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Equations in groups

Roger C. Lyndon*

1. Introduction.

This essay was prompted by the desire to supplement a very interesting
paper by J. Mycielski (38) on the same subject. We do not attempt a
systematic and exhaustive survey, but only to present a variety of interesting
results, mainly without proofs, and of unsolved problems. Many of these
problems are implicit in the exposition and will not be formulated explicitly.
We have tried to provide an extensive bibliography, for anyone who wants
to learn more about these matters. However, except for certain papers of
central importance, we have not repeated references to be found in the
book of Lyndon and Schupp (29), and we refer the reader to the text, the
index, and the bibliography of that book for further references.

We bein with some miscellaneous examples, to give the flavor of the
subject. First, a property that distinguishes groups among semigroups is
the fact that, in a group G, given elements a and b, the equation

(1.1) @x — b :

always has a unique solution.
By way of contrast, given an element a in a group G, the equation

(1.2) Bhie il

may have no solution in G, or may have arbitrarily many solutions in G.
It was observed by B. H. Neumann (39) that (1.2) always has a solution
x in some group H containing G (and, indeed, with x not in G itself).

Consider a more complicated equation, say
(1.3) ax’bxc = 1.

Here the sum of the exponents on x is 3, and, from the fact that this sum
is not 0, a deep theorem of Gerstenhaber and Rothaus (18) tells us that,
for most familiar groups G, and arbitrary a, b, ¢ in G, a solution exists in

* This work was supported in part by the National Science Foundation, and partly by
CNPq and FINEP while the author was visiting at the Universidade de Brasilia.
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some group H containing G. (The class of groups to which this theorem
applies contains all finite groups, all free groups, but not, for example,
the group G = <a, b :ab*> = b3a).)

For an equation such as

(1.4) : ax’bx lex ! =1,

with exponent sum 0, no known general method is applicable. Indeed, the
simple equation

(1.5) ax he =1

clearly has no solution in any group H containing G unless the elements
a and b of G have the same order.

For a in G, a solution in G of the equation
(1.6) 4= %x

is a representation of a as the product of the squares of three elements of G.
Very few elements of a free group have such a representaion, while, as far
as in known, every element of a finite simple group has such a representa-
tion.

For arbitrary G, one may ask for all solutions of the equation
‘without coefficients’,

(1.7) bl

In a free group, and also in the linear fractional group SL(2, R) all solu-
tions are of the form x, = z”, x, = z" for some z in G. Similarly, in a free
group, the Vaught equation ;

(1.8) RoRTEl 5

implies that x,, x,, x, are all powers of some z in G.

One also consider systems of equations in several unknowns, with
or without constants, and one may ask for solutions in G, or in some
extension H of G. One may ask if there exists any solution, and, if so, for
a description of the set of all solutions.

2. Roots.

Consider the equation

8 oy X"'=a
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for given a in a group G and a given integer n > 1: since arbitrarily many
solutions exist in groups H containing G, we ask about solutions x in G.

If G is abelian, it is usually easy to decide if there exists some solution.
If x, is any solution, then all other solutions are the form x = X,y where
y is a solution of the ‘homogeneous equation’

(2.2) =1

In short, if the set of solutions is not empty, it is a coset of the group of all
solutions of (2.2).

If G is any finite group, a theorem of Frobenius yields information
about the number of solutions. It is easy to see that the problem reduces
to the case that n divides the order of G. Moreover, since any solution x
of (2.1) commutes with a, we may replace G by the centralizer of g, that is,
we may assume that g is the center of G. Now Frobenius’s theorem states
that, for a in the center of G and n dividing the order of G, the number

_of solutions is divisible by n. A famous unsettled conjecture of Frobenius

is that if G is a finite group, if n divides the order of G, and if the equation
x" =1 has exactly n solutions in G, then these solutions form a subgroup
of G. (For a survey of this problem, with extensive references, see Finkels-
tein and Mandelberg (16).)

Next, let G = SL(2, R) with elements g : z — %, oLr By an R,

a0 — fy = 1. Let t = a + 9, the trace of . From the geometry of the action
of G on the upper half of the complex plane one knows the following:
(1) If a =1, then G contains infinitely many (conjugate) elliptic elements
x such that x" = 1. (2) If |z| < 2, hence if a is elliptic, the centralizer C of
a is the circle group, and, in this group, (2.1) has exactly n solutions. (3) If
It > 2, but a # 1, whence a is parabolic or hyperbolic, then C is isomor-
phic to the additive group of reals, and (2.1) has exactly one solution.

Finally, suppose that G is a free group with a basis B = {b,,b,,...}.
Write a as ‘a reduced word in the generators b. If a = h™'a,h, then the
solutions of (2.1) are exactly the h~'x,h for the solutions x, of the equation
x," = a,. Thus we may replace a by a conjugate, and suppose that the
reduced word for a is cyclically reduced:

a=b!.. bt e =&, with, bEb**! 21 for all k,
151 I lk lk‘f‘l

modulo t.” Now.a solution (necessarily unique) of (2.1) exists, of the form

X = bfll b,e:, where nk = t, if and only if a has period k, that is, ¢ = xx ... x

(n factors x) without cancellation. We emphasize that this gives a -simple

algorithm for deciding if (2.1) has a solution, and, if so, for finding the
solution.
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3. Adjunction of solutions.

As we have noted for the case n = 2, B. H. Neumann showed that the
equation

(3.1) i —ra,

for a in G and n > 1, always has a solution in a group H containing G. In
an obvious sence, the general solution is contained in the group

H = (G, x:x" = a).

However, by a later result of Neumann (40), if G is finite a solution can
always be found in a finite group H containing G.

We have noted also that the equation
(3.2) x wtaxs=\b

can have a solution in a group H containing G only in case the elements
a and b of G have the same order. G. Higman, B. H. Neumann, and H.
Neumann (19) showed that, in this case, a solution always exists. Indeed,
they showed more generally that a system (finite or infinite) of equations

(3.3) x ax=b,

has a solution in a group H containing G if and only if the map ¢ :a;, — b,
defines an isomorphism from the subgroup A of G generated by the a; to
the subgroup B generated by the b. The ‘general solution’ lies in the

group
H =G 3 ux=0)

an HNN-extension of G. (HNN-extension has arisen independently in
topogy and in logic, and is one of the basic constructions of combinatorial
group theory.)

A result of Gerstenhaber and Rothaus (18) was alluded to earlier. Let

(34 WX, gl n) = 1

be an equation involving the unknown x and elements a,,...,a, of a
group G, and suppose the sum of the exponents of x in w is e # 0. Then
a solution exists in some H containing G provided that

(3.5 G is embeddable in a compact Lie group:
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(The proof, by continuity, is topological) Rothaus (48) replaced (3.5) by
a purely combinatorial condition:

(3.6) G is locally residually finite.

(This means that if g # 1 lies in a finitely generated subgroup G, of G,
then there exists a homomorphism ¢ from G, onto a finite group G,¢
such that g¢ # 1) .

Most familiar' groups have this property. However, it fails for the
group of G. Higman:

G = <a’b".7(l:ab :Cs bc =dy Cd :a, Cf‘ :b>s

which has no non-trivial finite quotient groups. A simpler example (pointed
out to me by R. Hunter) is the group

G =<a,b:a 'b*a = b>).

In a finite quotient group G, of G, the image b, of b will have some finite
order n. Since b? and b; must have the same order, (n,6) = 1, and hance
b, = b}* for some k. Now a, 'b,a = b* has order n, hence generates (b, .
It follows that b{* = a; 'b,a, commutes with b, that is, the commutador
[b{!,b,]1 = 1. But, by Britton’s Lemma, the element [b% b] of the HNN-
extension G is not trivial.

For G a free group we to not need the theorem of Gerstenhaber and
Rothaus; the existence of a solution of (3.4) follows without any special
hypothesis (except that, always, we assume that w contains x essentially
— that is, w is not conjugate to any word that does not contain x). This
follows from the Freiheitssatz of Magnus (see 33; 29). Let G have a basis
B=1{b,,b,,...} and let H = (x,b,,b,,:w =1). Then the Freiheitssatz
states that the obvious map from G into H is injective..

In particular, if G = {a) is an infinite cyclic group, and w(x;a) is a
cyclically reduced word in x and a that contains x, then the equation

(3.7) w(x;a) =1

has a solution in some group H containing G.

] Nex;, let G =<a) be a finite cyclic group; for simplicity we assume
it has prime order p. When does (3.7) have a solution? This is equivalent
to the question:

(3.8) In a free group with basis {a,x}, do the equations

a? =1 and w(x:a) =1 imply a =1?
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If w(l:a) =1, we may take H =G with x = 1. Assume that w(l:a) =
= a* # 1: after change of generator for G we may suppose that w(l;a) = a.
Let w(x:1) = x° If e # 0, we can take H cyclic of order ep, on generator
X, wWithixs =g o

We now examine the case that w(l;:a) = a and w(x:1) = 1. Then (3.7)
is equivalent to an infinite set of relations among the elements v, = x ~‘ax"
We look for solutions in a group H such that the subgroup V generated
by the v; is abelian, and hence a vector space over Z, If we define
T:V-sV by T:v,-v,,,, then T is a linear transformation on ¥, and
(3.7) takes the form of a condition

(39) f(T) =0

for a certain polynomial f(&) over Z, Since w(l;a) =a, f(1) =1, and
f(&) is not the polynomial 0. If f(£) has degree n, then we may take V
to have dimension n, and we are seeking an invertible transformation
T :V -V such that f(T) =0: We may write f(&) = & g(¢) where g(&)
is not divisible by &. If g(&) = 1, hence f(&) = &™, there exists no invertible
T satisfying f(T) = 0. Otherwise we can choose invertible T satisfying
g(T) =0, and hence f(T)=0. We now let H be the split extension of
V by its automorphism T: if we identify a =v,, G=Zpp,, and x = T,
then the equation w(x:a) =1 is satisfied.

Example. We use the standard notation u =u"!, u* =v 'un, [u,v]=

=u 'v 'uv. Let G =<a) be a cyclic group, and consider the equation

(3.10) a’ = [a,a*].

Here we have f(£) = ¢2, and the argument above (for G of prime order)
does not apply. (In fact, in any group H generated by elements a and x
satisfying (3.10), the normal closure V of a is its own derived group, hence
cannot be solvable unless it is trivial.)

We have noted that it follows from the Freiheitssatz that (3.10) has a
solution for G an infinite cyclic group; this follows also by an argument
below. Let G have finite order m. We shall see that (3.10) has no solution
if m = 2, but that it has a solution whenever m > 6.

We prove first that, in a free group with generators a and x,
(3.11) a’ = [a,a*] and a* = 1 implies a = 1.

1 1

Since a*> =1 implies a™! =a and (¢®)~! = a*, we have [a,a*] = (aa”)’,
and hence a*’ = [a,a*] = (aa®)®>. Now a®> =1 implies (a*)> =1 and so
(aa®)* = 1, whence a*(aa®)? = aa*a. We thus have (aa*)* = a*a*” = a*(aa*)* =
= aa*a = a” 'a*a, whence ((aa®)")? = (a~'a*a)® =1, (aa*)* =1, ax’ = (aa*)* =
= 1, and, finally, a = 1.
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We next prove, using small cancellation theory, that, for G of order
m > 6, equation (3.10) has a solution. In fact, we obtain a solution satis-
fying the additional condition x" =1, provided that n > 11: Precisely,
we prove the following:

(312) Let m>6, n>11, and 0 <k <m* Then, in a free group with
generators a and x, the element a* is not in the normal closure of the thre
elements a_"z[a, alilsiald andsex!.

The element a™*’|a, a*] has a cyclically reduced conjugate
with

Let R* consist of a™, a™™ x", x™", and all cyclic permutations of u and .
A piece is a common initial segment of two distinct elements of R*.

Inspection shows that the only pieces are the following words and their
subwords:

XX, XX, Xax, xax, xax, Xiax.

Suppose given a factorization u' = p,, ..., p, of a conjugate «' of u into k
pieces p,,...,p,. Let p, be a maximal piece containing p,. Then a conju-
gate u’ of u has a factorization w” =p,,...,p; where, for 1 <i <Kk,
u” =p,,..,p_,w; and p, is the longest piece beginning w, Evidently
k <k.

Since a is the longest piece of a™ @™ cannot be the product of fewer
that m > 6 pieces. Since xx is the longest piece of x", x* cannot be the

n+1 ] : ; ;
product of fewer than 3 > 6 pieces. We now consider a factori-

zation of a conjugate of u into pieces. If xx is a piece in this factorization,
we may suppose that xx = p,. Then the method above gives a factorization

u” = (xx)(ax)(ax)(ax)(ax)(a)

into k = 6 pieces. The remaining possibility is that the two letters of the
part xx of u belong to different pieces in the factorization, and hence the
second x begins a piece. This gives four maximal factorizations u” =
=P,,..., P as above, all with k = 5; these are

s J(@)xa%) f(a)Eax),
. v g {(ax)(am}{(aso(ax)}
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In all cases, the segment xaXx of u” is a piece in the factorization.

For fixed w # 1 in the normal closure of u, ™, and x", we consider a
reduced diagram A over these relators with boundary label w. Here A is
a finite, connected, and simply connected planar 2-complex whose edges
are labelled with elements of the free group F with basis {a, x}, and the
boundary labels on the faces (2-cells) of A are u, a”, or x". If two faces D,
and D, of A have a side in common, the label on that side must be a piece.
Now a face D, of A, interior to A (that is, not abutting on the boundary
of A), can have fewer than 6 sides only if the boundary label on D, is u, and
D, abuts on a second face D,, necessarily also with boundary label u, along
a side with label xax. We write u” =eaev where e = xax and v =
=axax = [ax]. Then the label on the boundary of the union D =
=D,uD, is

(veae)(eaev) =vea’ev

conjugate to u, = ea’ev®. See Figure 1 below.

55
s -<
v

£

4

We now modify A by uniting all such pairs of faces D, and D, related
in this way. The resulting diagram A* will have faces with boundary labels
a™ and x" as before, and also with labels

u, =eaev, for k=] 3t

By construction, no interior face of A* with label u, has fewer than 6 sides.

It is easy to see that no conjugate of any u, has a factorization into
fewer than 2k + 3 pieces of the sorts considered earlier; now, for k > 2,
we have 2k + 3 > 6. The possibility remains that u,_ could have a factori-
zation into fewer pieces, where now some piece, longer than those consi-
dered above, is a segment common to u, and some u,,. It is easy to see
that such a longer piece must contain a factor v from u,. We consider then
faces D, and D, of A* with boundary labels u,, u,,, abutting along a side
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whose label contains a factor v. The label on the union D = D, UD, is
then

(WPear* ' evTv) (VDY ea? t v 2 DP)

where p, q, p, ¢ 20 and p+gq+ 1=k p +q + 1 =Kk. This is conju-
gate to

Z=gP P eGPttt lp A0 ggptetlg —
=vead* Pt e ea’e,

where a =p—p, f=q—4q,y=p +q +1=Kk. See Figure 2:

®f

a-o+ B+ Y

vB

®

We now observe that the same label z can be obtained as the boundary
label of a second 2-complex K, with two faces D, and D,, as shown in
Figure 3. We now modify the complex A* by deleting the part D = D, U D,,

leaving a ‘hole’ H with boundary label z; after deforming the ‘hole’ H (or,
rather, A* — H) to bring the two arcs labelled @’ and @’ together, we fill in
the hole with the complex K. See Figure 4. Since the sum of the lengths
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of the boundary labels of D{ and D, is less than for D, and D,, we have
decreased the sum S of the lengths of the boundary labels on the faces of
A*. If we now suppose that, for given w # 1, A* with boundary label w has

been chosen in such a way that S is as small as possible, then the situation
with D, and D, related as above cannot arise, that is, for all kK > 1, an
interior face with label u, cannot have fewer than 6 sides.

We have now obtained a diagram A* such that no interior face has
fewer than 6 sides. Small cancellation theory now says that w, or some
cyclically reduced conjugate, must contain two disjoint subwords that are
3-remnants, that is, parts remaining from some relator after deletion of 3
consecutive pieces. Suppose now that w = d* for some k > 0. A 3-remnant
of x" or of any u, must contain a letter x or Xx. Therefore the 3-remnants
in w must be obtained from " by deleting 3 pieces a or 1, that is, they
must have the form &° for s >m — 3: It follows that k > 2(m — 3) =
=2m — 6 > m. This completes the proof.

Remark 1. Let H=<a,x:a" = x" = 1,a° = [a,a*]), where m > 6 and
n>11. H is then the split extension of the normal closure V of a by a
cyclic group of order n. V is generated by the g, = ador 0<izn
These generators satisfy relations " =1 and a,, , = [q;,4a;,,,], where i
is taken modulo n. Evidently V is in fact generated by the two elements
a, and a,, and defined by n relations expressing that the a” =1, 0 < i< n,
together with one more relation expressing that a, = a,. (The impact of
the small cancellation argument is that, for m > 6 (unlike the case m = 2),
these relations do not force a, = a to have order less than m). The small
cancellation argument given above also shows that no relation (ax)* = 0,
for k > 0, holds in H, whence ax has infinite order, H is infinite, and
hence V is infinite. It is not known whether a solution of (3.10) holds in
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any finite group H, (a finite quotient of H in which the image of a retains
order m), or, mdeed, whether V is residually finite, or even if V has any
non-trivial finite homomorphic image. .

Remark 2. The same small cancellation arguments apply (without the
spec1a1 complications above) to show that the equation

(3.13) (@) = [a,a"],

for larger values of s and ¢, has a solution with @" = 1 and x" = 1, provided
that m > 6s, n > 6t.

Problems. (1) Find conditions, in the case that f(¢€) = &, for the existence
of a solution to (3.7): When can H be taken as nilpotent? When solvable?
(The argument above shows that we cannot take H abelian or metabelian.)

(2) What happens if G is a cyclic group of prime power order g = p*?
For what f(&) over Z, is there a non-trivial Z -module V admitting an
automorphism T that SatISerS the equation f(T) = 0? If g(£) has degree
n>1 with first and last coefficientes not divisible by p, then a solution
exists. If f(£) has degree 2 or 3 has two coefficients not divisible by p,
then a solution exists. Extend these results. :

(3) Let G be a cyclic group of order g = q,q, where (q,,q,) = 1.
If, for given w(x; a), solutions exist for a of order g, i = 1,2, then a solution
exists for a of order g. Is the converse true?

(4) Returning to the general adjunction problem, of solving (3.4) over
G, we note that in the two examples cited, (3.5) and (3.12), the group G has
non-trivial elements of finite order. Does (3.4) always have a solution
when G is torsion free? In other words, if G is torsion-free, and P = G % {x)
where {(x) is infinite cyclic, and if cyclically reduced w in P does not lie
in G, does the normal closure of w in P have trivial intersection with G?

We remark in passing that the results of Gerstenhaber and Rothaus
extend to a system of n equations in n unknowns:

(3.14) w0 Arriaenina ey i)l in=ln 264 Wn.

For G as before, solutions exist provided the determinant of the exponent

sums e, of X; in w;, does not vanish.

Algebraically closed groups have proved of importance, by using a sli-
ghtly unexpected definition. We consider not only equations w/(x,, ..., Xx,;
a,..,a,) =1 with coefficients in G, but also inequations z(x,, s Xy
a,,...,a,) # 1. A finite system of equations and inequations over G is
consistent if it has a solution in some H containing G. Now we call G
algebraically closed if every consistent finite system over G has a solution

in G itself. W. R. Scott (50), who introduced this notion, showed that every
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group is contained in some algebraically closed group. B. H. Neumann
(41) showed that every algebraically closed group is simple. Neumann (41)
showed that if a finitely generated group G has solvable word problem,
then G can be embedded in every algebraically closed group, and Macintyre
(32) proved the converse. This despite Miller’s (37) result that no algebrai-
cally closed group has a recursive presentation, that is, can be described
effectively.

4. Commutators.

1

We write 4 =u"' and [y, v] =uTuv.

Consider the equation

4.1) Pl =sas

for a in a group G. There always exists a solution in some group H con-
taining G (and even with x? = y? =1, hence (xy)? = a). Therefore we
confine attention to solutions with x, y in G itself.

Clearly a solution exists only if @ is in the commutator subgroup
(derived group) G’ of G. Now every element of G’ is a product of commu-
tators, but not every product of commutators is equal to a single commu-
tator. Rodney (45) gave a simple example of a group G. of order 2!° m
which some product of two commutators is not itself a commutator, and
Guralnick (18a, b) gave an example of such a group G of minimal order,
|G| =96. Dark and Newell (9) examine the same question for ‘higher
commutators’ [[...[[x,,x,],x;]),...], x,].

If G =S5,, the symmetric groups of degree n, then G' = A4,, the alter-
nating group. It is easy to see that every a in A4, is the commutator of two
elements x, y from G,. If n > 5, then 4, is simple, and 4 = A,. In this
case, every element a of 4, is the commutator of two elements from A4,
itself. For the known non-abelian finite simple groups G, for all a in G
the equation (4.1) has a solution with x, y in G.

(1) What other groups have this property’

(2) Can this property be proved for all, finite simple groups without
appeal to a catalog of such groups? Can it be deduced from simplicity, or
from some other property of all known finite simple groups? Do all infi-
nite simple groups have this property?

We next ask what elements of a free group G are commutators, that is,
for which a in G does the equation (4.1) have a solution in G. This question
is answered by a theorem of Wicks (58):

(4.2) Let a be an element of a free group G with given basis B. Then a is a

commutator of two elements of G if an only some conjugate a, of a is repre-
sented, relative to B, by a cyclically reduced wor a, =uvwuvw, where
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there is no cancellation among the displayed factors (some of which may be
trivial).

Note that this theorem provides an easy test for an element to be a commu-
tator. For example, let @ = [b,,b,] [b;,b,] = b,b,b b,b;b,bb,. It is imme-
diate that no cyclic permutation of this word has a factorization of the
required form. Thus the product of two commutators is not always a
commutator (indeed, that a is a commutator follows also from the examples,
in finite groups, mentioned above).

A formally similar result concerns n — by — n matrices over a field.
H. Flanders (17) characterizes pairs of matrices, a and b, such that the pair
of equations

4.3) a = xy, b =yx

has a solution in matrices x, y. Taussky-Todd (53) showed that, for a and
b non singular, the system

4.4) d — Xy, D="z}x

has a solution if and only if det a = det b. This means that det(ab™') =1
and that ab~' = xyzx~ 'y 'z ' in SL(n,K) = G/, for G = GL(n, K). Brenner
and Lim (5) showed that, for arbitrary a, b in any group G, (4.4) has a solu-
tion if and only if ab~' is a commutator.

In case (4.1) has a solution, g = [x,,y,], in a free group G, the pro-
blem remains of describing all solutions in G, that is, all x, y in G such
that

(43) [X, .V] ot [x05 Yo ]

(Henceforth we exclude the trivial case that a = [x,,y,] = 1) A theorem
of Nielsen says that, in the case that G = {(x,,y,), [x,y] is conjugate to
[xo ¥o]*" if and only if the map x, - x, y, — y defines an automorphism
of G, that is, if and only if {x, y} is another basis for G. It follows that, in
this case, the stabilizer of [x,,y,] in Aut G has index 8, and is generated
by the transformations

A:(x, ) > (xxy),  B:(xy) - (yxy)

However, for arbitrary x,, y, in a free group G, [x,,,] is left unchanged
by more general transformations

A* 1 (x,y) = (x, x,y) where [x,x,]=1,

B* :(x,y) = (y,x, y) where [y,y,]=1.
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Burns, Edmunds, and Farougqi (8), following Malcey and Hmelevskii, showed
that every solution of (4.1) is (A* B*)-equivalent to a solution (x,y) with
lengths |x|, [yl < 3lal, whence it follows that all solutions fall into a finite
number of (A%, B*) families: They asked if all solutions fall within one
such family, but an example of Lyndon and Wicks (31) shows that this is
not always the case. A different counterexample is as follows:

44) Let G =<x,y), free of rank 2, and let

a, = _V_IXZVVZXZ, b1 o) x3v2x2v2x3y

a, = yx2yxSyix, b, = y*x3y.

Then [a,,b,] = [a,,b,], but (a,,b,) and (a,, b,) are not (A*, B*)-equivalent.
Explicitly, the group U, = {a,,b,) is root-closed: :eG & z"eU, &
n#E0=>2eUy and U, # U, = (a,,b,).

We note that the above example was obtained by solving the condi-
tion: %, D, u, v, conjugate #,T,u,v, under the assumption that both
expressions are cyclically reduced without cancellation. This is essentially
a problem concerning a free monoid equipped with an involutory auto-

morphism u — #, and, as such, was solved in principle by A. Lentin (letter,
1978).

5. Equations in free groups.

We return to the equation

(5.1) w(x:ib sken, bl) = 1

r

where b,, ..., b, form a basis for a free group G, and we ask now for all
solutions x in G.

We have seen that the equation
(5:2) X

for n > 1, has at most one solution. Similarly, it is easily decided if the
equation

(5.3) x"lax = b,
has a solution x: if a is not a proper power, then the general solution is

x = a"x, for arbitrary pe Z. To consider another equation in one unk--
nown, it is not difficult to see that the solutions of
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(54) [[a, x], [b,x]] = 1,

in G free with basis !a, b}, are precisely the elements of the three forms
(5.5) a*, b*, (ab~ '), arbitrary ueZ.

Lorents (21, 22) improved a result of Lyndon (24, 25) by showing that
the totality of solutions of (5.1) always of precisely the elements of one of
a finite number of forms:

(5.6) el R TS T

The equation, in two unknowns, over G free with basis {a, b},

(5.7) [l x], [b,y]]=

has its solutions given by six pairs of parametric word. Three of these are

(x, v) = (a*b, b*a),
(2 vy ='ta*ba ' b%a" Y);

(x, y) = (a*, v), for v arbitrary,
(5.8) {

the other three are their symmetric counterparts under exchange of (x, a)
with (y, b).
On the other hand, Appel (1) showed that an equation

(5.6) Wby, T B =

in two (or more) unknowns, need not have its solutions given by any
finite set of parametric words, even admitting nested parameters, anq
arbitrary variables (as v in (5.8) above). Specifically, over G free with basis
{a, b}, the equation

(5.10) [x,y] = [a,b]
admits among its solutions all instances of the following parametric words:
(5.11) (a, b), (b"'a, b), (b*'a, (b*'a)**D),

((b*'a)**b)*2b*1a, (b*1a)**b), ... .

It is not difficult to see that not all instances of these are instances of any
finite set of parametric words.

Lorents (23) showed, however, that it is decideble whether an equatlon
(5.9), in two unknowns, has a solution given by a finite set parametric words.
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We now turn to equations ‘without constants’ over a free group G.
That is, we seek all solutions of an equation

(5512) TR0 oaky =31]

n

in a free group G.
The first such equation studied was the Vaught equation,

(5.13) Xy =22

Vaught (unpublished) had conjectu_red that (5.13), for x, y, z elements of

any free group, implies xy = yx. This was proposed as a test problem

for the question of the decidability of implications of the form
(5.14) Wi(Xy5 0ee, %) =1 implies W5 (00,4 6.0 )5 =gl

in the theory of free groups.

Many proofs of Vaught’s conjecture, and variants, have been given.
For example, Lyndon and Schiitzenberger (30) proved that

(5.15) x2ydi—ralwheretipaq, ri= 2,

implies xy = yx, or, equivalently, that x, y, and z all lie in a cylic subgroup

of G: x=2% y=2" y =27 for some z. Schiitzenberger proved also that
the equation

(5.16) [xyl=2, r=2

implies z = 1; that is, no non-trivial commutator is a proper power.

Edmunds (13) gave the following elegant solution of the Vaught pro-
blem. It is to be shown that (5.13) implies that the subgroup U = {x, V2
of G is cyclic. The topological fact that a torus with one crosscap is homeo-
morphic to a sphere with three crosscaps takes the algebraic from that,
in a free group F of rank 3 with basis {x,y,z}, there is an automorphism

of F carrying [x,y]z* to x?y?z2 In fact, we have the identity

(5.17) [x, y]12* =iTizty 0 3 (Mexy2i be why— 1) (2%,

where inspection shows that the three words in parenthesis are a basis for
F. In view of this, Vaught's problem is equivalent to that of showing that
(5.18) [x,y] = 2

implies that U = (x,y,z) is cyclic (a special case of Schiitzenberger’s
result). By Wicks’s theorem ((4.2) above), after conjugation we may suppose
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that we have uowuvw = zz, cyclically reduced and with no cancellation
on the left; since zz is cyclically reduced, z is also, and there is no cance-
llation on the right. But this implies that z = 29w = u v w without cancella
tion, hence (comparing lengths) that # =4, o = v, w = w and that u =.v =
= w = 1. Finally, this gives z = 1, hence <{x,y, z) cyclic.

This example suggests considering, in connection with a word w in a
free group G, the maximum renk r = r(U) of the subgroup U = Cpatsena
generated by a solution of the equation w(x,,...,x,). Alternatively, r is
the maximum rank of a free homomorphic image of the group H =
= (x;,...,x, 1w = 1) This concept of inner rank has arisen independently
in topology. For example, it is well known that the inner rank of w =
= X1, ..., X5 is [3], the greatest integer in 2. For w = [x ,x,],..., [, s % ]
it is g: (From (5.17) it follows that w =[x, x, ] 2
has inner rank [5])

By analogy with Galois theory, one may ask for the group of auto-
morphisms of G that fixes § = w(x,,...,x,) (or its conjugacy class). For
w the defining relator of the fundamental group of a surface, w =
= I [x,,_,, x,;,] or w = Ilx?, these stabilizers are the ‘mapping class groups’
for which McCool (36) obtained finite presentations. The stabilizer of a

word of the form w = x7,...,x'" has been studied by Zieschang (60).
It is implicit in Nielsen’s work that if n elements of a free group satisfy
a non-trivial relation, then the subgroup they generate has rank less than n.
Thus if w(x,...,x,) is not trivial, it has inner rank r <n — 1. Steinberg
(52) showed that r =n — 1 if and only if w lies in the normal closure in G of
an element of a basis for G. Baumslag and Steiberg (4) showed that if
w(X,,...,X,_,) is not a proper power or an element of a basis, and k > 1,
then the equation :

3. SilRa o Tt LA ) Xy

(5.19) L TR T

hastrank r.<n — 2:

At the other extreme, for k > 1 the word w = x{‘ has rank r =0,
while all other words have rank r > 1, that is, admit a solution in an infinite
cyclic group. Stallings (51) cites a family of words w, in n > 2 variables, of
rank r = 1. Let n>2and, for 1 <i<j<n,let a; and b, be integers such
that all g;; are different and all a,;b,; = 2" for some fixed N. Then the word

wsnfi] @ fodilodl iy,

1<i<j<n’

where the product may be taken in any order, has rank r = 1.
The equation

(5.20) P LT
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in a free metabelian group was studied by G. Baumslag and Mabhler (3)
and by Lyndon (26).

Wicks (59) considered the Vaught problem in free products. He showed
that it groups G, and G, both satisfy the two conditions

(1) x* =1 implies x =1,

@) 55 % L2 iniplies” Xy "="yx;
then their free product G = G, * G, also satisfies these conditions.

This result can be generalized: Let Q, be the condition, on a group
G, that, for all m < paf x2, scoxs =1, for elements x.,....% ol G, then
U ={x5...,%,> has rank r < in (that is, U can be generated by r < n/2
elements). By the methods of (27) it can be shown that if G, and G,
satisfy Q,, then G = G, * G, will also satisfy Q,. For n =4, this implies
that if G, and G, both satisfy (1), (2) and the condition.

3 x2x2x2x2 =1 implies that U = {(x,,...,x,) is the free product of
2 4 1 4

two abeltan groups, then G = G, * G, will also satisfy (1), (2), and (3).

An analogous result holds with Q, replaced by the condition P,, that,
forgall sgigsuchesthat $2g.< nmasbodoe 1iaad; [x2,-15X,,] =1 implies that
U= Kxgacisats X! has rank r < g. ’

6. The substitution problem.

We have discussed the question of when a given element a of a group
G is the square of an element of G, or the commutator of two elements of
G. More generally, one may ask if a can be represented in a given form,
that is, whether an equation

(6.1 wx,...,x)=a

has solutions in G. (Note that if @ = 1, this reduces to the class of problems
considered above.)

If F is a free group with basis x,, ..., x,, r <n this amounts to asking
if there exists a homomorphism ¢ from F into G such that w¢ = a. In the
special case that G is a free group, we may identify F with G, whence we are
looking for an endomorphism ¢ of G carrying w to a. For this reason, in
the case that G is free, this problem is commonly called the endomorphism
problem.

Let G be a finite group. If G has odd order, the map g — g° is
one-to-one, whence the equation

(6.2) x*=a
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has a solution for all in G. If G has elements of even order, and a has maximal
even order (or generates a maximal cyclic subgroup of even order), then,
for this a, (6.2) has no solution.

We skip to the equation
(6.3) xoyista—ta.
By virtue of the well known identity
(64) [x, y1 = (x~ 'y~ H2(yxy~ 1?7,

every commutator is a product of three squares. It follows that, as far as
is known, every element of a non-abelian finite simple group is a product
of three squares.

Not every commutator is a product of two squares; from (6.4) and
(5.17) it follows that every product of n commutators is a product of 2n + 1
squares, and Lyndon, McDonough, and Newman (28) showed that the
number 2n + 1 is best possible. Nonetheless, it is easy to show directly
that every element of the alternating group A, for n > 5, is the product
of the squares of two elements of 4,. That is, the equation

(6.5) s bl

has a solution of every a in 4,, n > 5. We have not examined the question
whether the same is true in other finite simple groups, or perhaps yet other
groups.

From the elementary fact that every group of exponent 2 is abelian,
it follows that some such formula as (6.4) must hold, expressing an arbitrary
commutator as the product of some number of squares. In the same way,
it is known that in a group of exponent 3 conjugate elements commute,
that is, all [x”,x] =1 It follows that [x”,x] is identically equal (that is,
equal in F free with basis {x, y}) to a product of some number of cubes.
In fact, one finds that

(6.6) Sadie st 3 2 N 1y2)3y'3(yx)3(><‘ o A TR 5

It is also known that the second derived group of a group of exponent 3

is trivial, whence there exists a formula

(6.7) Pl looisdl | Pl A1 S 09 1 alpd

for some integer k and some words u, = ux,,...,x,). Thus, although a
commutator is not always a product of any number of cubes, every commu-
tator of commutators is a product of a bounded number of cubes. In 4,,
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n > 5, or any group G in which every element is a commutator, it follows
that every element is a product of k cubes.

Problems. (1) Find an explicit formula (6.7) with k as small as possible.

(2) What is the smallest k, such every element of 4, n>35, is a
product of k, cubes?

(3) Isevery element of A, n > 5, a product of fifth powers? A product
of a bounded number of fifth powers?

(4) In analogy with the equation [x,y] = a, is it possible to describe
the set of all solutions of the equation x?y? = a? (This is perhaps implicit
in the work of Edmunds: what about x’y* = a?)

(5) (Edmunds) If an element a of a free group is a product of two
commutators, and is also a square, must it then be the square of a commu-
tator?

We conclude our discussion with a sketch of Edmunds’ (11, 14, 15)
treatment of the endomorphism problem. We take F a free group with
basis x,,X,,..., and w(x,, ..., x,) an element of F. For a in F, we define
a solution of the equation (6.1) to be an endomorphism ¢ of F such that
wo = a. If we write x,¢ = u,, then we have w¢ = w(u,, ..., u,) = a.

If « is any automorphism of F and ¢ is a solution of w = a, then
¢ =a " '¢ is a solution of w = a, where w = wa. If some x,¢ = 1, say
x,¢ = 1, then let ¢ be the endomorphism of F sending x, to 1 and fixing
the remaining x,. Then ¢ is also a solution of w' = a, where w' = we =
= W6 st s hl).

If there is cancellation in the equation wu,,...,u,) = a, and if no
u, = 1, then there is cancellation in the image of some part XYValaiofa
where x = x;°!, y = x{' for some i, j and some choice of exponents.
Writing x¢ = u, y¢ = v, there is cancellation in a part uv~' of w¢. For
some z # 1, and some u, v/, we have u = u'z, v = vz, uwo™! =u'v' "}, all
right members reduced. We make the substitution a : x = xx,, ;, ¥ = VX, {,
leaving all x, fixed for k #i, j. (In the case i = j, this requires special
interpretation.) We define ¢’ by x¢’' = v, y¢' = v/, x,, ¢’ = z, with x, ¢’ =

= x,¢ for all k#i, j, n+ L Then,: if wa=w(x,..,%,,) we have
n+1 n

w'¢ =w¢ = a It is important to note that Y |x,¢' < Y. |x¢l.
i=1 i=1
If any solution ¢ of (6.3) is given, by iteration of the transformations
described above we obtain an endomorphism &*, a word w* = we* and
a homomorphism ¢*, such that ¢* is a solution of w* = a with the following
properties:
() mo x.oF =il

(2) the equation w*¢* = a holds without any cancellation among the
factors x,¢*.
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Let D(w) be the set of all w* obtainavle from w in this way; it follows that
(6.3) has a solution, for given g, if and only if a is the cancellation free image
of some w* in D(w), in the sense of (1) and (2). Moreover, if a has length
la| = n, it is necessary to consider only w* of length |[w* < n. Now the
description of D(w) above departs from that of Edmunds, in that he makes
certain technical modifications to eliminate redundancy, thereby decreasing
D(w). After this, he shows that the decidability of the existence of solutions
for (6.3), for arbitrary a, is equivalent to the condition that the set D(w) be
recursive.

This generalizes the theorem of Wicks ((4.2) above). (Here the set D(i)
could be taken to consist of

L T R e TR e e

(2) all words obtained from the above by setting some of x,, x,, x;
equal to 1:

(3) the trivial word 1.

Edmunds’ method shows that (6.3) is decidable whenever w is quadratic,
in that each x, occurs at most twice (as x; or x; ') in w. For then each w*
in D(w) is also quadratic, and the set of quadratic words is clearly recursive.

Edmunds also recovers a result of Schupp (49), that (6.3) is decidable
whenever w contains at most two unknowns. This follows from the fact
that, in this case, an element of D(w), not of the form x{.‘, is always equivalent
to w under an automorphism of F, together with Whitehead’s algorithm
for deciding whether two given elements of a free group F are equivalent
urider an automorphism of F. We note that some of Edmunds’ arguments
make substantial use of the coinitial graph (or star graph) introduced by
Hoare, Karrass, and Solitar.

Added October 1979.

1. Marc Culler [62] has shown that [x, y]" can be written as a product
of [5] + 1 commutators, giving the following example:

Ly | Iy sl v

[x,y1* = Deyx~h y~

He also shows that if w = x2y? for some x, y in a free group, the w is conjugate
to6 a cancellation-free instance of one the words a?b?, abca™ 'cb, q"bczb‘l.
2. R. M. Guralnick [64] discusses the least number A = A(G) < o
such that every element of G’ is a product of A commutators of elements
from G. M. Rosenlicht [65] showed that if [G :Z(G)] = n, then 1 < n’.
P. X. Gallagher [63] gave a character-theoretic condition for an alement
of a finite group to be a product of k commutators, whence Guralnick

deduces, for finite G, that A is less than the number of different degrees of
irredncihle comnlex renrecentations  Form this he concludes for arbitrarv
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G, that [G:Z(G)] =n implies A < jd(n), the number of divisors of n.
Among further results, he shows that if G is nilpotent and G/Z(G) is gene-
“rated by n elements, then A < n.
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