + %z(o, 0 v0), Vve?,

(i) 2(0) = u,,

| (i) 2(0) = ity — ug,

where f(t) = e * f(t). After that we define

0 otherwise,

0“(t) = { 1 if le[lu’ n+l)’

v, = {”ECO(O’L);'w'[xj,xjH] is a polynomial

of degree < 1, 0<j <M —1},

and, as the approximation to z(t), the function

(6.2) (@) = Z {{™%(x) + (¢t — t,) 6,0"(x)} 0,(2),

where {{"(x)}§ satisfy

[ ) Pew, " Osanxh,

(i) (°€V, such that {°(x) =u,(x), 0<j<M,

(i) ('eV, such that {'(x) = uo(x;) + At iy(x), 0<j<M,
il (iv) (@ v) + A% (™% 0) + a((™% ) +
+ Ab({™ %, v) + 2A4(6,C", v) + AN, (", v) +

X0 0) =

(6.3)

= (740 + 5100100, Voey,
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In the above equations, the notation used is

Wi C"+l s Cnvl

T T
K Cu+1_2cn+cnvl

2= G ;

e =al (1 =200 +al®!, O<a< %
i Cn+1 Ea Cn

atC = ‘—At—,

"= fie,).

The approximation (6.2) is well defined by conditions (6.3), the implied
algorithm being unconditionally stable and convergent. We have the follo-
wing.

Theorem 6.1. Assuming the same hypothesis as in Theorem 3.1, and defining

64 040 = 3 30,0

©9) 30 = 3 5000,

we have that, for 0 < a < 1/2,

(6.6) {2 weak® in L0, T\ %),
6.7) 3L — & weak* in L=(0, T; )
(6.8) 0, - z weak in L*0,T;v),

(69) K{(0,) = kz~(0,-) strong in C%([0, T,

independently of manner as h and At go to :zero.

Remark 6.2. We observe that the approximation to u(r) is up o (0) = M),
and that to R(¢) is R} ,(t) = ke* {(0,1).
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7. Proof of theorem 6.1.

The first step in proving (6.6)6.9) is to obtain basic a priori estimates.
For this we test equation (6.3) (iv) at v = 6,(", getting

1
RV v Lo il Xl B e 7 o R ol

+HAD(CTH] = 2102 + a1 + AT +
(1 = 2a) {A%((" 8,L") + a(f", 6,0 + AB(L™, 8,0} + 241607 + AB(S L™ +

k
+ 3o O OF - 'O} +( - 205 0 6.070) -

= (7550 + % o1 8.070)

because of the identites

dla¥ o a o
2 > i/
g.a" = T ,
n'—l
s L

A(@*; 80" = 2%: [A@ ) — A@ )] + (1 — 20) A@"; ,%),

valid for any sequence {a"} and every bilinear form A(u ;v).

Now assuming 0 < o < 1/2, multiplying (7.1) by 2At and summing
from n =1 to n = m, we obtain

(7.2) oL AT T R Y T ) +

+41 ) At]6,012 + 22
j=1

J

Y, Aib3D) +

J

k . i .
+ T UOP SC 4G, Y A +

J

+ &) At]|5,0913

j=1
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where & > 0 is arbitrary and the constants depend on the initial date,
f, o k and A To reach inequality (7.2), one should observe, the trace
theorem for H'(S) was used, as well as the standard estimation a'b<

< ea’ +Lb2, e > 0.
4¢
Choosing an appropriate value for ¢ in (8.2), it yields

P P a3 syt B Y A4 <
j=1

J
£ C,+C% At C >0,
i=1
which implies, coupled with the discrete form of Gronwall’s lemma, the
basic a priori estimate

(1.3) 100" + 1012 + €, Y, Aell 1> < Cs, C, >0,
j=1

J

for n=1,2,...,N. In view of (6.2), (6.4) and (6.5), (7.3) can be presented
as

(7.4) 108l g g, S cODSL,
(7.5) 1w, 7, , S const,
(7.6) 16l 20,7, ) S const.

The second step in the proof is to extract a convergent sub-sequence
of {{ = {(At,h)| At >0, h > 0}. Estimates (7.4)7.6) imply the existence
7eL=(0,T;¥), 7, L=(0,T:#) and Z,eL*0, T;¥), such that

{ -2 weak* in [X(0,T; %),
(7.7) 6f —»3, weak* in L0, T; H),
8(—z, weak* in L:(O8T: 70),

when h and At approach zero.
We claim that 7, = Z, = Z. Indeed, since

20, T) = (yeC=0,T)| 36 =) > 0 such that ¥ |C,, ;_,, =0},

we can choose At small enough so that, by summation by parts,
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4 Niil n+1
0L ¥> = j oLy dt = Y, 8,"(x) J Y(t) dt =
0 n=0 s

N In+1 tn
= — Z {"(x) { J Y(t) dt —j w(t) dt} /At =

= — <, 04>, Vye20,T).
But 0 -y strongly in L'(0, T), hence
@BL Y - — (2> = (4 ¥,

that ds 2, = &
A similar reasoning implies Z, = .
On the other hand it follows from Sobolev’s embedding theorem and

(1.5)7.6),

(7.8) 1£(0, t)] < const.,
(7.9) JT (6,0 (0, 7) dr < const.
0

Hence, as h, At — 0,
{©0,-) > %0,-) weak* in L[*(0, T),
8,L0,-) - %0,-) weak in L20,T),
which implies
{0,-) > %0,-) weak in H'(0,T)
Since H!(0, T) = C%([0, T]), with compact injection, then
{0,-) —» %0,-) strong in C°([0, T)),
that is,
(7.10) {70,)—> 27(0,-) strong in C°[0, T)).
The last step in the proof consists in showing that 7 is a solution of (6.1).

Because of the uniqueness property we would have then Z = z, so that (7.7)
and (7.10) would imply the theorem.
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To check this fact, test equation (6.3) (iv) at he interpolant v, €V, of

a given ve ¥’, multiply by 6, (1), and add from 0 to N — 1. After that take
the limit h, At —» 0. Since

N—1

Y (t—1)8"(x)0,) -0

n=1

pointwise,
v, >V strong in s
and
A2 vy + all,v,) + AB(,v,) > A%, v) +
+ a(z,v) + Ab(Z,v) weak* in I[°(0, T),

2468 v,) + AB(3.L, v,) = 242, v) + Ab(Z,v) weak in L0, T),

k § Nl
5 ¢80,-),(0) — 5 Y. 18"(0)1 6,(+) v,(0) > — kz7(0, ) v(0)

n=0

strong in C°([0, T']),
d2
02 v,) = W(Z’ v) in 2'0,T),
are implied by (7.7) and (7.10), it is clear that 7 satisfies (6.1).

8. Results of some numerical simulations.

In this section we present two results obtained by implementing algo-
rithm (6.3) as a finite element code. In both examples a 100-element regular
partition was used, and the calculations were performed on the IBM 370/145
at CBPF with double precision. The parameter a was chosen as 1/4 and
At = 0.01. The values A =0 and 4 = 0.25 were tested in both cases, with

no distinction between the corresponding solutions appearing at the adopted
scale.

Example 1.

We simulate an elastic bar with a=1, b=0, p=1 and L = 1. The
external body force f was taken zero and the obstacle spring constant
k = 100. The problem consists in computing the motion of the bar when
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it is submitted to the initial conditions uy(xy=0 and u#y(x) = — 1. The
exact solution of this problem is known, given by (see Fig. 2)

*A

T
{Ru

i |
Sy ! I ‘.
IRy ! IRry :
45° ! : l I
1 2 3 4 77
u(x,t)= —t if (x,t)eR,,
ux,t) = — x + % 0 1IN (xOER,,
e 1 1 :
ux,t) = t + = [42=x=0 4 ghlx=0] _ 2<1 + T)’ if (x,t)eRy,

etc...

This example is to be understood as a test case for validating the code.
In Figure 3 we have plotted the exact solution (continuous line) as well as
the computed points.

u (0.1,1)

u (0.5,1)

u(l,1)
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Example 2.

The same as before, with only one difference: the action of an external
field f = — 1 is taken into account. In this situation no exact solution is
known in analytic form. As we can observe in Figure 4, the bar, after sepa-
rating. from the obstacle, comes back again to hit it for the second time,
due to the effect of the field.

One last remark: the consideration of a viscosity b.> 0 in the bar
implies a smoothing of the curve corners.
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