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Differentiable functions
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1. Introduction.

This article, based on lectures given at the Instituto de Matematica
Pura e Aplicada in 1979, is an introduction to some problems in “ideals
of differéntiable functions” or “differential analysis”. The problems are
local questions in real analysis, focussing, in particular, on the relationships
among differentiable functions, analytic functions and formal power series.
The paper includes an exposition (with complete proofs) of some of the
fundamental classical theorems, and a discussion of recent results and
several important open problems.

The development of differential calculus in this century has its origin
in the work of Whitney on differentiable functions. The profound theorems
proved during the last three decades were motivated on the one hand by
problems of Laurent Schwartz concerning division of distributions and
differentiable functions, and on the other by the theory of singularities of
differentiable mappings, developed at first by Thom and Whitney. Some
of the most fundamental results are due to Schwartz’s students Glaeser,
Grothendieck and Malgrange. Schwartz’s division problems were resolved
by the work of Hormander, Lojasiewicz and Malgrange concerning ideals
of differentiable functions generated by analytic functions.

* Supported by Natural Sciences and Engineering Research Council grant A9070, the
Conselho Nacional de Desenvolvimento Cientifico e Tecnoldgico, and NSERC under the
exchange of scientists program with CNPa (1978/79).
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The results of Mather concerning stability and generic properties of
differentiable mappings will not be studied here. Outside the generic theory,
we can distinguish three closely related themes: extension of functions
defined in closed sets to differentiable functions, division of differentiable
functions, and composition of differentiable mappings.

We will begin with an elementary theorem on differentiable even
functions, which introduces some important, if simple, techniques and
which provides a good illustration of the fundamental problems and the
relationships among them.

Let U be an open subset of IR". We denote by &™(U) (respectively &(U))
the algebra of m times continuously differentiable (respectively infinitely
differentiable) functions in U, with the topology of uniform convergence
of functions and all their partial derivatives on compact sets. This is the
topology defined by the seminorms

pr Skl
l e Sup k (x) 0
f xeK ﬁx

[kl <m

where K is a compact subset of U (and m runs through N in the € case).
Here x =(x,,...,x,), k denotes a multiindex k = (k,...,k,)€IN" |kl =
=k, 4 ...+ k, and

ikl olkl

Bt GG Gihs

We will sometimes use m for either a nonnegative integer or + oo, and
write &7 °(U) = &(U).

Let &"(R),,., be the closed subspace of &™(IR) consisting of even
functions (meIN or m = + o0).

Theorem 1.1. If f(x) is a €*" even function of one variable (meN or
m = + o), then there exists a €" function g(y) such that f(x) = g(x?). In
fact there exists a continuous linear operator L :E?™(R)yyen = €™(R) such
that f(x) = L(f)(x?) for all f€&™(R), en-

The first assertion is due to Whitney [42]. The second follows from
a theorem of Seeley [32]. It will be clear that an analogous result holds
for functions of several variables that are even in some of them.

We will prove the theorem using the following elementary but impor-
tant lemma.

Lemma 1.2. (Hadamard’s lemma). If f(x) = f(X;, ... Xp XpuyseeesX,) 08
a €" function such that
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then there exist €™ ' functions g(x,,...,x)), 1 < i =n, such that
f(x) T Z X; g,'(x)-
i=1

Proof. By the fundamental theorem of calculus and the chain rule, we have

il a n
1) =I f(txl,...,txé;x”l,...,xj) i Z i
0 ' =

where

1 6f
g(x) = L Txi_(tx" ARstoc ocll o ...,xp)dt.

It is clear that the g(x) defined in the proof of Lemma 1.2 depend in
a continuous linear way on f.

Hadamard’s lemma is a very simple type of division theorem for
differentiable functions. In the ¥ case, the assertion of the lemma is equi-
valent to the statement that the ideal in &(R”) generated by x,,...,Xx, is
closed. Malgrange [19] proved that if U is an open subset of IR", then any
ideal I in &(U) which is generated by finitely many analytic functions is
closed. Malgrange’s theorem has a more concrete formulation: a ¢* func-
tion f on U belongs to I if and only if it “belongs formally to I”. “Belongs
formally to I” means that the formal Taylor series of f at each point of U
is the formal Taylor series of some element of I. In fact according to
Whitney’s spectral theorem [43], the closure of any ideal I in &(U) equals
the ideal of > functions which belong formally to I.

Proof of Theorem 1.1. Let f(x) be a ¢*™ even function. There is a unique
continuous function g(y) defined in [0, ) such that g is ¥*" in (0, ) and
f(x) = g(x?). If x # 0, we have

dg® (x*)

=
g 0=<k<2m.

= 2yt i,

On the other hand we can use Hadamard’s lemma to define >~ %
even functions h, inductively as follows:

ho = f

noEIxh 0S5k <m
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It follows that h,(x) = g (x?) outside the origin, so that each derivative
g%, 0 =<k <m, can be continued up to the origin. We will prove that g
is the restriction to [0, o) of a €™ function.

The problem of extending g to a differentiable function is a very
special instance of Whitney’s extension problem: When is a function defined
in a closed subset X of IR" the restriction of a ¢™ function? (cf. [40], [41]).
In fact we want to extend g in a continuous linear way. The existence of
such an extension in the € case was first proved by Mityagin [27] and
i Seeley {321

Let &™([0, o)) denote the space of continuous functions g in [0, c0)
such that g is €™ in (0, o) and all derivatives of g | (0, c0) extend continu-
ously to [0, ). Then £™([0, o0)) has the structure of a Fréchet space defined
by the seminorms

lgln = sup |g*()l,

yeK
|k| <m

" where K is a compact subset of [0, o) (and m runs through IN in the ¢*
case), and where g* denotes the continuation of (a/dy*)(g| (0, o0)) to [0, o0).
The following theorem completes the proof of Theorem 1.1.

Theorem 1.3. There is a continuous linear operator

E :8™([0, ) = &™(R)
such that E(g)| [0, 0) =g for all g€ &™([0, 0))
Proof. Our problem is to define E(g)(y) when y <0. If m =0, we can
define E(g) (y) by reflection in the origin: E(g)(y) = g(— y), y < 0. If m = 1,
we can use a weighted sum of reflections. Consider

E(g) (y) = a,9(b,y) + a,g(b,y), y <0,
where b,b, < 0. Then E(g) determines a %' extension of g provided
that the limiting values of E(g)(y) and E(g)(y) agree with those of g(— y)
and g'(— y) as y > 0 —; in other words if
a, +a,=1
cab +ah, =L

For distinct b;,b, <0, these equations have a unique solution a,, a,.
This extension is due to Lichtenstein [15].
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Hestenes [10] remarked that the same technique works for any m < co:
a weighted sum of m reflections leads to solving a system of linear equations
determined by a Vandermonde matrix.

If m = oo, we can use an infinite sum of reflections [32]:

oC

E@ () = Z g(b,y), y.% 0,

where {a,}, {b,} are sequences satisfying

(1) =0 8b ¥l hoeiasifhiss o0k
(2 T8y | iby* < oo foralltniz Ok
(G "E5 a bl =T tor‘all iz O
and ¢ is a ¥ function such that ¢(y) =1 if 0 <y =1 and ¢(y) =
y > 2. In fact, condition (1) guarantees that the sum is finite for each y < 0.
Condition (2) shows that all derivatives converge as y — 0 —, uniformly
in each bounded set, and (3) shows that the limits agree with those of the
derivatives of g(y) as y = 0 +. The continuity of the extension operator
also follows from (2).

It is easy to choose sequences {a,}, {b,} satisfying the above conditions.
We can take b, = — 2% and choose ak using a theorem of Mittag-Leffler:
there exists an entxre function Z;_ lakﬁ taking arbitrary values (here (— 1)")
a sequence of distinct points (here 2"), provided that the sequence does not
have a finite accumulation point.

It is clear that Seeley’s extension operator actually provides a simul-
taneous extension of all classes of differentiability.

In this article we will be concerned mainly with €* functions. Whitney’s
theorem on even functions in the € case is equivalent to the statement
that the subalgebra of &(IR) of functions of the form g(x?) is closed. This
is a special case of Glaeser’s composition theorem [9] Let U, ¥ be open
subsets of IR", IRP (respectively), and ¢ :U — V a semiproper analytic
mapping. Glaeser proved that if ¢ has rank p in a dense subset of U,
then ¢*&(V) is closed in &U). Here ¢* :8(V)— &U) is the algebra
homomorphism defined by ¢*(g) = g ° ¢, where g € £(V). Glaeser’s theorem
also has a more concrete formulation: ¢*&(V) equals the subalgebra of
&(U) of functions which are “formally compositions with ¢”. If f € &(U)
we denote by T, f the formal Taylor series of f at ae U. We say f is “for-
mally a composition with ¢ = (¢,,...,¢,)" if for each be @(U), there is a
formal power series G, in the variables y — b = (v, — b, ... ¥y bp) such
that for each ae @™ 1(b T,f is obtained by substltutmg for each ¥, in Gy,
the formal Taylor series at a of the function ¢;.

One of the most significant open problems on differentiable functions
is the following.
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Conjecture 1.4. The conclusion of Glaeser’s theorem holds without the
hypothesis on the rank of ¢.

Tougeron [35] has proved that if ¢ : U —» V is any analytic mapping,
then the closure of ¢*&(V) equals the subalgebra of &(U) of functions which
are formally compositions with ¢.

Theorem 1.1 in the €* case also follows from the Malgrange-Mather
division theorem [20], [23], which is an analogue for ¥® functions of the
classical Weierstrass division theorem. Suppose that U is an open subset
of R" and u,, WY, dee 6T functions on U. Let

4
plt,x) =t* + ) u(x)8
=

Given a €~ function f(t,x) on R x U, we can ask whether there exist €
functions g¢(t, x), r (), ..., 7,(x) such that

14
Fle 0= P g =)' ) rilxper .
=i

=

The answer is “yes”, although the solution is not unique unless all roots
of the polynomial t — p(t, x) are real for each x. For example, if p(t, x) =
=t> + 1, then we can choose r,, r, arbitrarily since t? + 1 is invertible.

The Malgrange-Mather division theorem provides a continuous linear
mapping

E(R x U) = &R x U) x (€(U)y

U0 (gpar i om0
such that for all feé&(R x U),
f=rq, +r,
where

i ;
r At x) = .Zl T
JE

In fact &(R x U) is a module over the ring &(U), and the continuous linear
mapping above can be chosen &(U)-linear.

Let us again consider a ¥ even function f(x). According to the divi-
«inn thenrem we can write
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fx) = (x* = y)qlx, ) + xr,(y) + r,0),

where g, r,, r, are ¥ functions which depend in a continuous linear way
on f Putting y = x> we have f(x) = xr (x?) + ry(x?). Since f is even,
then r, =0 and we have f(x) = r,(x?).

2. Whitney’s extension theorem.

In this section we will prove the classical extension theorem of Whitney
[40]. Let U be an open subset of IR", and X a closed subset of U. Whitney’s
theorem asserts that a function F° defined in X is the restriction of a €™
function in U(meIN or m = + o) provided there exists a sequence (Fk)lklw
of functions defined in X which satisfies certain conditions that arise natu-
rally from Taylor’s formula.

First we consider me IN. By a jet of order m on X we mean a sequence
of continuous functions F = (F*), ., on X. Here k denotes a multiindex
k =kl k) €N Let) JT(X) be the vector space of jets of order m on
X. We write

|Flp = sup |F¥(x)

xeK
|k|<m

if K is a compact subset of X, and F(x) = F°(x).

There is a linear mapping J" : &"(U) — J™(X) which associates to each
f€&(U) the jet

ol £ )
i) a1 X
(f) ( 7 g

For each |k| < m, there is a linear mapping D* : Jm(X) - Jm ™ (X) defined
by D*F =(Fk+£)lll5M-|k|' We also denote by D* the mapping of &™(U)
into &"¥(U) given by

alklf
il T

This should cause no confusion since
D¥o Jm = Jgm-lkl o DX,

If ae X and FeJ™(X), then the Taylor polynomial (of order m) of F
at a is the nolvnomial
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FHa)
k!

T"Fx)'="T ey

|k| <m

of degree < m. Here k! =k,!...k,!. We define RTF = F — JY(T]"F), so
that

Fk+ﬂ,(a)

BT edfY®) = F il

Wxm- %

if |kl < m.

Definition 2.1. * A jet FeJ™(X) is a Whitney field of class " on X if for
each |kl < m,

(2.1.1) (RIFXy) = ollx — yI™ )
‘as |x — =0, x,ye X.

Let £™(X) < J"(X) be the subspace of Whitney fields of class #".
&"(X) is a Fréchet space, with the seminorms

I(RTF)(y)]
IFIIY, = IFI¥ + sup IT(—X—I)'"(}')W’
x,yeK y
x#y
Jk| <m

where K < X is compact.
Remark 2.2. If FeJ™(U) and for all xe U, |kl <m we have

i (RER ) 3

L !x—yl""" s
then there exists f € &"(U) such that F = J"(f). This simple converse of
Taylor’s theorem shows that the two spaces we have denoted &™(U) are
equivalent. On &™(U), the topologies defined by the seminorms |- X, || -[/¥
are equivalent (by the open mapping theorem).

Theorem 2.3. (Whitney . [40]). There is a continuous linear mapping
W :M(X) - &™(U)

such that D*W(F)(x) = FXx) if FEE™(X), x€ X, |kl <m, and W(F)|U — X
ISLGE:
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Remark 2.4. The condition (2.1.1) cannot be weakened to:

(R
(24.1) lim ,T(_—J)m(—vfw ~ 0

DR

for all xe X, k| < m.

For example, let n = m = 1. Choose sequences of numbers {x,}, {y,}
as in the following figure, where the line segment joining (x,,y,) and
(xk+1ayk+1) has SlOpe (— 1)"

(x;,7;)

(x3,¥;)

(x5 00)

= x?

Let X = {0} wix,,x,, ... Defitle F € JNX) by F(0) = 0, F%x,) = y,,
F' =0. Since each x, is isolated, then (2.4.1) holds trivially for x = x,.
On the other hand, (RyF)°(x,) =y, and (R;F)'(x,) =0, so that (2.4.1)
holds for x = 0. But F has no %' extension to IR since

Vi (T 0 (= 1)
Xra e Mg

does not approach a limit as k — oo.

The proof of Theorem 2.3 is based on the following fundamental lemma
(“Whitney partition of unity”).

Lemma 2.5. Let K be a compact subset of R". There exists a countable
family of functions ®, € &(R" — K), L€, such that

(1) {supp®,},, is locally finite: in fact each x belongs to at most 3" of
the supp @, : i

(2 @®,>0 for all Lel, and Z,_,®,(x) =1, xe R — K
(3) 2d(supp @,, K) > diam(supp ®,) for all Lel:

(4) there exist constants C, depending only on k and n, such that if
x€IR" — K, then
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1
IDk(DL(X)\ = ©) <1 ot W)

Proof. The proof is based on a certain decomposition of R" — K into
cubes. For each nonnegative integer p, we subdivide R" into closed cubes
with sides of length 1/27, by the hyperplanes x; = j/2°, where 1 <i<n
and each j, runs through the set of all integers. Let Z, be the set of these
cubes.

Let S, be the subset of X, consisting of cubes L such that d(L,K) >
diam L = \/n. We define S, inductively: S, is the subset of I, consisting
of cubes L which are not contained in any cubes of S, ...,S,_,, and such
that d(L,K) > diam L = ﬁ/2”. Then [i = Bhidy S, is a subdivision of
IR" — K into closed cubes such that each cube of S, meets only cubes of

R

Let € &(R") be a function such that 0 Sy <1, Y(x) = 1 if [x] <12
for each i = 1,...,n, and ¥(x) =0 if |x| > 3/4 for some i. For each Lel
let

“where x, is the center of L and 4, is the length of its sides. We define

Ao

2 ¥

Mel

It is easy to see that the family {®,},  satisfies (1) and (2).
If LeSp, then

3 1
d(supp @,, K) > d(L, K) — il 5 B > — diam(supp @,),

20700 2 i
which proves (3).

To prove (4), we first estimate |D*®,(x)| in terms of 4,. We have

C

T
A’L

<

. 1 X — X
DY (x) = ‘W”"’( i L) S

where C is a constant depending only on k and n. Also

1< Y y,(x) <3

Mel
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for all xe R" — K, by (1). Using Leibniz’s rule and the preceding inequalities,
we get

’

ID*®,(x)| <

MM
for all xelR" — K, where C' is a constant depending only on k and n.
If LeS,, then i, =1, so that [D*®,(x)) SC. Let LeS, p=>1 Let

Lilbc a cube of £ _, containing L. Then d(L, K) < \/5/2”'5,, so that for
all xeL,

e
dx, K) = 291 + diam L = =7

and for all x€supp®,,

<ﬁ+ﬁ—l7ﬁ/‘,

d(x’K) il 2}7-2 2p+2 ii 3 4 i 69

Thus for any Lel and all xe R" — K,

, (17\/',;)“4
|ID*®,(x)| = C <1 + Wi, K K)“")I

This proves (4).

Proof of Theorem 2.3. By a simple partition of unity argument it is enough
to assume U = R" and X = K, a compact subset of IR Let {®,},_ be a
Whitney partition of unity on R" — K.

For each L€, choose a; €K such that

d(supp @,, K) = d(supp ®,, a,).

Let Fe &m(K). Define a function f = W(F) on RR" by

f(x) = F(x), x€K,
) = Y O (0)T7F(x), x¢ K.
Lel
Clearly f = W(F) depends linearly on F, and is ¥* on R" — K. We must

show that f is €™, D¥f | K = F* |kl <m, and W is continuous. If [k| < m,
we write
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Hx) = F¥x), e Applying (2.3.1) to a point x€ A and a point a € K such that d(x, K) =
= d(x, a), we have
k L k
f (X) = Df(x), X¢K |Dkf(x)| < |Dk1;mF(X)‘ e Ca(/) /"m—lkl <
By a modulus of continuity we mean a continuous increasing function Py
a: [0, 00) — [0, ) such that «(0) = 0 and « is concave downwards. There £ iy e bl e CA TR R — L D),

exists a modulus of continuity a such that 121 <m— (k|

(RTFx) < alx — al)-|x — al™ e Hence there is a constant C, (depending only on m, n, %) such that

for all a, xe K, [kl < m, and |W(F)m = C,lIFllm.

(1) = a(diam K), t > diam K, In particular, W is a continuous' linear opferator. ;
It remains to prove (2.3.1). First we claim that if a, be K, |kl = m, then

IIF|IX = |FIX + «(diam K).
(2.3.2) ID*T™F(x) — D*T"F(x)| <

In fact, define f8: [0, «0) — [0,00) by B(0) = 0 and
: < MM afig = b) (x —al" ™ 4+ jx — Bi" )

(REF) (y) :
plt) = #ip ¢ 20 for all xelR". To see this, we observe
S o — ,V| 4]
P ' m " () == =9 puqmp _ TE) @) =
sm TG I - (L m R B =

lk|<m
Then B is increasing and continuous at 0. We get a from the convex enve-
lope of the positive t-axis and the graph of f.

Let A be a cube in R" such that K = IntA. Let 4 = sup,_,d(x, K). ti i
We will prove the following assertion.

L
y ©o ®rta)

so that
(2.3.1) There exists a constant C depending only on m, n, 4 such that :
i = A L
if |kl <m, aeK, x€A, then DTMF(x) — D'TVF(X) = ¥ (x Ua) (R’;F)"*E(a).
: Ll<m-— .
|75 = DMTIF(x)) < Codlx — al)-|x — af" ™™, a1
Once (2.3.1) is established, the proof of the theorem can be completed Hence
as follows. Let (j) denote the multiindex whose j’th component is 1 and g wig
whose other components are 0. If ae K, x¢ K, |kl < m, then ID*T"F(x) — D*T;"F(x)| =
S j < bx —a'™ m= 1kl 12|
1% ) = fMa) = X (x, — a) [ Pa) S |f4x) - D'TF(x) + ; 4 “la — bl la — b)) =
J=1 <m- .
g . b L)
+ |[D*T"F(x) — D*T"F(a) — Y. (v — DT W " Fa), = e ) g 2m kTRl gg — b)) <
j=1 121 <m—|k| i
The first term in the right hand side is o|jx — a) by (2.3.1), while the second 3 S 2" M2 gq — bl)- |x — bIm T

is of|x — al) since T/"F(x) is a polynomial. Hence f* is continuously diffe- |
rentiable and 9f*/dx; = f**9. if |x —a S|x — b|. Likewise
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ID*T"F(x) — D*T"F(x)| < 2"~ "2 (g — b|)-[x — g™ ™

if [x — b S|x —al. Our claim follows.
Now to prove (2.3.1). We can assume x ¢ K. Then

f6) = T'F() = X @) (T2F() — TTF()).
Hence

£43) = D' = ¥ (%) 5,000,
L<k 2

where
Sy(x) = ¥, DX, (x)- D* "X (T"F(x) — T,"F(x).
Lel
k!

k-
To estimate |S,(x),, we note that if x€supp ®,, then

Here 2 < k means L Skj, WS =n and (:) =

|x — a;| < diam (supp ®,) + d(supp ®,,K) =
=3d(supp®,,K) =3|x —al,

by Lemma 2.5(3), so that |a — a;] =4|x —a| and a(a — a,)) < 4a(x — a|)
because a is concave downwards. Therefore

1S(x)| < Coflx — al) - |x — a™ ™™,
where C depends only on m, n, by (2.3.2) and Lemma 2.5(1).
Now consider |Sg(x), & # 0. For all beK,
Sg(x) = 3 D"d)L(x) 9 D“"L(’I;':F(x) — T;"F(x))
Lel

since Z D’*CD,_(x) = 0. Choose b so that |x — bl = d(x, K). As before, if

Lel
x€supp ®,, then |x —a,| <3 |x —b| = 3d(x, K), so that |b — a, < 4d(x, K)
and a(lb — a;|) = 4a(d(x, K)). By (2.3.2) and Lemma 2.5(4),

DX (x) - D*"HT7F(x) — T"F(x) < C, u(d(x, K)) - d(x, KY" ¥,

where C, depends only on k, m, n, 2. This completes the proof of (2.3.1), and
therefore of the theorem.
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We now turn to the ¥ case of Whitney's extension theorem. Let U
be an open subset of IR* and X a closed subset of U. A jet of infinite order
on X is a sequence of continuous functions F =(F,.»0n X. Let J(X) be
the space of such jets. For each meN, there is a projection %, : J(X) - J(X)
associating to each jet (F¥),_,. the jet (e Lt

€(X) = n m, (E"(X).

An element of &(X) is a Whitney field of class ¥ on X. &(X) is a Fréchet
space, with the seminorms ||-||X, where meIN and K < X is compact.

There is a linear mapping J : &(U) » J(X) defined by

x) ,
ke N

Ik|
10 = (G-

where f € &(U).

Theorem 2.6. &(X) = J(&U)).

It is again enough to prove the theorem when U = IR" and X = K,
a compact subset of IR". We will use the following proposition.

Proposition 2.7. For all me N, let g, € &"(R") such that g is € on R* — K
and g, ., — g, is m-flat on K. Then there exists g€ &(R") such that g — g,
is m-flat on K for all me N.

(A €™ function is m-flat on K if it vanishes on K together with all its
derivatives of order < m).

To obtain Theorem 2.6, let Fe&(K) and F, ==, (F), meIN. By
Theorem 2.3, there exists g,, € &"(IR") such that g, is ¢ on IR" — K and
J"g, =F,. Clearly g,,,, — g, is mflat on K, so the result follows from
Proposition 2.7.

We will need the following two lemmas to prove Proposition 2.7.

Lemma 2.8 There are constants C, > 0 (depending only on Ke IN®) such
that for any compact subset K of R" and any ¢ > 0, there exists a €®
function a, on R" satisfying:

() 0sa,=1,a =1 ina neighborhood of K, and a(x) = 0 if d(x, K) > &;
(2) for all xeR" and ke IN",

D) < o
€

Proof. Let ® e &(R") such that ® >0, ® =0 if |x| > 3/8, and [® = 1. Put
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o) = o (%)

Let x, be the characteristic function of the set {x€R":d(x, K) < ¢/2}. We
can define a, by the convolution a, = x, *®,.

Lemma 2.9. If ge&"(R") is m-flat on K, then lim,_ |, g|'R' = 0 (where
a, is given by Lemma 2.8).

Proof. Let K, = {x€R":d(x,K) S¢}. Then

Y (’:) D¥a (x) - D* *g(x)| <

<k

sup |DX@, - g) (x)l = sup

xeK,

< Z () O g k+IR By,

where f(e) 0 as ¢ -0, by Lemma 28. Hence |a,-gl, —0 as ¢ - 0.

Proof of Proposition 2.7. By Lemma 2.9 there exists a sequence of positive
numbers &g, ¢,,... such that

1
‘azp(gp+l —gp)lpn- = 27

Then the series

gO + Z lX (gp+1 _gp)

p>0

converges uniformly on IR" to a function g. For each meIN we write

=gt X %f(g,.,-9)+R,
O<p<m
Clearly the sum of the first two terms in the right hand side is (6’" and
coincides with g, in a neighborhood of K. On the other hand, R, is €
and m-flat on K. Therefore g is ¥* and g — g,, is m-flat on K for all m.

Remark 2.10. If X = {a}, Theorem 2.6 is the generalized lemma of E. Borel:
given a family of real numbers {a,}, .., there exists f € &(IR") such that
D¥f(a) = a, for all ke IN"

Remark 2.11. For each me IN, Theorem 2.3 provides an “extension operator”

W™ : £"(X) - &"(U); i.e. a continuous linear mapping W™ : &™(X) —» £™(U) .

such that W™(F)| X = F for all Fe&™(X). The operators W™ are of
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increasing complexity in m, however, and therefore do not induce an exten-
sion operator on the space of ¥ Whitney fields. According to Seeley’s
formula (Theorem 1.3), there exists an extension operator for the %
Whitney fields on a half space (or, more generally, on a domain with
%* boundary). On the other hand, the following example of Grothendieck
shows there does not in general exist a continuous linear extension operator
in the €~ case.

Let U =R" X = {0}. It is enough to prove there does not exist an
extension operator &£(0) — &(B"), where B" is the closed unit ball in IR".
The topology of &(0) cannot be defined by an infinite sequence of norms
(since every neighborhood of O contains lines). On the other hand, &(B")
is topologized by an infinite sequence of norms. The result follows.

Therefore the following extension problem is interesting. Under what
conditions on X is there a continuous linear extension operator 8(X) - &UY
We will take up this question in Section 3.

We conclude this section with some remarks on the seminorms |- b
and |- ||X, and a problem concerning the definition of ¢® functions on a
domain w1th boundary.

Definition 2.12. Let K be a compact subset of IR" which is connected by
rectifiable arcs, and let § be the geodesic distance on K (if x, yeK, 6(x, y)
is the greatest lower bound of the lengths of the rectifiable arcs joining x
and y). Let p be a positive integer. We say that K is p-regular if there
exists a constant C > 0 such that

|x — j}l > Cé(x, y)*

for all x, ye K.

Let U be an open subset of IR™. A closed subset X of U is regular if fo?
all xe X there exists an integer p and a p-regular compact neighborhood
oliixinSXe

Proposition 2.13. Let K be a p-regular compact subset of R". Then for
each me IN, there exists a constant C, such that for all F € &™(K),

IFlly < C,IFI%,.
Proof.  Suppose ge &°(R"), where g > 1. If x, yeR", then

lg(y) — g(x)] < /nix — yl sup |D¥g(¢),

Selx, y}

121=1

according to the mean value theorem. Therefore if ¢ is a piecewise linear

arc joining x and v, of lenght |gl. we have
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Igy) — g(x)| < /nlal sup |D*g(&).

Sea
121=1

In fact this inequality holds for any rectifiable g, by passage to the limit.
Suppose g is (g-1)-flat at x. Iterating the preceding inequality, we get

lgy)l < n%?|a|* sup |D*g(§)l.
I’fle:q

Now let K be a compact subset of IR" which is connected by rectifiable
arcs. Let Fe &"(K). Applying-the inequality above with x, yeK, g =
=m — |kl, and g = DXW(F) — T"F) (where W ‘is given by Theorem 2.3),
we have

@13.1)  |(R"FFO) S oW 5(x, yy " Msup |FH(E) — Fhx) <
teK
|2 =m

£ QiR Al i KIS,

Suppose K is p-regular. Let meN and [k| <m For all x, yeK and
F € &™(K), there exists a constant C’ such that

(2132) (R™F)y)| < ((R™F}y)| + Clx — yI"~™M* - |Fly,,.

But by (2.13.1) and the hypothesis, there exists a constant C” such that
(2.133) (R F)*(y) 2n™?~ k2 §(x, yy"»~™ |FIX < C'Ix — i !
The proposition follows immediately from (2.13.2) and (2.13.3).

Corollary 2.14. Let U be an open subset of R". If X is ba regular closed
subset of U, then the topology of &(X) is defined by the family of seminorms
|- |X, where me N and K = X is compact.

Remark 2.15. When p = 1, Proposition 2.13 has the following converse,
due to Glaeser [8]. Let K be a compact subset of R" If the norms |- ¥
and || -||’1‘ are equivalent, then K has a finite number of connected compo-
nents, each of which is 1-regular.

Let U be an open subset of IR™. If X is a closed subset of U such that
Int X is dense in X, we can consider the following strong regularity
condition.

(2.16.1) For all ae X there exists a positive integer p and a compact
neichhorhood K of a in X with the following property: there exists a
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constant C such that any two points x, y€ K can be joined by a rectifiable
arc ¢ which lies in Int X except perhaps for finitely many points, and
satisfies

Ix — y| = Clof”.

In Section 6 we will prove that a closed “subanalytic” set X such that
Int X is dense in X satisfies (2.16.1).

Proposition 2.16. Let X be a closed subset of U such that Int X is dense
in X. Suppose’ X satisfies (2.16.1). If Fe€J(X) and F|Int X € &(Int X),
then F € &(X).

This can be proved by applying estimates similar to those of the proof
of Proposition 2.13, to rectifiable arcs satisfying (2.16.1).

We conjecture that the converse of Proposition 2.16 is true.

Conjecture 2.17. Suppose that every continuous function f on X such that
fis € in Int X and all partial derivatives of f|Int X extend continuously
to X, is the restriction of a €® function in U. Then X satisfies (2.16.1).

Example 2.18. Let X be the complement of the open subset of IR? defi-
ned by 0 < x, <e '™, x, >0. Let f be the continuous function on X
defined by f(x,,x,) =e ' if x, >0, x,>e ', and f(x,,x;) =0
otherwise. Then f is ¢ in Int X and all partial derivatives of f|IntX
extend continuously to X (in particular, to zero at the origin). But f is
not the restriction of a ¥* function in IR? because if x, > 0, then the diffe-

rence quotient

Foluea i) o e O o

e X —0

3. The linear structure of ideals of differentiable functions.

Let X be a closed subset of IR". In Remark 2.11 we raised the following
question: Under what conditions on X is there a continuous linear extension
operator &(X)— &(R"? In fact we can formulate a more general lifting
problem: Let Ty :&(R") — &(X) be the canonical projection associating to
each € function its jet of infinite order on X. If V is a topological vector
space and G : V — &(X) is a continuous linear mapping, then under what
conditions is there a continuous linear mapping G :V — &(RR") such that
the following diagram commutes?
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&(R")
G . 1.
Y 4
” 4

VG“_, d’( X)

We will show that if ¥ is a locally convex topological vector space,
then a lifting G of G exists provided there exist “pointwise” liftings, uniformly
in the points of X.

Our main interest in the lifting Theorem 3.1 lies in its application to
the extension problem. We will discuss the extension theorems of [1].
According to Whitney’s Theorem 2.6, there is an exact sequence

Tx

0 —— S(X;R) —— &(R") &X) —— 0,
where #(X;IR") denotes the ideal in &(IR") of functions which are flat on
X; ie. which vanish on X together with all their partial derivatives. The
existence of an extension operator &(X) — &(IR") is equivalent to the split-
ting of this exact sequence or, in other words, to the existence of a closed
linear subspace of #(IR") complementary to the closed ideal #(X;R").
Some other theorems and problems concerning splitting properties of
ideals of differentiable functions will also be surveyed in this section. The
only result here which will be used in the rest of the article is E. Stein’s
extension theorem: a special case of Theorem 3.7 that we will prove in full.

Theorem 3.1. [3] Let X be a closed subset of R", and V a topological
vector space, topologized by a family of seminorms ||-||,.,. Let G : V = &(X)
be a continuous linear mapping. Suppose that for each a€ X, there is a con-
tinuous linear mapping G, :V — &(R") such that

(1) G &Ma) = G(&)4a) for all (€V and ke IN":

(2) for each meIN and L = R" compact, there exist A = A(m,L)e A and a
constant ¢ = c(m, L) such that for all (€,

1G)lm = cliéll,.

Then there exists a continuous linear mapping G : V — &(R" such that
the diagram (3.1.1) commutes.

Idea of the proof. It is enough to assume X = K, a compact subset of IR".
Let {®,},, be a Whitney partition of unity on IR" — K (Lemma 2.5).

Let F = G({)e #(K). For each Lel, choose a, € K such that

d(supp @,, K) = d(supp ®,, a,).
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Define f = G(¢)e &(R") by

f(x) = F(x), xeK,

Sx)= Z‘D )G, (€)(x), x¢ K.

We can show that G has the required properties by an argument
patterned on that of Whitney’s theorem 2.3; the pointwise liftings G,({)
here take the place of the Taylor polynomials T,"F in Whitney’s theorem.

Let X be a closed subset of R”. Let F : &(R?) = &(X) be a continuous
linear mapping. Say that F is null at x € IR? if there exists a neighborhood
U of x such that if f € &(R?) and supp f = U, then F(f) = 0. The support
of F is the complement of the set of points where F is null. Clearly supp F
is closed.

Corollary 3.2 [3]. If _F has compact support, then there exists a conti-
nuous linear mapping F : &(IRP) —» &(R") such that the following diagram
commutes:

E(R")
ji
Vi Ty
V4

Ui
7

ery —E, g(x)

In the case that X is a point, Corollary 3.2 reduces to Mather’s inte-
resting variant of Borel’s lemma [24, Section 7]. . The general case is a con-
sequence of Mather’s theorem and Theorem 3.1. According to [24], for
each g€ X there exists a continuous linear mapping F,: &(IR?) = &(R")
such that F(f)a) = F(f)a) for all fe&(R?) and keIN". Moreover,
Mather’s estimates show that the pointwise liftings F, are uniform in a€ X,
so the assertion follows from Theorem 3.1.

Let X be a closed subset of IR". We recall that Seeley [32] and
Mityagin [27] proved that an extension operator E :&(X) — &(IR") exists
if X is a closed half space. E. Stein [33] showed that an extension operator
exists when X is a domain with boundary which is locally the graph of a
function of Lipschitz class 1. Moreover, the extension operators of Seeley
and Stein are universal in the sense that they simultaneously extend all
classes of differentiability (in contrast with the sequence of operators W™
of increasing complexity given by Whitney’s extension theorem 2.3). In
fact Seeley’s and Stein’s formulas define extension operators from the
Sobolov spaces L(Int X) to LZ(R") for all kelN" and 1 <p<o. A
Lipschitz condition of order 1 for the boundary of X is in the nature of
the best possible for such an extension [33, p. 182].
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For Whitney fields, on the other hand, extension operators exist for
closed sets X such that Int X is dense in X and which (roughly speaking)
have singularities of finite order on the boundary.

Definition 3.3. [17]. . A subset A of R" is semianalytic if for each point
x € IR", there exists an open neighborhood U of x in IR* and a finite number
of real analytic functions Jip g;; on U such that

AﬂU=k?){f..j=O, g;; > 0 for all j}.

The image of a semianalytic set by a proper analytic mapping need
not be semianalytic [17]. The class of subanalytic sets is obtained by
enlarging the class of semianalytic sets to include images under proper
analytic mappings.

Deﬁnitiqn 34 [12], [13]. A subset A4 of IR" is subanalytic if for each x € IR",
there exists an open neighborhood U of x in IR" and a finite system of proper
real analytic mappings Jij:Ni;j—= U (= 1,2), such that

AnU=Ullwr' =~ Tnt)
(Here each N; is a real analytic manifold).

Theorem 3.5 [1]. Let X be a closed subanalytic subset of IR". Then

there exists an extension operator E : &(X) — E(R"™ if and only if Int X is
dense in X. '

The necessity of the hypothesis follows easily from Grothendieck’s
example 2.11. The theorem can be proved using Theorem 3.1 and Hironaka’s
resolution of singularities, by induction on the lengths of the finite sequences
of local blowings-up with smooth centers needed locally to rectilinearize
the singularities on the boundary of X. (The notion of “blowing-up” and
the application of resolution of singularities to problems on differentiable
functions will be introduced in Section 6).

Definition 3.6. Let ¢ :R""! —» IR" be a function which satisfies a Lips-

chitz condition of order y, 0 <y < 1; ie. there is a constant M > 0 such
that

lp(x) — d(x) =M |x — x|

for all x, x'€R""*. We consider points in IR" as pairs (x, ), x€ R"" !, ye R
The open subset

{(x, ) ER" 1y > ¢(x)}
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is called a special Lipschitz domain of class Lip y. A rotation of such a domain
will also be called a special Lipschitz domain.

Let Q be an open subset of IR" and 0Q its boundary. We say, more
generally, that Q is a Lipschitz domain if for each a€d€) there exists an
open neighborhood U, of « in IR and a special Lipschitz domain Q,, such
that QN U, =Q ,n U,. If each Q, is of class Lipy (independent of a), then
we say Q is a Lipschitz domain of class Lipy.

Stein’s extension theorem for > functions is the case k =1 of the
following theorem.

Theorem 3.7 [1]. If X is the closure of a Lipschitz domain Q, then
there exists an extension operator E : £(X) — &(R"). If Q is of class Lip 1/k,
for some positive integer k, then E can be chosen so that for every compact
subset L of IR" there exists a compact subset K of X such that E satisfies
the following estimates: for each me€ N there is a positive constant C such
that

I[E(F)IL < CIFIE,

for all F e &(X).

Idea of the proof. It is enough to prove the theorem in the case of a special

Lipschitz domain. The general case follows using a partition of unity.
Let ¢ :IR""! - IR be a function which satisfies a Lipschitz condition

of order 1/k, where k is a positive integer; i.e. there is a constant M > 0

such that

lp(x) — P(x)| = M |x — x|
for all x, x’€lR""!. We can assume
X ={xyeR :y > ¢(x)}
Let I’ be the compact subset of IR" defined by
M|x|'* <y <M.

The Lipschitz condition on ¢ implies that a + I' = X for all a€ X.

We claim it is enough to prove there exists an extension operator
E,: &) — &(R" (which satisfies estimates like those in the theorem). In
fact let E,:&(a + I') » &(R") be the operator obtained by translating E,
to a. Our theorem follows from Theorem 3.1 with V = &(X), G the identity
mapping of &(X), and the pointwise lifting G, given by composing E, with
the restriction &(X) — &(a + I'). (For the estimates on the seminorms, it is
necessary to check the estimates involved in the proof of Theorem 3.1).
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When k = 1, T is defined by linear inequalities, and there exists an

extension operator S : &(I’) — &(IR") by Seeley’s theorem. Hence we can use
o = S to prove Stein’s theorem. :

In general, it is clear that instead of E;, we can use an extension ope-
rator E; :&(I") —» &(R"), where I'" =T is some domain with boundary
containing the origin. We first find E in the case k = 2. Let n:IR"—> R
be the mapping given by

X ol ) el et g )
Let K be the compact subset of IR" defined by
Mitl =y =M,

and I'' = n(K). Clearly I'" = I". There is an extension operator S :§(K) — &(IR")
as above. Let n* : &(I"") » &(K) be the composition n*(F) = Feon, Fe &)
Let A4 :&(R") — &(R") be the operator defined by taking the even part of
f(t,y) € &(R") with respect to each coordinate t,, By Theorem 1.1, there
exists a continuous linear mapping L : Im A — &(IR") such that L(f)en = f
for all felm A We can take Ej = Lo Ao Son*

Repeating this process m times, we find E in the case k = 2". From
these cases, our result follows for any positive integer k, but with less
precise estimates on the seminorms of the extension when k # 2™ for some
m. We refer to [1] for the precise estimates.

Remark 3.8. In each of Theorems 3.5 and 3.7 we can in fact choose an
extension operator which simultaneously extends all classes of differen-
tiability, though with a certain loss of differentiability depending on the
singularities of the closed set X [1]. The loss of differentiability in extending
from a Lipschitz domain of class Lip1/k, for example, is exactly that
indicated by the estimates of Theorem 3.7.

Remark 3.9. M. Tidten [34] has proved there does not exist an extension
operator for the closed subset of IR* defined by

0y S er i boi=0).

s

We have already observed that if X is a closed subset of IR", then there
exists an extension operator E :&(X)— &(R" if and only if the ideal
F(X;R) in &(R") admits a complementary closed linear subspace. This
suggests some questions concerning the linear structure of ideals of diffe-
rentiable functions. Let U be an open subset of IR* and I a closed ideal in
&(U).

(3.10.1) Does I admit a complementary closed linear subspace?
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(3.10.2) Suppose I is generated by ¢,,...,¢,. Do there exist continuous
linear operators L,:1 » &(U), 1 i <p, such that any g€l can be written
= Zf, ¢:L(9)?

These questions arise also in the solution of linear equations in &(U):

gy oo ¢1p 5 9,

¢ql ¢qp fp

A g x p matrix ¢ = (¢,) of € functions in U determines an &(U)-linear
mapping ¢ : &(U) —+6(U)‘1 Questions (3.10.1) and (3.10.2) of course can
be stated for submodules of £(U)? and deal, respectively, with the existence
of a projection onto Im ¢, and with the linear structure of the solution
space of the system of equations.

The solution of linear equations is obviously important in various
spaces of functions. Let us recall two classical criteria for solution.

3.11.1) If ¢, » g; are convergent power series in several variables (over
IR or C say), then there exists a convergent power series solution f; if and
only if there exists a formal power series solution. This follows from ele-
mentary properties of the completion of a local ring.

(3.11.2) Suppose the ¢,; are real analytic functions in U and g, € &(U). Mal-
grange’s division theorem [19] (cf [21, VL.1.1'], [36, VI.1.5]) asserts there
exists a solution f;€&(U) if and only if there exists a formal solution at
every point of U. Equivalently, Im ¢ is closed, so we can ask the questions
(3.10.1) and (3.10.2).

General results on the linear structure of the solution space are quite
recent, even in analytic cases. The answer to both questions concerning
the submodule Im ¢ is “yes” for:

(3.12.1) Entire functions (defined over R or C) when the ¢, are polyno-
mials. This is a beantiful elementary theorem of Djakov and Mityagin [7].
It can be proved by an explicit decomposition of the monomials in the Taylor
series expansions.

(3.12.2) Convergent power series (defined over R or C). This is Malgrange’s
privileged neighborhood theorem [22]. In this case we must be more
precise about the topological structure. We can ask whether linear splittings
in (3.10.1) and (3.10.2) induce continuous operators in the space of power
series which converge in a given polydisk. Malgrange’s theorem asserts
there exist linear splittings such that the polydisks for which this is true
form a fundamental system of neighborhoods of the origin.
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The answer to question (3.10.2) is “yes” for submodules of &(U)Y
generated by g-tuples of analytic functions:

Theorem 3.13 [4). Let ¢ = (¢;) be a g x p matrix of real analytic
functions in U. Then the surjection ;

¢ :8U)Y - 1Imo¢
splits.

Of course when p = 1 this follows from the open mapping theorem.
Theorem 3.13 is a consequence of Oka’s coherence theorem and results
of D. Vogt and M. J. Wagner [37], [38], [39] and M. Tidten [34] concer-
ning the splitting of exact sequences of nuclear Fréchet spaces. The latter
results also provide an approach to question (3.10.1); in particular another
approach to the extension problem (cf. [4], [34]).

Remark 3.14. Even for ideals generated by analytic functions, the answer
to question (3.10.1) is sometimes “no”. For example, the ideal I generated
by x2 + y? in &(IR?) does not split. This follows from Grothendieck’s example
2.11 since #(0;IR?) = I and &(R?)/I is of -infinite dimension.

Conjecture 3.15. If X is a closed subanalytic subset of U, then the ideal
F(X;U) in &U) consisting of all functions which vanish on X splits.

The space of restrictions to X of €% functions in U has a natural Fréchet
algebra structure as the quotient &(U)/#(X; U). The exact sequence

0- #(X;U)— 8(U) - &U)F(X;U) >0

shows that the extension problem for the space of restrictions to X of €<
functions is equivalent to the splitting problem for #(X; U). This problem
is interesting when the space of Whitney fields is too large to represent a
reasonable class of “smooth” functions on X; for example when X is a
proper closed analytic subset of U.

In the important case that X is a coherent analytic subset of U (cf.
Section 6), #(X; U) is (locally) generated by finitely many analytic functions.
In this case Conjecture 3.15 follows from the difficult Conjecture 1.4.
Special cases are treated in [2] and [4]. For example, if X is coherent and
either X has isolated singularities or dim X <2, then #(X;U) splits.

Question (3.10.1) is also interesting in &™(U), meIN. Whitney’s theo-
rem 2.3 shows that for any closed subset X of U, the ideal in &™(U) of
functions which are m-flat on X splits. Merrien [25] used a construction
of Whitney [41] to prove that every closed ideal I in &™(R) splits.
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Conjecture 3.16. Every closed ideal in &™(U) splits.

4. Composition of differentiable mappings.

If N is a ¢ manifold, we denote by &(N) the Fréchet algebra of €°
functions on N, with the €® topology.

Let N, P be ¢* manifolds, and ¢ : N - P a ¥ mapping. There are
two natural questions concerning the composition of ¢ with differentiable
functions on P.

(4.1.1) If fe&(N) is constant on the fibers of ¢, does there exist g€ &(P)
such that f =gec¢?

(412) If fe&(N) is formally a composition with ¢ (cf. Section 1), does
there exist g€ &(P) such that f =geo¢?

These questions, of course, have interesting analogues in various spaces
of functions. For holomorphic functions, there is the following result.

Proposition 4.2. Let N, P be complex analytic manifolds of dimensions n, p
respectively, n > p. Suppose P is connected. Let ¢ : N — P be a proper
holomorphic mapping such that the set N' of regular points of ¢ is dense in
N. Then ¢ is surjective, and every function g:P — C such that geo¢ is
holomorphic on N, is holomorphic on P.

Proof. Since ¢ is proper, then ¢(N) is a closed analytic subset of P, by
Remmert’s proper mapping theorem [ 29, VIL2, Theorem 2 ]. Since
#(N) is the closure of the open set ¢(N'), then the dimension of @(N) is p
at each of its points. Therefore ¢(N) is open and closed in P, so that
#(N) = P.

Now g is holomorphic in @(N'), since ¢|N' is a submersion. But g
is continuous on P, because ¢ is proper. At each of its points, the dimension
of the analytic set P — ¢(N’) is less than p. Therefore g is holomorphic
on P.

The real analytic and € analogues of Proposition 4.2 are false. For
example, let ¢ :IR — R be the proper mapping ¢(x) = x>. Then f(x)=x
is constant on the fibers of ¢, but is not a ¥ composition with ¢. Never-
theless, question (4.1.1) does have a positive answer for certain classes of
= functions (cf. Corollary 4.5, Remark 4.6, and [28]), one of which will
play an important part in Section 5.

The main result of this section, Glaeser’s composition theorem [9],
gives a positive answer to question (4.1.2) in the case that ¢ is a real analytic
mapping satisfying the hypothesis of Proposition 4.2.

Let U, V be open subsets of R", R? respectively (n > p). A €% mapping
¢ : U - V defines a homomorphism of Fréchet algebras ¢* : &(V) — &(U);
d*(g) = g ¢ for all ge&(V).
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Theorem 4.3. Suppose ¢ is a semiproper analytic mapping. If the set
of regular points of ¢ is dense in U, then the subalgebra ¢*&(V) is closed in
&(U).

“Semiproper” means that @¢(U) is closed in ¥, and for every compact
subset L of ¢(U), there exists a compact subset K of U such that L = ¢(K).
For example, a projection of IR" onto a linear subspace is semiproper but
not proper.

Remark 4.4. In the context of Theorem 4.3, there exists, moreover, a con-
tinuous linear operator ¢*&(V)— &(V) which is a section for the surjec-
tion &(V) - ¢*&(V). This follows from Theorem 3.5.

Corollary 4.5 [9] Let 0 ,...,0, be the elementary symmetric polynomials
in n variables, and o = (0,,...,0,). If fe&(R") is symmetric in its n
variables, then there exists g€ &(R") such that f = go°o.

Proof. The mapping o :IR" = IR" satisfies the hypotheses of Theorem 4.3.
If fe&(R"), then f can be approximated in the topology of £(R") by a
sequence of polynomials; if f is symmetric, then by averaging over the
symmetric group, we can take the polynomials symmetric too. Therefore,
if f is symmetric, then f € ¢*&(R"); hence f €5*&(R") by Theorem 4.3.

Remark 4.6. G. W. Schwarz has extended Corollary 4.5 to functions
invariant under any linear action of a compact Lie group [31]. Let G be a
compact Lie group acting linearly on IR". Let 2(IR"C (respectively &(IR")°)
be the algebra of G-invariant polynomial (respectively €®) functions on IR".
The algebra 2(IR")° is finitely generated, by a classical theorem of Hilbert.
Let p,,...,p, be a set of generators, and put p = (p,,...,p,). Schwarz’s
theorem asserts #(R")® = p*&(IR). Mather [24] has proved the analogue of
Remark 4.4 for Schwarz’s theorem (cf. also [4]).

In order to prove Theorem 4.3, we will first reformulate it more con-
cretely in terms of formal composition (cf. (4.1.2)).

Let ae U, a = (a,, ...,a,). We denote by #_ the IR-algebra of formal
Taylor series at a of elements of #(U). Then #, identifies with the ring of
formal power series R[[x, —a,,...,x, —a,]], by the lemma of E. Borel
(Remark 2.10). Let f — j: be the projection &(U) —» #, which associates
to each function its formal Taylor series at a.

If b = ¢(a), then ¢ =(4,,...,¢,) induces a homomorphism ¢* : F, > #,
as follows: if G = ) G*y — b*/s!, then ¢2(G) is obtained by substituting

2e NP
for each y; in G, the formal Taylor series ¢, , of ¢, at a; ie. $*(G) = G §,.
Let_(qb"‘d"(V))A be the subalgebra of &(U) of functions which are “for-
mally” in ¢*&(V); ie. function§ S €&(U) such that for each be ¢(U),
there exists G,€ #, such that f = @§*(G,) for all ae ¢ '(b).
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In order to prove Theorem 4.3, we will show d)"‘d’(}_/_) < (p*E(V)?
and ¢*&(V) = (¢p*&(V))*. Before beginning the proof, we give three exam-
ples concerning the necessity of the hypotheses.

Example 4.7. Let ¢ :IR— R be the mapping defined by ¢(x) = e '*" if
x #0, ¢(0) = 0. Then ¢*&(R) is the set of even functions which are flat
at 0. Let f(x)=e V27 if x#0, f(0)=0. Then fed*&(R), but f =
= ¢'2¢ % E(R).

Example 4.8. Let U be a non-empty proper open subset of. IR", and let
¢ : U=> IR" be the inclusion mapping (so that ¢(U) is not close_d in IR"). Then
¢*&(R" is the space of restrictions to U of functions in &(R"). But

d*&(R") = &(U) # ¢*E(R").

Example 49. Let U=(-3,-2u(—-1L1)cR and V=(-11c IR.
Define ¢ :U—-V by ¢|(—3,—2):x—x+2 and ¢|(— 11> xc2.
Then L = [— 1/2,1/2] = V is not the image of a compact subset K of U.
Clearly f € (¢*&(V))" if and only if f|(— 1,1) is even. On the otl.ler.hand,
if fe¢*&€V), then f and all its derivatives extend by continuity to
a= —2€U, giving a condition of formal composition simultaneously at
the points a = — 2, @ = 0. Therefore ¢p*&(V) # (¢*E(V)".

For the proof of Glaeser’s theorem, which occupies the rest of'the
section, we will need two results which we haven’t yet proved: Lojasiewicz’s
theorem on division by an analytic function, and the Lojasiewicz inequality
[16]. We will prove these theorems in Section 6, using resolution of singu-

larities.

Proof of Theorem 4.3. Let Fe¢*&(V). We have to find a ¥~ Whitney
field G on ¢(U) such that Ge¢ = F.

Step 1. There exists a unique jet GeJ(@(U)) such that Go¢p =F. (In
particular, ¢*&(V) <= (¢*&(V))*). Moreover, (DR'G)Od)EJ(U) for all % €INP.
Let aeU and b = ¢(a). We denote by m, the maximal ideal of Z.

Lemma 4.10. There exists a positive integer r such that for all g€ N,
(@3)" (i) <= iy,

In particular, the homomorphism ¢3: is injective.
Proof. Since ¢ is analytic and the set of regular points of ¢ is dense in U,
there exists a Jacobian determinant, say
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p

such that 3« # 0. Let r be the smallest integer s such that 8« ¢ .

_ We argue by induction on gq. The assertion is true when g = 1 since
or is a local homomorphism. Suppose g > 1. Let S€#, such that
Sod ems.

We differentiate S e ¢, with respect to x,, ..., X,:
pharige Yor aN( g
_ua_emqr-l, L<i<mn
.-; ( o ¢a) 5 o j=p
By Cramer’s rule,
y g8 . e .
5«'<ay. °¢a>emz"‘, fegsp,
Since 5a¢rﬁ;, we have
S e ¢
b ol L 1<i=<p.

By induction, dS/dy,emi™ ', 1 & p. Clearly S(0) = 0, so that Semf.

We will now find G. Suppose x is another point of U such that
¢(x) = b. Let m(‘" o be the ideal of functions in &(U) which are (s-1)-flat
at a, x. Clearly m?  is closed and of finite real codimension. It follows
that ¢*&(V) + m{) , is closed in &(U), and therefore that F belongs to this
subspace. Hence there exists S € #, such that

If s, s >qr, then S, — S, em{, by Lemma 4.10. Therefore the sequence
S,,8,,... converges in #, (with its m,-adic topology) to an element

G¥b
G % Z 2

LeIN?

(v — bt
2!

such that G,°¢, = F,, G,o ¢ =F

x x*
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By Lemma 4. 10, G, is defined in a unique way by the single condition
o¢ = F hence does not depend on the point x€ ¢~ '(b). Clearly the
G define a fleld of formal series G on ¢(U) such that Ge¢ = F.

We will now show (D*G) o ¢ € &U), for all £€IN?. (This implies each
mapping G* : ¢(U) = R is continuous, since ¢ is semiproper.) By hypo-
thesis, Go ¢ = Fe&(U). Proceeding by induction on |2, it is enough to
prove the following lemma.

Lemma 4.11. Let H a field of formal series on ¢(U) such that H o ¢ € &(U).
Then (0H/0y,)c¢p€&(U), 1 <i<p.
Proof. Let y,=(0H/dy,)° ¢. By hypothesis, there exists { € &(U) such that

Hyuio 0.5 55

for all xe U.
Let ae U. There exists a Jacobian determinant, say

=D i, DD e

# 0 in a neighborhood of a. Differentiating the preceding equation with
respect to X, ..., X, and applying Cramer’s rule to the resulting system
of linear equations in the unknowns 7, = (0H,,/0y))° d)x, we have
6 g, —é for all xe U, where ¢, EJ(U) In other words, ¢, belongs
formally to the ideal generated by the analytic function 6 in &(U). Therefore
& =6y, where y,e&(U), by Theorem 6.14. In the neighborhood of a,
we necessarily have y, = y}, so that y, is ¢ in the neighborhood of a, and
hence on U.

Step 2. G is a Whitney field of class €% on ¢(U)

Our assertion is a consequence of the following lemma, which we
will prove using the Lojasiewicz inequality. Glaeser (cf. [9], [36, IX.1])
proves G is a ¥ Whitney field by an analytic argument based on Lemma 4.11;
we will use a geometric argument and Proposition 2.16 instead.

Lemma 4.12. Let K be a compact subset of U, and K' a compact neighbor-
hood of K in U. Then there exists C > 0 and an integer o > 1 such that for
all a, xe K, there exists a, x' € K' such that ¢(a’) = ¢(x') and

Ip(a) — $(x)I'* 2 Clla — a'| + |x — X).

Example 4.13. This example shows the reasons leading to the use of
Lemma 4.12. Let U=(—-3, —1)u (1, 3) and V=(—1, 1). Define
¢:U—->V by ¢|(—3,-1): x»—»—(x+2)2 and ¢|(1,3):x— (x —2)~
Then ¢ satisfies the hypotheses of Theorem 4.3. Positive and negative
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values near 0 in V have distant inverse images a, x; the points a' = 2,
x' = — 2 are the intermediary points involved.

Proof of Lerama 4.12. Let ® : U x U — R be the analytic function ¢(a, x) =
= |¢(a) — ¢(x)>. We will use the distance d((a,x), (@,x)) =la—d|+
+]x—x|] ou Ux U. By the Lojasiewicz inequality (Corollary 6.15)
applied to the function ® on the compact subset K x K of U x U, there
exists C' > 0 and an integer a > 1 such that

|$(a) — Pp(x)|1* > C' d((a, x), ®~(0)
for all (a,x)e K x K. We consider two cases.

Case 1. If d((a, x), ® 1(0)) = d((a, x),®'(0) n (K" x K')), then there exists
(d,x)e®d 10)n (K x K’) such that

d((a, x), ® 1(0)) = |la — a'| + Ix — x|
Case 2. Otherwise, let d =d(K x K, U x U — (K’ x K')). Then

d

TR Ry et el

d((a, x),® 1(0) > d >

where (a, x’) is any point of ®~'(0) n (K’ x K').
Put

fhvs ks cd .
= dnt (C * diam (K’ % K’))’

then the condition of the lemma is satisfied.

We can now complete the proof of Glaeser’s theorem. By Step 1, G
is #* in the image of the set of regular points of ¢, and each D*G is
continuous in ¢(U). Let X = U be the set of critical points of ¢. As in
Proposition 2.16, it will be enough to show that ¢(U) satisfies the following
condition: For every compact subset L of ¢(U), there exists a constant c
and an integer o > 1 such that any two points b, ye L can be joined by a
rectifiable arc of length > c|b — y|'’, which lies in ¢(U) — ¢(X) except
perhaps for finitely many points.

Lemma 4.14. If ¢ is a rectifiable arc in U, then

09,
'—x‘j— (%)

I¢p(0)l < p/nlcl - sup :

X€O
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Proof. Let {x°x!,...,x*} be a partition of g, and let y' = ¢(x/), 0 =i =<k
Then

k k ki
Y -y l=Y g — et < Y Y 1) — oY <
=1 igd

=1 =

00,
i (x)

J

< pJnlal - sup

X€EO

(cf. the proof of Proposition 2.13). Our assertion follows by passage to
the limit.

Let L be a compact subset of ¢(U). Let K be a compact subset of U
such that ¢(K) = L, and K’ a compact neighborhood of K in U.

Lemma 4.15. There exists a constant ¢, such that any two points a, x€ K’
can be joined by a polygonal arc of length < c, |a — x| in U, which intersects
the singular set X of ¢ in at most finitely many points.

Proof. X is the zero set of a finite system of analytic functions ¥, 1 <i <k,
in U. Working locally, we can assume a, x lie in an open ball V < U.
Let A be the perpendicular bisector of the line segment ax (A is an affine
hyperplane in R"). If Ae A n V, then the segments ai, Ax lie in X if and
only if

Jl Yi(1 — t)a + tA)dt = 0,

Jl YAl — x + tA)dt =0,
0

1 <i<k Since these integrals are analytic in 4, they define a proper
closed analytic subset of A N V. The result follows because any line segment
which does not lie in X intersects X in at most finitely many points. (This
lemma also follows from a theorem of Kropman and Brown [17, Section
22)).

Given b, y€ L, choose a, x € K such that ¢(a) = b, ¢(x) = y. We apply
Lemma 4.12 to K = K’; let d/, x' be points of K' associated to a, x by the
lemma. Let o,, ¢, be polygonal arcs of length <c¢ |a —a| =c |x — X/
respectively, which join a, @' and x, x' respectively, and intersect X in at
most finitely many points. Then o = ¢(g,) U ¢(d,) is a rectifiable arc
joining b, y in ¢(U), which intersects ¢(X) in at most finitely many points.

We have |o| < |¢(a,) + |¢(0,) <c,(o,l + |0,]), where c, is the su-
premum of the pﬁ I(0¢,/0x)) ()l over a certain compact neighborhood of
K' in U, by Lemma 4.14. Hence
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ol < ¢ clla —al +1x — x1) = —=* @) — P(x)'* =
(e
L 0 Ay CRTR Y
C | Y

by Lemma 4.12. This completes the proof.

5. The Malgrange — Mather division theorem.

There are two fundamental theorems concerning division of differen-
tiable functions: Malgrange’s theorem on ideals generated by finitely many
analytic functions, and the Malgrange-Mather division theorem. In this
section, we will present a recent proof of the latter due to P. Milman [26],
which pinpoints the close relationship between division problems and the
other main topics of this article. Stein’s extension theorem (Theorem 8%
with k = 1) is the only non-elementary result needed for Milman’s proof;
however, we will give a sémewhat shorter version which also uses Glaeser’s
theorem 4.3 and its Cetellary 4.5.

Theorem 5.1. Suppose that U is an open subset of R",and u,, ... ,u, € &( V).
Let

p(t, x) = t7 + EP: uf) e
(=4

Then there exists a continuous linear mapping
&R x U) = &R x U) x (EUY)
S = @prpsThy)
such that for all fe&(R x U),
S =pa;+r,

where

P
(L, x) = ) r; /(%) T

J

In fact the above spaces are modules over the ring &(U), and the mapping is
LI N-linear
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The local existence of a quotient and remainder was first proved by
Malgrange [20], without regard to continuous linear dependence on the
function f. The stronger result was established by Mather [23] Different
proofs were subsequently given by kojasiewicz [18] and Nirenberg [30].
G. Lassalle [14] then proved a division theorem for ¥™ functions (with a
certain loss of differentiability of the quotient and remainder).

In order to prove Theorem 5.1, it will be enough to prove the following
generic division theorem.

Theorem 5.2. Let P be the generic polynomial

p .
Bl Bt + 5 4P,

i=1

where /. = (/y,...,%,). If U is an open subset of R then there exists a
continuous &(U)-linear mapping

E(R x U) = &R P x U) x (E(RP x U))

i (OB, - SanRib)

such that for all f€é&(R x U),

£(t,%) = P(t, ) Q,(t, 7, x) + R(t, 4, %),
where

p .
Rt A x) = .zl Ry, syt
Y

To see that theorem 5.1 follows from Theorem 5.2, we let u = (u,, ..., up),
so that p(t, x) = P(t,u(x)). Then '

p .
Flex) =" pltix) g (6, 8+ 3 r e e,
i=1

where g (t, x) = Q (¢, u(x), x) and r; (x) = R; S(u(x), x).

We will, in fact, prove a result which is more precise than Theorem 5.2,
and which is formulated with a view to proving the division theorem by
induction on the degree of the generic polynomial.

We consider the generic polynomial

p .
b T D reg i
&
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for any nonnegative integer p (we set P%t, 4) = 1). Then for each positive
integer p, we can define a mapping

/PR x IRP™! > |RP
by the following polynomial identity:
P, 2%(s, p)) = (¢t — 5) PP (¢, p),

where (s, u)€ R x RP~!; ie. the mapping 47 is defined by

A=, — 8,

Ay = — S, 2=j=p-1,

/'.p ==, S
Theorem 5.3 [26]. Suppose U is an open subset of IR" Then for each
p€IN, there exists a continuous &(U) — linear mapping

ER x U) » ER'™? x U) x (£(R? x U))P

F 900 R . R )
such that
(1) for all fe&(R x U),
S, x) = PP, 2) Q4(t, 4, x) + Ri(t, 4, x),

where

p .
RE(t, A, x) = .21 P
JE

(2) for every positive integer p, and all f € &(R x U),

Q;— 1(t’ H, X) ks Q_’;‘— l(s’ H, x) !
o= 8

B, A¥(s, ), X) =

We will prove Theorem 5.3 using Theorem 5.4 below. The equation
PP(1, ) = 0 defines a nonsingular closed algebraic subset X = X? of R'*?.
In fact X is the graph of the function
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p=l Y
A==t =3 R
i=1

so that the projection (¢, 4)— (8, 4,,...,4,_,) of R'*? onto IRP restricts to
a global coordinate system ¢ : X — IRP on X.

Let 7 :IR'*? - IRP be the canonical projection n(t,A) = A We denote
by €(X x U) the closed subspace of &(X x U) consisting of all functions
which are constant on the fibers #7'(4) x x of © x id,,.

Theorem 5.4. -There exists a continuous &(U)-linear mapping
J:& (X x U)- &R x U)
such that if he& (X x U), then
(Jh) (4, x) = hit, 4, x)
for all (t,A)€ X and x€ U.

We will first prove Theorem 5.3 assuming the result of Theorem 5.4,
and prove Theorem 5.4 afterwards. Since the variable x = (x,...,x,) in
U will play no part in the proof of either theorem, we will simplify our
notation by neglecting U and x. It will be clear that the mappings given

in both theorems are &(U)-linear.

Proof of Theorem 5.3. We will first prove the theorem in the cases p =0
and p = 1, and then argue by induction on p.

When p = 0, the desired result clearly holds with Q?(t, A) = f(¢t) and
R? = 0. Suppose p = 1, so that our generic polynomial is P'(t, 1) =t + 4,.
We have

1 6f
f(t)—f(—il)=(t+ll)J o (st —(1 —s)4,)ds
0

(this is just Hadamard’s formula). Hence we can define

1
Q}(t, A) = f %{ (st — (1 —s)4,)ds

(1]
R}(t’ j') o Ri,f('{) T f(_ Al)
Then since Al(s,u) = — s, we have

SO — 1) _ 0%m— 0%k |

ToaiS LS

03e, A'(s, W) =
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Now assume the theorem has been proved for 0,1,...,p — 1 (p = 2).
We denote points in IR?, IR”~! and IR?~? respectively by

=y s iy y)s
Vismidvistis s ise)
and write
Ms, p) = AP(s, p), (s, u)€IR x IRP™ L
ur,v) = 227N (r,v), (r,v)€R x IRP =2

Then

PP(t, s, u(r, v))) = (t — ) PP~ (¢, pulr, ) = (¢ — 5) (t — 1) PP2(t, ),

so that A(s, u(r, v)) is symmetric in (s, r).
By the induction hypothesis,

ke Sy = P76 ) Q57 e ) + RETN( ) =
= Pr, igs, pp Ltz O[Sk
Hi=1S
p s
* Z ij(syﬂ)tp_J,
ji=1
where R, , ..., R, are given by

p :
Y Ryds, P~ = PP7le, ) Q5 (s, 1) + RETI(L ).
j=1

We will show each R”(s, u(r, v)) is symmetric in (s,r). By (5.3.1) and
the symmetry of A(s, u(r, v)), it is enough to show

Q;- l(t’ ﬂ(rs V)) o Q?_ 1(39 Il(", V))

ty—4S

is symmetric in (s,7). But the latter equals
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s t—7r ST

1 (Q;—Z(t, V=@ My @ sy - 00, v)) A

5=y 07 e, Wi e — 1O (5, W (0~ SEQY W)
t—r)t—s)(—1r ’

which is clearly symmetric in (s, 7).
The mapping

(8, Bys veesBpeg) = (54508 p0)s o0 s 4D (S 1)) =
i (S9 Ky — S Ky — HyS, "'aﬂp—l L% “p—zs)

of R x IRPF™! to IRP is an invertible polynomial mapping. Let 7 be its
inverse. For each j=1,...,p, let h; one¢ed(X)

We will show that each h; € &, (X ). Consider two points (s, 4), (r, 4) €
s # r. Then there exists v€IRP~? such that

PP(t,2) = (t — 5)(t — 1) PP" %, v),

so that

A= Ms, plr,v)) = Mr, us, v)).
Hence

n oo @s, 4) = (s, ulr,v)),

n oo @r,A) = (r, us,v),
and we have

hyds, A) = Ry(s, plr,)) = Ry (r, pls, v)) = hy(r, 2).

This shows that h; € & (X).

Let R, = J(h; ) 1 <j <p, where J:& (X)— &(RP) is the mapping
given by Theorem 5 4. For each j, the mapping f — Rf, of &(R) into &(IR?)
is continuous and linear.

We will finally show that f(t) — R} (A) P~ J is divisible by PZ(t, A).
By Hadamard’s lemma, it is enough to show this function vanishes on the
zero set of P(t,4). If P(t,4) = 0, then A = A(t, y) for some p€RP™!, so that

R_},,f(}‘) = (‘Ihjf) (A, p) = hjf(t, At, p)



178 Edward Bierstone

since (t, At, ) € X; ie. RP(4) = R;/(t,p). Hence
p N
f0 - ¥ Ry = 10 - ¥ R 6w =0,
J=1 j=1

by (5.3.1). In other words, f(t) — Zf_, Rff(l) t? 4 vanishes on the zero set
of PP(t, A).
We now have

p .
f(e) = PP(t, ) Q(t, A) + j; RN 4,

where

SO -3 Ry
p £8] j=1 :

The mapping f — QF of &(R) to E(R'™*P) is clearly‘ continuous and linear.
Moreover if A = A(s, u), we obtain

5‘_ l(tv ﬂ) T Ql;‘_ .l(s’ #) ‘
UE=2S G

Q7(t, Als, ) =

from (5.3.1). This completes the proof of Theorem 5.3, assuming Theorem 5.4.

Proof of Theorem 5.4. The mapping | X is proper, and is a diffeomorphism
in some neighborhood of any point (¢, )€ X such that (OP/ot) (¢, A) # 0.
If p is odd, then n(X) = IR? since for each A€ IR?, the polynomial P(t, 1) =
= PP(t, A) has at least one real root. On the other hand, if p is even, then
n(X)S RP. In this case, IRP — n(X) is convex since P is linear in 4, and
AelR? — n(X) if and only if P(t,4) >0 for all telR. Therefore by Stein’s
extension theorem (Theorem 3.7 with k = 1), it will be enough to show
that for all f €& (X), there exists g€ &(n(X)) such that f = (n| X)* (9).

Our proof is by induction on p. By Glaeser’s theorem 4318 itigis
enough to show that if f €&, (X), then f is formally a composition with
n| X over every point A€ n(X).

Let g(w), 1 <i<p, be the elementary symmetric polynomials in
w=(w,...,w,) Put

g0 0 5 I)Pap).

Then a(lRP) = n(X) is the set of A such that P(t, /) has p real roots. Since
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[T=w)=t" — o, + 0,072 + oo+ (= 1P (),
i= :

there are mappings ¢, : IR? = X defined by ¢(w) = (w,,0(w)), 1 =i <p.

We can work with any one of the mappings ¢,, We have ¢ = ne¢,.
If f € & (X), then ¢?(f) is symmetric in (w,, ..., w,). Hence by Corollary 4.5,
there exists h € &(c(R") such that

¢F(f) = o*(h) = ¢F((m| X)* (h).

In particular, f is formally a composition with | X at the fiber over every
point 4 such that P(t, 4) has p real roots.

On the other hand, we can use the induction assumption to show f
is formally a composition with n| X over every other point of n(X). Consider
(t°, A% € R x IRP such that t° is a real root of P(t, A° of multiplicity k < p.
Then

Ple, 4% =t — )PP E e nl

for some n°€RP~* Therefore P?~X1t%n°% # 0.
We define a mapping 4 : IR* x IR ~* — IR? by the following polynomial
identity:

PP(t, ME, M) = PHe, &) PP (t,m),

where (§,n)€R* x IRP"* Then 4 is a local diffcomorphism at all points
(¢,n) where the resultant of P, &) and P? %, n) (as polynomials in 1) is
nonzero, because this resultant is the Jacobian determinant DA(S, n)/D(E, ).
(We recall that the resultant of two polynomials is nonzero if and only if
the polynomials have no common factors).

Define °elR* by PXt, &% = (t —t,)*. Then A° = A(£%n°), and the
mappings A¢&,n), (¢, A&, n)) are diffeomorphisms in some neighborhoods of
the points (£%n°), (% ¢%n°) respectively. Since PP~Xt%n°) # 0, then
PP Xt,n) # 0 in a neighborhood of (¢ 1°). If

PP(t, A&, M) = P, ) PP Mt m) =0,

it follows that P, &) = 0. Hence the mapping (t, ¢, n) — (¢, A&, 7)) induces
a commutative diagram

X* x RP K X?
7 x id nP
l l
RESRE R, -t iR e,
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where the upper and lower arrows are diffeomorphisms in some neighbor-
hoods of the points (% &% n°) and (£° n°) respectively. By the induction
hypothesis on p, it follows that f is formally a composition with n| X over i

Remark 5.5. Theorem 5.4 suggests two interesting problems. Let f(x) =
= f(xl,.. ,x,) and F(x,u) = F(x,...,x u,,...,up) be polynomials such
that F is a “miniversal unfolding” of f ie. F(x,0) = f(x), and

oF OF
-ér(x, 0} . & il (x,0)

1 4

1,

form a basis for the real vector space IR[[x]]/(0f/0x,). (Here R[[x]] =
= R[[x,, ..., x,]] denotes the ring of formal power series in the variables
Xisa and (6f/6x is the ideal generated by df/0x,, 1 Si <n).

Let I(F) be the closed algebraic subset of IR**? defined by

oF
Ox,

=0; 1<i<n

Then X (F) is nonsingular and of dimension p. Let =, :Z (F) = IR” be the
restriction of the projection m(x,u) = u. We ask the following questions.

(5.5.1) If ge&(Z(F)) is constant on the fibers of =m,, does there exist
he &(R?) such that g = hem,?

(5.5.2) Does every ¥ vector field in IR? which is tangent to the set of
critical values of 7, lift to a ¥* vector field in X (F)?

Theorem 5.4 shows the answer to (5.5.1) is “yes” for the “simple singu-
larities” of type A4,. P. Milman has shown it is also “yes” for D,.

We can show that the answer to (5.5.2) is “yes” for all the simple singu-
larities.

6. Resolution of singularities.

Some ideas from analytic geometry which play an important part in
local differential analysis are introduced in this final section. We will
show how Hironaka’s powerful desingularization theorems can be used to
prove the division theorem and inequality of Lojasiewicz, as well as the
strong regularity property (2.16.1) for subanalytic sets.

Let N be a real analytic manifold.

Definition 6.1. A subset X of N is analytic if every point of X has an open

neighborhood U such that X n U is the set of common zeros of a finite

family of analytic functions in U.
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Let O (respectively &) be the sheaf of germs of analytic (respectively
™) functions in N. If X is a closed analytic subset of N, we denote by
#, the sheaf of germs of analytic functions vanishing on X. Then Sy is a
sheaf of ideals in 0.

Definition 6.2. Let X be a closed analytic subset of N, and ae X. We
say that X is coherent at a if there exists an open neighborhood U of g,
and a finite number of analytic functions f,, ..., f, in U, which vanish on
X and have the following property: for any be U, the germs of f,..., f,
at b generate S, , (the stalk of Sy at b).

Contrary to the complex analytic case, this property is not satisfied
by all real analytic sets.

Examples * (6.3.1). “Whitney’s umbrella” X = {x2 — x,x2 = 0} in IR® is not
coherent at 0, since X intersects the halfspace {x, <O} in the line
(%, =X =

(6.3.2) The closed analytic subset X of R® defined by x3 — x?x3 =0 is

not coherent at 0, since x3 — xjxj does not generate £, , at nonzero

points b of the x,-axis.

X3 X3

X2

2 2y
x5 —x1x;=0 X3 Hcdx3 =0

We say X is coherent if it is coherent at each of its points. Then X is
coherent if and only if .#, is a coherent sheaf of ideals; i.e. for each point
of N, there is an open neighborhood U and an exact sequence
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The following theorem indicates the importance of coherence from the
point of view of ideals of differentiable functions.

Theorem 6.4 [21, VI.3.10], [36, VI.4.2]. Let ¢, be the sheaf of germs of
€> functions vanishing on X. Then X is coherent at a if and only if

Definition 6.5. Let N be a real analytic manifold, and X a closed analytic
subset of N. We say that X is smooth at a€ X if there is an open neigh-
borhood U of a such that X n U is an analytic submanifold of U.

Real analytic sets may exhibit very irregular behavior (cf. [6], [5]).
For example, there are real analytic sets X such that any analytic set
containing the set of nonsmooth points of X contains the whole of X.
To avoid such irregularities, we restrict our attention to real analytic sets
which can be realized as the zero sets of coherent sheaves of ideals. By
Definition 6.1, any real analytic set has this property locally.

For simplicity, we will restrict our attention to subsets of IR™

Definition 6.6. [29, Chapter V]. Let U be an open subset of IR* (which
we regard as a subset of C"). A closed subset X of U is called ¥-analytic
if there exists an open subset V of C" and a complex analytic subset Z of
¥, such that X = Z i R",

Proposition 6.7. A subset X of U is €-analytic if and only if X is the
set of zeros of a coherent sheaf of ideals.

A coherent analytic set is, of course, C-analytic. Examples (6.3.1) and
(6.3.2) show that the converse is not true in general.

Proposition 6.8. If X is C-analytic in U, then there is a complex analytic
subset X' of a neighborhood of U in C", which satisfies the following pro-
perty: for any complex analytic subset Z of a neighborhood of U in C"
such that X < Z, there is a neighborhood V of U in C* with X' "V <« Zn V.

Definition 6.9. Let X be C-analytic in U. We define the singular set
Sing X of X as the intersection with X of the set of nonsmooth points of
X' (where X' is given by Proposition 6.8).

Sing X is a C-analytic subset of X. Note that X may be smooth at
some of its singular points: in Example (6.3.1), Sing X is the x,-axis; in
Example (6.3.2), Sing X is the union of the x - and x,-axes, although X is
smooth at all nonzero points of the x,-axis. If X is coherent, however,
then Sing X coincides with the set of nonsmooth points of X.
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Let U be an open subset of IR”, and X a C-analytic subset of U. We
can define a sequence of subsets of X by X© = X and X" = Sing X,
i=0,1,2,.... Then the sequence {X“} is a smooth analytic filtration of
X in the sense that:
1) X© =X and X“*V.s a C-analytic subset of X; .
) (X% is finite:
(3) X9 — X@*D is smooth everywhere.

The following two theorems are the main results of Hironaka’s great
paper [11], for ‘real analytic sets (see also [12], [13, Section 5]). The
notion of blowing-up involved in these theorems will be discussed below.

Theorem 6.10  (Desingularization I). Let U be an open subset of IR,

and X a C-analytic subset of U. Then there exists an analytic mapping

7 : X' — X such that m is proper and surjective, and X' is smooth everywhere.
In more details, given any smooth analytic filtration {XY} of X, we

can choose m in such a way that X' is a disjoint union of analytic subs_ets X,

each open and closed in X', and n induces mappings ¥ : X'V - X having

the following properties:

(1) (=~ (Sing X9) is nowhere dense in X'®:

(2 n? induces an isomorphism

X'® — (z9)! (Sing X¥) —=» X© — Sing X

(3) = is obtained by composing a locally finite sequence of blowings-up
with smooth centers.

Theorem 6.11. (Desingularization II). Let U be an open subset of IR",
and ¢, ..., ¢, analytic functions in U. Then there exists an analytic mapping
n:U — U such that:

(1) = is proper and surjective; in fact, m can be obtained by composing a
locally finite sequence of blowings-up with smooth centers:

(2) U’ is smooth;

(3) if X denotes the set of common zeros of the ¢, then U — n~'(X) is
dense in U’, and = induces an isomorphism U — n~ }(X)=> U — X

(4) for all x'€ U', there exists a local coordinate system (z,,...,z,) of U’
centered at x', such that the germs at x' of the ¢ ,°n generate a principal
ideal, which is generated by a monomial z%‘ zf" with nonnegative integers
%; (we say n~Y(X) is locally everywhere normal crossings).

6.12. Blowing up. Let P’ denote real projective space of dimension r.
There is a natural mapping p, : R* — {0} = P"~! such that for all e P"",
P, '(§) L {0} is a line through the origin in IR". By assigning to each {€ P"~ !,
the line obtained in this way, we get a real line bundle p: L —» P""!, and
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a natural mapping m, : L = IR" which is an isomorphism outside the zero
section of p, and such that the zero section is mapped to the origin of IR".

L has the structure of a real analytic manifold With respect to the
coordinates (x,,...,x,) of R" this structure can be defined by a covering
L=u}_ L, where L, = IR" and L; has a coordinate system (z;,,...,z,)
in which =m,|L; is given by xjom, =z, if j=14 xjom, =z, lfjaéz
The mapping m,: L — R" is the blowing-up of R" with center 0.

Let Z=R"xIR? and Z’=L xIR?. Then n =mn, x idp:Z' > Z is
the blowing-up of Z with center 0 x IRP. More generally, if Z is a real ana-
lytic manifold and Y a smooth analytic subset of Z, then we can define the
blowing-up m : Z' — Z with center Y: n is defined as before in a neighborhood
of each point of Y, and is defined to be an isomorphism outside Y.

Now let Z be a real analytic manifold, and let Y = X be analytic sub-
sets of Z such that Y is smooth, but X perhaps singular. Let n:Z — Z
be the blowing-up of Z with center Y. By the strict transform X' of X by =,
we mean the smallest analytic subset of n~'(X) such that m induces an
isomorphism X' — n~'(Y) = X — Y. The mapping p: X' = X induced by
n is the blowing-up of X with center Y.

For example, suppose that at a€ Y, X is a hypersurface, defined by an
analytic equation f =0. Pick a local coordinate system (y,,...,¥,, X,...,X,)
for Z centered at g, such that Y is given by x, = ... = x, = 0. Then over
some neighborhood of 4, Z' is covered by s coordinate charts Z; in which
can choose coordinates

X; x
= 1
(7, 0, Fyinne, wiiB = (yl, e Ve s s X s g )

i i

The order p of f along Y at a is the greatest integer g such that feJi,

where J_ is the ideal of germs at a generated by x,, ..., x,. Over a neighbor-
hood of a, the strict transform X’ of X is covered by U$_, X;, where X ' 18
defined in Z; by the equation

1
z—pf(y,z,.zl, R Mgl 0 o o
i

Examples (6.13.1). In Example (6.3.1), the strict transform of X© = X
by the blowing-up of IR® with center the x,-axis, is the smooth hypersurface
X'® ={z, =z} in R, where the induced mapping n'® : X'©@ - X©@ js
determined by (x,x,,x;) = (zl,zz,h2 3)o Let) X0 berthe.: x -axis and
) X'®W — XD the identity. If X' is the disjoint union of x'© and X'V,
and 7 : X' — X 'is the mapping defined by n® and =n'"), then = is a reso-
lution of the singularities of X, in the sense of Desingularization I.

(6.13.2). Example (6.3.2) can be desingularized by two blowings-up. The
blowing-up of X with center the x,-axis is the hypersurface {z3 — z2 = 0}
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in IR, together with the mapping induced by (x,,x,,x;) = (z,,2,,2,2;).
The blowing-up of the latter hypersurface with center the z,-axis is the
smooth hypersurface {u, — u} = 0}, together with the mapping induced
by (z,,2,,25) = (u,uy, u,, u,). The composition of these two blowings-up
is a desingularization of X.

We will use Desingularization II to prove Lojasiewicz’s division theorem
and, as a corollary, kojasiewicz’s inequality. Let U be an open subset of
R", and ¢,,..., ¢, analytic functions in U. Let I be the ideal in &(U)
generated by ¢,,...,¢,. We denote by I the ideal in &(U) of functions
which formally belong to I; i.e. functions f such that for all ae U, 7 belongs
to the ideal generated by the ¢, , in #,. Clearly I < I (in fact, I = I accor-
ding to Whitney’s spectral theorem [21 I1.1.7], [36, V.1.6]).. Malgrange’s
theorem: I =1 [19], [21, VL.1.1] was first proved by kojasiewicz [16] in
the particular case k = 1.

Theorem 6.14. Let ¢ be analytic in U, and let I be the ideal generated
by ¢ in &U). Then I = 1.

Proof. We apply Theorem 6.11 with k =1 and ¢, = ¢. According to
the theorem, there is an open convering U’ = u, U, of U’, with isomor-
phisms U, = IR" such that if z = (z,, ..., z,) denotes the coordinates in U,,
then (d)on = 2" R”" u(z), where the &, are nonnegative integers,
and u is a uml

Suppose f €l ie for all a€ U, there exists G,€ #, such that

(6.14.1) ‘ i} Bl

Then =n*(f)| U, belongs formally to ideal generated by =n*(¢)| U, =
zp‘ by zl"'u in £U’). By Hadamard’s lemma, n*(f) = n*(¢) - h, where
he J(U ).

It follows from (6.14.1) that h is formally a composition with m. We
would like to use Glaeser’s theorem 4.3 to conclude that there exists g € £(U)
such that g, = G, for all ae U. But we must avoid a circular argument:
Yojasiewicz’s division theorem and inequality were used in essential steps
(Lemmas 4.11 and 4.12 respectively) of the proof of Glaeser’s theorem.
However, 7 is the composition of locally finite sequence of blowings-up with
smooth centers, so we need Theorem 4.3 only in the special case of such a
blowing-up. In this case, Lemma 4.12 is clearly not needed, and for
Lemma 4.11, it is enough to prove Theorem 6.14 in the special case that
¢ is the Jacobian determinant é of the mapping

Zilh 2

& e s G (:1,...,zp,zp+1,zp+lzp+2,..., e W)

Then 6 is a power of z,, ,, so the result follows from Hadamard’s lemma.
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Corollary 6.15. Let U be an open subset of R", and ¢ a real analytic
function in U. Let X = {x€U :¢(x) =0}. Then for any compact subset
K of U, there exists C >0 and an integer @ > 1, such that for all x€K,

l¢(x)] = Cd(x, X)".

Proof. By Theorem 6.15, (¢) - £(U) is closed. Therefore, by the open mapping
theorem, for every K — U compact and m > 0, there exists K' =« U com-
pact and m’' > O such that if f e(¢)- &£U), there exists g€ &(U) such that

f=¢-g and
(6.15.1) gt s elfit,

where ¢ is independent of f.

If x,eK — X, we can find f e€&(U) such that f(x,)=1, f =0 in a
neighborhood of X, and |f|X/ < ¢'d(x,, X)™% where ¢ >0 and « > 1 are
independent of x,, but depend only on K, K'. Then (6.15.1) implies

f

sup Sdedhd(x X )i

K

in particular,
lp(xo)l = (cc) ™" d(x4, X)*.

Hironaka [13] has given proofs of Corollary 6.15 and several related
inequalities of Xojasiewicz, using his ‘“rectilinearization theorem” [13,
Theorem 7.1]. The rectilinearization theorem asserts that every subana-
lytic set can be transformed locally into unions of quadrants in Euclidean
spaces, by means of a locally finite family of finite sequences of “local
blowings-up” applied to the ambient space. (A subset B of R" is called a
quadrant if there exists a disjoint partition {1,...,n} =1I,u I, Ul_such
that B is the set of points x = (x,, ..., x,) satisfying x, =0, i€l , x, > 0,
i€l , and x, <0, iel_). Hironaka’s proof of the rectilinearization theo-
rem uses the desingularization theorems, as well as his “local flattening
theorem”.

We conclude by stating the rectilinearization theorem and applying
it to prove the strong regularity property (2.16.1) for a closed subanalytic
set X such that Int X is dense in X. R. Hardt has shown me another proof
of this regularity condition, using geometric measure theory.

. Theorem 6.16. Let N be a real analytic manifold, and A a subanalytic
subset of N. Let L be a compact subset of N. Then there exists a finite
number of real analytic mappings n;:U;—> N such that:

(1) U, is isomorphic to R™, for some n el
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(2) there exists a compact subset K ;ofu j such that © K ;) s a neighbor-
hood of L in N;

(3) n;Y(A) is union of quadrants in R™.

Theorem 6.17. Let V be an open subset of R", and A a closed subanalytic
subset of V such that Int A is dense in A. For every compact subset L of
A, there exists ¢ > 0 and an integer o« > 1 such that any two points b, y€ L
can be joined by a semianalytic arc ¢ in A such that:
(1) lol =clb — y'=:
(2) o intersects 0A in at most finitely many points.
Proof. 1t follows from Theorem 6.16 that there exists a finite number of
analytic mappings m;:U; > V such that:
(1) U; = R" and rank n; =n;
@ n(U) < 4;
(3) there is a closed ball K. centered at the origin in U j such that
u;n;(K) is a neighborhood oll L in A
Since closed subanalytic subsets of V are “regularly situated’ [13,
Section 9], it is enough to prove that for each J, there exists ¢ > 0 and an
integer « > 1 such that any two points b, y € n{K) can be joined by a semi-
analytic arc ¢ in A, satisfying (1), (2) of the theorem (cf. [17, Section 18]).
The argument is similar to Step 2 of our proof of Theorem 4.3. Write
¢ =m,. Let X =Z U ¢ !(0A), where Z is the set of critical points of ¢.
Clearly dim X < n. Given b, ye ¢(K ;» choose a, x € K; such that ¢(a) = b,
d(x) = y. Let a/, x' be points of 2K; associated to a, x by Lemma 4.12.
For every ¢, > 1, there are broken line segments g, ¢, of length < ¢ |a — a/,
< ¢,Ix — x| respectively, which join a to a, x to x' respectively, and inter-
sect X in at most finitely many points (cf. Lemma 4.15). Then ¢ = d(a,)VUd(o,)
Is a semianalytic arc joining b, y in A, which meets 04 in at most finitely
many points. The required estimate on |g| follows as in the proof of Theo-
rem 4.3.
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