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Some generic properties of Riemannian immersions
Antonio Carlos Asperti

1. Introduction.

We will use “smooth”, “differentiable” and “C*” interchangeably in
this paper. Let f:M™ — N" be a smooth immersion, where M and N
are differentiable manifolds. Whenever N has a given Riemannian structure,
we will consider in M the Riemannian structure induced by f Denote by
C(M, N) the set of C* maps from M to N with the “fine” C* topology.
Alternatively, we could endow C(M, N) with the uniform convergence on
compact sets topology. We know that these two topologies are equivalent
if and only if M is compact, the advantage of the former being that the
immersions Im(M, N) and imbeddings become open subsets of C(M, N),
even if M is not compact. For details on these topologies we refer to
[3, pp. 220-223] and to [7, ch. II]

The object of this paper is to give the proof of some results concerning
geometric singularity theory which we mention in [1], and then make further
applications of these results to the generic study of specific geometric
singularities which were firstly estudied by Feldman [5] and Little [9]
By generic we mean properties which hold for a dense (and eventually open)
subset of Im(M, N). We prove

(I) — The mean curvature vector of an immersion f M™ - N?" has,
generically, isolated singularities.

(II) — The locus 2(f) of parabolic points of an immersion f : M? — N°
is, generically, a closed one-dimensional submanifold of M2

(III) — If M? is compact, then the cardinallity # %(f) of the locus of the
umbilic points of an immersion f:M? — N® satisfies, generically, the
inequalities 2|Z(M) < # %(f) < + .

We should say some words about this paper’s organiz_ation.‘ The next
section is devoted to the revision of some results on jet transversality
theory and to the proof of Theorem 2.11, which is a general result on geome-
tric transversality theory. The reader who wants to avoid jet transversality
language may go directly to Section 3, where we give a complete geometric
description of Theorem 2.11, and where we prove (I). In Section 4 we give
complete statements and proofs of (II) and (III).
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2. Review of Feldman’s and Little’s results.

Theorem 2.11 was firstly proved by Little [9, Theo. 2.20] in the case
N = R" Our contribution in proving the general case is Proposition 2.8
below, which generalizes Proposition 2.16 of [9], and which will enable us
to substitute R" by any Riemannian manifold N" in Little’s result. In order
to proof Proposition 2.8 we need to look back some definitions and techniques
of i3]

2-a. Tangent bundles, osculating maps. Let (x,,...,Xx,) be coordinate
functions defined on a coordinate neighbourhood U of M, and denote by
F(U) the sheaf of germs of smooth functions on U (see [8, p. 81]). Let

o ! : :
M T represent the linear functional which sends each germ [f]
T ik < |*
k

of F(U) into —a———fa—, forieach xe U and 1 S, <. £i, Sm Let

Xifpon» OX.

i1 i
(T,M), be the real vector space spanned by the functionals

ak
{W ity SP}'
By T iy lx

We give a natural structure of smooth vector bundle over M to the set
TM= v (TM),: if (y,--> y,) are coordinates on another neighbour-

xeM
k

dy. oy

151 Ik

hood V of x, we relate the functionals with the functionals

61(

X, en O L
partial derivatives. With this differentiable structure T,M is called the
pth order tangent bundle of M; the fibre (T, M), is called the pth order tangent
space of M at x with fibre dimension

X

through the well known formulas given by the chain rule for

TR i GBI
WL

Usually T,M and (T, M), are denoted by TM and T (M), respectively. The
definitions above, as well as further definitions concerning the pth order
tangent bundle, may be found in [3] or [11]

A differentiable map f : M — N induces, for each p = 1,2, ..., a diffe-
rentiable homomorphism from T,M to TN which covers f Explicitly, if
n:TM—> M and n' : TN - N denote the respective canonical projections,
then there exists a differentiable homomorphism T,(f): T,M — T,N called
the pth order differential of f, such that n'eT(f) = fom. Denote by
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an element of TPM relative to coordinates defined in U < M. Then

0%(gof)
[T THgY| =& A, Ohar—ar—| .

for each xe U and [g]€ F(V), where ¥V < N is a coordinate neighbourhood
around y = f(x).

Let OPTM denotes the p-fold symmetric tensor product of TM. Re-
member that OPTM is a vector bundle over M whose fibre is generated

(Y
0.+ 0 ax

X i

by the functionals If p>2 then T, M may be

0.
T,
viewd as a subbundle of T, M via the inclusion map I, ,: T, M - T M.
Now we define, with the help of local coordinates, an epimorphism
B assuming that Te€ T M is given by the above local

representation, then

X

P = X ~Q/.'l<--.'p T to AP P

Uiy <ihs =ip=2

In [10, p. 174], is proved that TM/T, M is isomorphic to OPTM and
that the sequence

I B »
0-T,_,M—2">TM—2>0°TM -0

is exact.

From now on we will restrict our study to the case when p = 2, although
most of the definitions and results hold for any p.

There is a correspondence which assigns each couple u, v€ TM to an
element uv € T,M which we describe in terms of coordinates on a neighbour-
hood U = M: if

u=Zu4i and v=2Xv P ;
" 0x; b o
then
m av. 6 i 82
up(x) = Wiy <t (%) * () wilc) ke, )
"-1'2::1 0x; 0x; |, i,jz=l Y O%p0X, o,

for each xe U.
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Define now a map ® : O*TN — T,N by ®(ucv) = uv — D v, where we
suppose that N is a Riemannian manifold with Riemannian connection D.
The next proposition is proved in [3], p. 191.

Proposition 2.1. The mapping ® is a splitting of the short exact sequence
of vector bundles

0O—— TN—IL--» TZN—PZHOZTN——»Q

that is, P,°® is the identity map of O*TN.

Then there exists a map D, : T,N — TN such that D, -1, is the identity
map of TN.

Since T — ® o P,(T) is in the kernel of P, for each T€eT,N, it is not
hard to see that DZ(T) =1 (T —®oP,T)). If f:M — N is a differen-
tiable map, the second order osculating map of f with respect to D is the
composition D, - T,(f), which is a vector bundle homomorphism from
M to TN covering f. The second order osculating space of f at x with
respect to D is the vector subspace D,T,(f)(T(M)) of T T, (N).

Let xe M, y = f(x)€N, and let (x,, ..., x,), (yy>---»Y,) be coordinates
on neighbourhoods U of x and V of y, respectlvely We want to know the
expression of D,T,(f)(T) for a vector T of the type

62

Tiphes 6xl.6xj z

If [g]le F(V), then

0? SR e
AT (W X)([g]) = 6—x,.5x—j—(x) =

2

= axaax Gy f(x), ..., y,° f(x) =

=1

0 [ ¢ 90 S) 0d .. bhog :
w0 LZ Br ) 0 S, f(x]

et AR 9o :
= L T 8 0 Sy S0 +

& Oy S) oy, f) i I .
D e ey o LB e e CRFLC SO ()
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or, deleting the g’s,
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where f, =y, o f It follows that

~2 42
:T(f)<605x. ) (DP[ (f)<(7x6x )]:
J X
92
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i o el 26

(5 o j
[( Zl 6yk b1
by the definition of P2. By using the definition of ® and after bringing
about the necessary calculations, we come to the following formula

S o,
y>o<lz 0x; i 0y

=1

1

0%j LS 0
1) DS () (— >=‘ D +
( 1 S ax, Ox gy g Qe L oy,
£ 6jk W0 ( 0 >
+ (x) D - i
k, zzx s ax, j‘ ’_ oy

2-b. J*(m) and Jz(m) x O(m) actions. Let us consider now the bundle
Hom(T,M, TN) which is a vector bundle with base space M x N whose
fibre F over (x,y)€ M x N is the set of linear transformations from
(T;M), to T(N). Given a map f:M — N,

{(x, L), such that xe M and L :(T,M) — (N) 1is linear|

Tr
is a vector bundle with base M, which is usually denoted by

S '(Hom(T,M, TN)).
Since D,T,(f):T,M - TN is a homomorphism of the bundles T,M and

NG there ex1sts a cross section M — f~'(Hom (T,M, TN)), namely
x = (x, D,T,(f),). Moreover the inclusion map



196 A. C. Asperti
f: f~'(Hom(T,M, TN)) > Hom(T,M, TN)
is such that the diagram

f~'(Hom(T,M, TN)) /

Hom(T,M, TN)

ln’ 7
idi>
M — M x N

is commutative, where 7, n' are the canonical projections. We call f the
cross section M — f~'(Hom(T,M, TN)) composed with f: explicitly, ;i
is given by f(x) = (x, f(x), D, T,(f),)-

Observe that the structural group of T,M is the group of linear trans-
formations in the fibre induced by all possible coordinate changes on the base,
ie, the Lie group J*(m) of invertible 2-jets from R™ to R™ with source and
target at the origin (see [12], §1). Since TN may be taken as a bundle with
structural group O(n), the orthogonal transformations of R", we see that
Hom(T,M, TN) may be taken as a bundle with group J2(m) x O(n).

Given a point x,€ M and coordinates (x,, ..., X,) on a neighborhood
U of x,, then for each xe U we have the two sets of linear functionals
0 0
X, = {73? e x}
2 ! ;
0 0 0
Xol, = 0| PR ) ;
6xl X 6xl aXZ X axm X

Given another neighbourhood V of x, with coordinates (Wi il W6
will have the analogous sets Y|, Y|, for each ye V. Then we would have
two bases

X)x @ Xllx U X2|x’ Y‘x T Yllx ) Y2|x

for the fibre (T,M),, xe U n V. It will be of interest to describe the element
L e J*(m) which carries X into Y. By the chain rule,

0 iox. U aa
TR
Yi =y X
9 0> 0 0 0? 0% 0
g Xl noXy < Xk
i ittt - S + %
dy; 0y; k,?:‘l dy; 0Oy, O0x,0x, ,‘; 9y, 0y; 0x,
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for 1 <i<j<m Since L(X) =Y, we have
LX)=L,X, =1,

LAXy e L X R X0 s

where the entries of the matrices L are easily obtained by Eq. (3). Then
we may write the matrix of L relative to the basis X on the block form

L. O
L={ 1 .
(Lzl Lzz)
Suppose now that n > m. Let A be an element of the fibre

F = Hom(T,M, TN)|, ,,

such that dim[4A(T(M))] = m, ie, A4 is 1-1 when restricted to the tangent
space T(M). Let E = {e, ... ,e,} be an orthonormal basis of T)(N) chosen
in a way that E, = {e,, ..., e,} spans A(T(M)). Such a basis is said to be
adapted to A. We may write

g2

AX) = i A, E

where E, = {e,,,---»€,}- Then the matrix of 4 in terms of the bases X
and E has the following block form

A (0]
A= 101 5
i )

Let A and L be linear transformations as above. Denote by the same
letters the matrix of L relative to X, and the matrix of A4 relative to X and
E. If Y = L(X), then the matrix of A relative to Y and E is LA If we
change also E by E' = O(E), where O € O(n), then the matrix of A4 relative
to Y and E' will be LAO'. We believe that these remarks will clear up

the meaning of the action of J*(m) x O(n) over the fibres of Hom (T,M, TN).
The proof of the following theorem is found in [9], pp. 297-299.

Theorem 2.2. Let A be an elemente of F such that A is 1-1 when restricted
to T(M),and let E=E, VE, be an orthonormal basis of Ty(N) adapted to A.
It is possible to choose a basis X for (T,M),, which is induced from a coor-
dinate system (x,, ..., X,,) around x, with the property: the matrix of A relative
to the bases X and E takes the block form
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0
4 ‘(0 An)

where I is the m x m identity matrix. Furthermore X is the unique basis
of T(M) satisfying the above conditions.

That is, given 4 and E as in Theorem 2.2, it is possible to choose one and
only one basis X = X, U X, of (T,M)_, induced from coordinates around
X, in such a way that
0
i ( Ox;

52
A( Ox, (3xj i

Suppose now that are given a fibre F = Hom (T, M, TN)|(X,),) and
bases X = X, u X, of (T,M),, E=E, UE, of T(N). It is convenient to
denote by F the (open) subset of F whose elements are the linear transfor-
mations 4 :(T,M). — T(N) such that dim [A(T(M))] = m. Denote by Z
the set of linear transformations A€ F such that, relative to X and E, 4
has the block form prescribed by Theorem 2.2. Note that Z c F.

Let us denote by @ the subgroup of J%(m) x O(n)whose elements are
the pairs (L, O) such that, L relative to the basis X, and O relative to the
basis E, have the respective block forms

L o o (0]
T 11 : o= 11 :
(" 7.) (" 5.)
with L, 0", = I. By using the fact that we may express the entries of L
as a first degree polynomial function with integer coefficients of the entries
of L,,, it is not hard to prove that @ is isomorphic to the subgroup O(m) x

X O(n —m) of O(n). The following propositions may be found in [9,
pp. 302-304]. The definition of subvariety is reminded in the next paragraph.

x°

>= Sl de=13 ninam;

>= Diislifobens LB S S

a=m+ 1

Proposition 2.3. The subgroup of J(m) x O(n) which leaves Z setwise fixed
is 0.

Proposition 2.4. The subvarieties of F invariant under J*(m) x O(n)are in
1-1 correspondence with the subvarieties of Z invariant under 0O, where the
correspondence p is given by p(K) = K n Z. Also, if K is an orbit of F under
J?(m) x O(n), then p(K) is an orbit of Z under 0.

2-c. Jet transversality. We recall the definition of submanifold collection
(see [3], p. 194), which we will name here briefly by subvarietv. Let N be a

D)
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smooth manifold. A subvariety of N is a finite union M =M, U ...UM
of differentiable submanifolds M, ..., M, of N, satisfying

L. MiaM;=¢,ifi#j;

2. dmM;,_ |, >dimM, fori=2 ..,s;

3. M;u...uM; is closed in N, for each j > 1.

The points of M, are the regular points of M and we convention that
dimM =dimM,. Let P be another differentiable manifold and let
g:P — N be a differentiable map. Whenever one of the following condi-
tions

1. g(x)¢M; or

2. if g(x)e M, = M, then dg, [T (P)] + T,x(M) = 7;09“\”;

holds, we will say that g is transversal to M at'xe P. Here dg = T\(g),.

s

Definition 2.5. (i) A subvariety K of F, invariant under the action of
J3(m) x O(n), is a (jet) model singularity. Note that, in this case, K induces a
subbundle K(M, N) of Hom(T,M, TN) with fibre K and structural group
J3(m) x O(n). (ii) If K is a model singularity, we will say that a point xe M
is a K-jet singular point of a map f : M — N if f(x)e K(M, N). (iii) If f is
transversal to K(M, N) at xe M, then x is said to be a K-jet transversal
singular point of f. (iv) In the case that every xe M is a K-jet transversal
point of f, we will say that f is K-jet transversal or K-generic.

Since being a jet singular point is a local property, in order to
study a singular point x we may choose neighbourhoods U of x in
M and V of f(x) in N such that a (U x ¥) @ U x V x F, where
n:Hom('I:zM, TN)—> M x N is the usual projection. It is not hard to
see that f is transversal to K(M, N) at x if and only if 7o f is transversal
to K at x, where 7:U x V x F — F is the projection on the third factor.
Then we may change f by 7o f in order to study jet transversality at x.
We have [4, Prop. 3.2].

Theorem 2.6. Let K = F be a model singularity. Then the set of K-jet
transversal functions from M to N is dense in C(M, N).

Suppose now that the set Im (M, N) is nonempty. Since it is an open
set of C(M,N), it follows from Theorem 2.6 that the K-jet transversal
immersions are dense in Im (M, N). If n > 2m, this set is dense also in
C (M, N) for, in this case, Im (M, N) is open and dense in C (M, N).

2-d Improvement of a result of Little. From now on f : M — N will be al~ways
an immersion. Then the map D,T,(f), : (T,M), — T(N) belongs to F, for
each x in M, y = f(x). Given an orthonormal basis E = E, U E, of T(N),
adapted to D,T,(f),, there exists an unique basis X = X, u X, of (T,M),
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such that the matrix of D,T,(f), relative to X and E has the block form
prescribed by Theorem 2.2. Let us call now by Z the family of v(m, 2)xn

matrices of the form <i) 3) Under this new approach we may think in

F as being the space of all v(m, 2)xn matrices; F may now be described as
follows. Let A€F and let A,...,A4,,..., A, be the column vectors of A
Then A€F if and only if A,,..., A, are linearly ind¢pendent. Observe
that the previous Z (resp. F and F) was a family of linear transformations.
The results obtained with the linear transformation approach are valid for
the matrix approach.

Let U, V be neighbourhoods of x, y such that the bundle Hom (T, M, TN)
is trivial over U x V. Remind that for the study of jet transversality at x
it is sufficient to study the transversality of the map t° f. Since f is an
immersion, 7o f(x)e F for all xeU. Here and below we are using
f(x) and tf(x) to denote the same element D,T,(f), of F.

Let B(M) "> M be the osculating frame field relative to f The ele-
ments of B(M) are the triples (x,E,, E,) where x€M, E, = {e,...;e,}
is an orthonormal subset of T} (N) tangent to f(M), and E, = (o b, S0 en}
is an orthonormal subset of T, (N) normal to f(M). Given x =

= (x, E,, E,) € B(M), we set pu(x) = matrix of f(x) relative to the bases X
and E = E, UE,, where X is the basis picked up by Theorem 2.2. This
defines a map p:B(M)— Z. Let p be the map defined by sending a point
of F into the intersection of Z with the orbit of that point under J*(m) x O(n).
This map p induces a map of orbits of F which is just the equally named
1-1 correspondence given in Proposition 24. Let U, V be as above and
consider the bundle B(U)"“» U. Since the next proposition is only stated
in [9], we will prove it here.

Proposition 2.7. For each xe€ U, u(F)) = p(t f(x)) where F_ denotes the
fibre of B(U) over x.

Proof. If x =(x,E,, E,) is a given element of F_, then p( (%) = Ou(x)),
the orbit of u(x) under 0. In fact, given 4 = Lu(X)P'€ p(f(x)), then A€Z
and, since pu(x)e Z, it follows from Proposition 2.3 that (L, P)€0, from
where we get p(f(x)) = O(u(x)). Also, by the same proposition we have
O(u(x)) = p(f(x)) which proves our affirmation. Thus, to prove this pro-
position it is sufficient to show that u(F,) = O(u(x)). In order to do that,

we will introduce the following notation: A]:Z denotes the matrix of a

linear transformation A: W, —» W, relative to ‘the bases #,, #, of the
vector spaces W,, W,. If X = (x, E}, E}) is another element of F_, we may
write

W) = of 0 u(Erm £00) o

where X and Y are bases of (T,M), given by Theorem 22 applied to

=
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E=E UE, and E' = E| U E), respectively. Choose an element (L, P) of
the group J%(m) x O(n) such that L(X) =Y, P(E) = E.. Then

R = fOE = L P = L ux) P

that is, (L, P)€ @, which proves that u(F)) « O(u(x). On the other hand,
if L-pu(x) P'e0(u(x)) with (L,P) in O, we consider the bases Y = L(X)
and E' = P(E) of (T,M), and T (N), respectively. Clearly the adapted
frame /X = (x, E) 1s in F.. To conclude the proof, we only need to show
that oL u(x) i P = 1X): thxs will imply that O(u(x)) = w(F,). Given the
adapted orthonormal basis E’, there exists a unique basis Y’ induced from
coordinates around x such that p(x) = f~(x)]E’,eZ. But

S1f = L)) P = L pu(x)- P

where L-u(x)-P'€Z, since (L,P)e®. By the unicity in Theorem 2.2,
Y = Y from where we have u(x) =/L  u(x); P’

The map u and the above proposition indicate that it is possible to
express, by the method of Elie Cartan, the entries of a matrix 4 of Z in
terms of the dual and the connection forms w,, w,,, associated to a frame
X = (x, E) of B(M). In fact, we will soon see that the entries of the matrix
u(x) are given by the coefficients of the second fundamental form of f at Xx.

Let f :M — N be an immersion, where N is a Riemannian manifold
with connection D. As usual, we identify f(M) with M and T (M) with the
subspace df (T (M)) of T, (N). The normal space v (M) of f at x, is defined

by setting T,(N) = T(M)@ v, (M). The union vM = L (M) is the normal
bundle of the immersion f. The second fundamental form B:TM x TM - vM
may be pointwise defined by

B(u, v)|, = (D ul,) ‘L,
where x€ M, u, ve TM and 1 denotes the projection of T,(N) onto v (M).
We will give another definition of B in terms of an orthonormal frame
X =(x,e,,...,e,) adapted to f Let {,) denotes the Riemannian inner
product of N, and let h};,1 <i,j <m, m+ 1 <a <n, be the real functions
defined on B(M) by
hi(x) = (Ble;, €), e,

The hi(x) are the coefficients of B at x. Therefore

B(u,v), = Z ( Z (%) wi(u) w ())ea,

a=m+1 =1
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where {w,,...,w,} is the dual basis of {e,,...,e,}. It can be shown that
this definition is independent of the choice of the particular X in the fibre
B

x*

Proposition 2.8. Let X = (x,e,,...,e,) be an arbitrarily choosen element of
the fibre F_ of B(M) over x. Denote by

= (g Z)

the image of X under u, where I is the m x m identity matrix and A is a
m(m — 1)/2 x (n — m) matrix. Then the entries of A are the coefficients of the
second fundamental form of f at Xx.

Proof. It is a well known fact that it is possible to choose coordinates
(¥y..-»y,) around y = f(x) in such a way that

0
5)’4

For any coordinate system (x,,...,x,) around x, we have

2k = bk =
0x; 0x; S <B<ax,. ’ 0xj)’e°’>(x)’ m+'l =a=mn,

where f, = y,° f In fact

o
oy,

= e, D,

Y

):0, for 1<A4B=<n
Y/

Cyy

9 9 At
a—xi(4)=dfq<—67i(4)>= Pt E\T(f(q))’

A=1 9%

for any q near x. Then, deletting the point g,

& e i pives W
> (ax ) 3 D; (; o 53’A> .
G5 0 £, Yy of, (5 :|
+ D, =
;[fh}. <6xi> 0y, X s N4

4 i of, Y
_; Ox,0x; 0y, +; Ox, DZE'—Ta,— 0y 4

By the choice of (y,,...,y,) we have

0 8 f
Dp ( )‘ 2 ox, al 4
x, '
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hence

. AL

d 0 0

B R ey limaaere gy e é A o
e (o) ={a(F)) =)
il

" 0> fu 0% f,

i <(§’ Ox, Ox; e‘) (= 0x, Ox; (x),
which proves our claim. Now, again by the choice of (y,,...,y,) and by

using formula (1), we deduce that

S(x) s (x)) =D,T, i
6x,6xj Al eRe 22U Exlﬁxj ) a7
. 0 fa
~§: éxiaxJ (x) e,
When we choose (x,,...,x,) as the coordinate system picked out by

Theorem 2.2, we get

for 1 =i,j <m. It follows that

_62 m+ 1 Sk aang azfn Y
ol (x) ox? (x)
st Ll ) RSN
Ay Ox, 0x, AL (x) 0x, 0x, (x)
a -/;"*1 . . . az'f;l
L Q%E (x) Ox? (x)_J

and therefore

b 0 0 i o*f,
(Ble;, e, e,> (x) —< (6—x.’—6_)—c;->’e’>(x)_mx—j (x),

which finishes the proof.

hi(x)



204 A. C. Asperti

We remark that, in view of the above proposition, the set Z may be
taken as the space of the second fundamental forms at a point, that is,

{( z h""'_',..‘ z .3 ,J) ...,xm)ER"'}'
i,j=1 Lo =

2-e. Geometric transversality. Suppose that f : M™ — N" is a given immer-
sion of manifolds, where N is Riemannian. Let K be a subvariety of F inva-
riant under J2(m) x O(n), and let p(K) = KnZ be the corresponding
subvariety of Z invariant under 0. A point x is said to be a p(K)-geometrically
singular point of f if u(F,) N p(K) # ¢: x is called a p(K)-geometrically trans-
versal singular point if ,u(B(M)) meets p(K) transversally along the entire
fibre F_; f is p(K)-geometrically transversal if every p(K)-singular point
of fiais also a p(K)-transversal point.

In the proof of the next lemma, we use %(A4) to denote the orbit of
A€F under J%(m) x O(n).

Lemma 2.9. The locus of K-jet singular points is equal to the locus of
p(K)-geometrically singular points, for any immersion SfaaMi— N".
Proof. 1If x is a K-jet singular point, them f(x)€ K and, since K is a model
singularity, g(f(x) < K. Using the fact that f (x)e F and Proposition 2.3,
we get 9(f(x) nZ # ¢. Therefore, from Proposition 2.4 it follows that

WF ) pK) = (@GSN 2 n(KnZ) =4(f(x) nKnZ=

=4[ nZ+#4,
that is, x is p(K)-geometrically singular. On the other hand, if
H(F) N p(K) # ¢,

then

FSX)N2)n(KNnZ)+# ¢,
which shows that %(f(x)) n K # ¢. This proves the lemma.
The following theorem says that jet transversality is transformed in
geometric transversality by pro_|ecuon of F on Z along the orbits of J%(m) x

x O(n). The proof is found in [9, pp. 314-315].

Theorem 2.10. Every K-jet transversal point of an immersion f is also a
p(K)-geometrically transversal point of f.

We finally have
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Theorem 2.11. Let K be a subvariety of Z invariant under O, where Z
is the space of second fundamental forms. Then the set Img(M, N), of K-geo-
metrically transversal immersions from M to N, is dense in Im (M, N).

Proof. By using Lemma 29 and Theorem 2.10, it is not hard to conclude
that every p~!(K)-jet transversal immersion is also a K-geometrically
transversal immersion. By the remarks made after Theorem 2.2, the former
immersions are dense in Im (M, N). This proves the theorem.

3. General facts on geometric transversality.

Let f : M" = N™ be an immersion and let B(M) be the bundle of ortho-
normal frames adapted to f. Recall that the elements of B(M) are those
elements p = (p,e,,...,e,) where peM, {e,...,e,} is an orthonormal
basis of T(N) and {e,,...,e,} is an orthonormal basis of T (M). The fibre
F_ of B( ) over p may be 1dent1fled with the subgroup O = O(m x O(n — m)
of the orthogonal group O(n).

We shall make use of the following convention on the range of indices
L=V B G Sn: skl S im: m+1SoBy..,=n
Given p = (p,e,,...,e,) in B(M), we may extend the frame (e ,...,e) to
a frame field on a neighbourhood V of p in N in such a way that, if
(e,(q)) denotes the field at ge M N V, then g = (g, (e,(q) remains in B(M).

Let w, be the associate frame field of dual forms. The structure equations
of N are given by (see [2])

dw, = Y WgWpaWap + Wpa =0,
B

H i : LU y
dw,p = Z“’ACAWCB + Qi Qup = —3 Z R,pcp Wer W
c CD

Rypcp + Ragpc =0
Suppose that these forms are restricted to M. Then w, =0 and hance

0 =dw, = Z W AW, .
;

By Cartan’s Lemma we conclude that there are real functions hj; defined
in B(M) such that

= Zhu J? hf} " h;i'
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The second fundamental form of f may be regarded as the vector valued
quadratic form

B(p) =Y (Z hZ(p) (v,.u-j> ‘e,
i, J

x

for each p in B(M). This motivates us to pick out the n — m quadratic
forms u, _,,...,u, from R" to IR given by

ux(.\',,...,.\'m)=Zh§j(p)xl.)‘(j, o=m+1,...,n
i Jj

Then we have a natural map u:BM)— Z, u(p) = (U, ...,u,), wWhere
Z is the family of all (n — m)-uples of quadratic forms from IR" to IR of the

type

(xl,...,.\'m)HZa,.jxl.xj, @t ey
o

Observe that we may identify Z with IR,

mm+ 1)(n —m)
2

d:

We will describe two actions of the group @. The first, which we will
call n, is over Z and the second, which we will call {, is over the fibres F i
Whenever R = (R;;) € O(m) and T = (T, ;)€ O(n — m), then (R, T) will denote

the element (g ?) of 0. Given (u,) = (U, ,>.--,4,)€EZ, we wish to

define n((R, T),(u,))€ Z. For this, let (x) = (x, ..., x,)€IR" and let' T 'be
the transpose of T. Denote by (u)) and (x]) the images of (u,) under T' and
(x; under R, respectively:

’

B b Y =Y s s i s
(el i X =R (e, T8 ).

Let #, a=m+1,...,n, be the quadratic form defined by sending
(5o s 2 0 II0G Tledl 00 S AP IR S R S SR N R It can be easily

m

seen that 7 is a reformulauon of the action of @ defined in the previous

section. The action { is described as follows. Given p = (p,e,,...,€)€F,
and (R, T)e0, we take the element p = (p,¢,,...,¢&,) of F, such that
e =) Re, g'=) Toe,
J B

Then {(R, T),p) =
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Lemma 3.1. For each point p of M, the diagram

{
(Dpr F

Iia’x,u l,u

n

0 T e T

is commutative, that is ue{ = no(id x p).

Proof. Given p=(p,e,,...,¢)€F, and (R, T)e0, let p = (p, €y -+ 96;) e
the image of ((R,T),p) under (. Write u(p) = (hj), w(p)= h") where,
for instance, (hj;) denotes the. coeficients of the correspondmg (n — m)-uple
of quadratic forms in Z. Denote by W and W the matrices (W,,) and
(W respectlvely, where W ap are the connection forms of N relative to
the frame given by p. We have the very known formula (see [2], p. 34)

W =dU-U' + UWU!,

where U is the transpose of (R, T). A consequence of this formula is that
we may write W, as a function of the variables R, T,; and w,,. Using the
relations
he = w.(e), b2 = W (&),

we may express fi’l as a function of the variables hfj, R, and T, Finally,
and using now the definition of #, a long but straightforward computation
will show that this expression of (k) is equal to n((R, T),(h;)). This will
complete the proof.

We are now in a position to make several definitions.

(i) An algebraic subvariety K of Z, invariant under 7, is called a (geo-
metric) model singularity. Observe that this is independent of the immersion
f. Assume from now on that K is a model singularity.

(i) A point p such that u(F)nK # ¢ is a K-geometrically singular
point of f In this case we have u(F,) < K, by Lemma 3.1.

(i) If p(B(M)) meets K transversally along the entire fibre F, then we
say that p is a K-geometrically transversal singular point of f.

(iv) The immersion f:M — N is said to be K-geometrically transversal
(or K-generic) if each K-singular point of f is a geometrically singular
point. It can be checked that (i)-(iv) is a reformulation’ of the definitions
given in paragraph 2-e.

We shall now derive some results concerning geometrically transversal
immersions which will be useful in the proof of I-III of the Introduction.
Suppose that the model singularity K is given by the zeros of the polyno-
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mials ®(z), i =1,...,r and z€ Z. By this we mean that D s ia
basis for the ideal I(K) of all polynomials in Z vanishing in K. Let @ be
the map which carries z€ Z into (®,(z), ..., ®,(z))€R", and denote by p
the maximal rank of the differentials d®,, when z€ K. Denote by X(K)
the locus of singular points of K, i.e. the points - of K where rank (d®)
fails to be maximal. It is known [10] that X(K) is a proper algebraic
subvariety of K and that the points of K-X(K) form a differentiable sub-
manifold of Z called the regular points of K. We convention that dim (K) =
= dim (K-Z(K)).

Lemma 3.2. If p, is a K-geometrically transversal singular point of f,
then ' = u .t is transversal to K at p,, for any local cross section t of
B(M). Moreover, if {®,,...,®,} denotes a basis for the ideal I(K), then
rank (d® - dy), = rank (d®y' o)), where ® = (O, ..., D,).
The proof is given in detail in [1, Lemma 4].

~Let us denote by k the locus of K-singular points of a K-generic immer-
sion. Then we have

Theorem 3.3. The set Img(M, N) is dense in Im(M, N). Moreover, if
WB(M)) N Z(K) = ¢ for some K-generic immersion, then or k = ¢ or k is
a closed differentiable submanifold of M, with codimk = codim K.

Proof. The first half of the statement is Theorem 2.11 of paragraph 2-e. For
the second part, let' U =« M be a coordinate neighbourhood of a point p
of k, and let T be a local cross section of B(M) defined on U. Since
w(B(M)) N £(K) = ¢, the map ' = pot:U — Z is transversal to the smooth
submanifold K-X(K) of Z. Then knU = (u°1)” Y(K-Z(K)) is a smooth
submanifold of U (actually of M) whose codimension is the same as that
of K in Z. Since this holds for any point p of k, we conclude that k is a
smooth submanifold of M with codimk = codim K. Now let (p,) be a
sequence of points of k such that (p,) converges to a point p in M. Let U
be a neighbourhood of p small enough to be possible to define a cross
section t : U = B(M). The subsequence of (p,) which lies in U we also call
(p,). Then (y'(p,) lies in K and u'(p,) = u'(p), whence u(z(p)) belongs to K.
Therefore p belongs to k and this proves the theorem.

Remarks. 1. If y(B(M)) n Z(K) = ¢ holds for any K-generic immersion f; or
else, if K is a differentiable submanifold of Z, then Img (M, N) is open (and
dense, of course) in Im (M, N).

2. Without the condition u(B(M))n X(K) = ¢, we must change “differ-
entiable manifold” by “submanifold collection” (see paragraph 2-c) in the
second part of Theorem 3.3.

3. In the case where M and N are orientable, we may consider the
bundle B*(M) instead of B(M); the elements of B*(M) are those elements
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p=(pe,..,e) of BOM) such that {e,...,e,| is an oriented basis of
T(M), and {e,,...,e,} is an oriented basis of T,(N). The actions 7 and ¢,
as well as the definitions (i)-(iv) above, are easily given with this new bundle.
It is not hard to see that k™ = k and that Imy(M, N) = Img(M, N)", where
K is a model singularity invariant under O (and hence a model singularity
invariant under 0" =0 (m) x O"(n — m), as can be easily seen) It
follows that Img(M, N)* is also dense in Im(M, N). Since the algebraic
varieties considered in this paper are invariant under ¢/, we will not make
any distinction between Imyg(M, N)” and Img(M, N), in the hope that the
context will make clear which bundle and which set of immersions we have
in mind.

We return now to statement I of the Introduction. The mean curvature
vector X#(p) of an immersion f : M — N at p is 1/m times the trace of the
second fundamental B form of f at p. Relative to a frame p = (p,e,, ..., e,),
one has

H(p) = -3 Ble,e) () = -3 (z h;(p)) e,

Then in order to study the points where 5 vanishes, we must look for the
points p of M such that

Y (p) =0, m+1<a<n,

for all pe F,. This indicates that we must consider the subspace H of
Z given by

H ={(a’l",“,...,a';',:‘,...,a,':,m)eZ such that ¥ g%.=
: i

= 0 for m+1Sa-<-n}~

It is not hard to see that H is a vector subspace of Z whose dimension is
d —n+ m A long but easy calculation shows that H is invariant under
0, that is, H is a model singularity. By Theorem 3.3 and Remark 1 above,
Imy(M, N) is open and dense in Im(M, N). Moreover #(p) =0 if and
only if u(F,) = H, so the locus h of H-geometrically singular points coin-
cides with the set of points of M where # vanishes. By the second part
of Theorem 3.3, codimh = codim H = n — m, for H-generic immersions.
In summary, we have

Theorem 3.4. There exists an open and dense subset of Im (M, N),
namely Img (M, N), with the following property: for each f in Imy M, N),
the locus h, of singular points of the mean curvature vector # of f, is either
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empty or is a closed submanifold of M with codimh =n — m. Then h = ¢
if n>2m, and h is an isolated set of points of M if n =2m.

4. Parabolic and umbilic points of immersions M™ - N™" !,

Throughout this section, dim N = dim M + 1. The results and tech-
niques presented in sections 2 and 3 are used here to simplify the proofs
of some results of Feldman [5] concerning parabolic and umbilic points
of hypersurfaces of R™"'.  The proofs we present here hold when we
replace the (m + 1)-Euclidean space by any Riemannian manifold N™*',
so ours statements are done in this more general situation. The funda-
mental assumption throughout this section is that the set Im(M™, N™*')
1s nonempty: this is unnecessary when m = 2.

4-a. Definitions and notations. Denote by D, (, ), respectively, the Riema-
nnian connection and metric of N. Given pe M and ve v (M) with [t = 1,
we may construct a vector field ¥V in N in such a way that V(p) =v and
V(q) belongs to v (M) for all point g of M near p. The map 4, : T(M) — T (M)
given by

Ax) = — (DyV)"

is a well defined linear symmetric transformation. Here ( )' denotes
orthogonal projection of T,(N) onto T,(M). Then there exists an ortho-
normal basis {E,, ..., E,} of T(M) of eingenvectors of A7 with respective
eigenvalues, say, 4,. If we pick — v instead of v, one has 4. “E) = — LE,
so the eigenvectors and the eigenvalues of A" are, respectively, E; and — 4.

We say that p is a parabolic point of the immersion f if det(4};) = 0.
Since det(4,°) =(—4A) ... (= 4,) =(—1)"det(4%), to be a parabolic
point is 1ndependent of the ch01ce of the direction olp v. We say that p is an
umbilic point of f if A, =... =4, =4 If p is simultaneously parabolic
and umbilic, we then say that p is planar.

Now we characterize parabolic, umbilic and planar points in terms
of an adapted frame pe€ B(M). Let e,,...,e,,e,, n=m+ 1, be a local
frame field on N such that, when restricted to M, the vectors e, ...,e,
are tangent to M and e, is normal to M. Let w, be the corresponding fiel
of dual forms, and let w,, be the induced connection forms. Writing v = e,,

one has

A(X) = = D) O = = § Dulee)efo) =

m

3 Cep Dale)elp) = T v, X el

=41
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for each X in T (M). On M we have

i Zh” s hn = h"

g

o)
hi{p) = w,(e) = CA e

Then the matrix of A} relative to the basis {e,,...,e} is (h]),<; jcm
The following lemma arises from the above discussion.

Lemma 4.1. For any immersion f : M — N, we have

() p is a planar point of f if and only if (hi{p)) =0, for all p F,:

(i) p is a parabolic point if and only if det(hi(p)) =0, for all p Fp.
(i) p is an umbilic point of f if and only if, far each p in F, there exists
a real number 4 = t(e,) such that hi{(p) = 6ij)..

It is sufficient to check the above conditions for one element p of F,

4-b Planar and parabolic points. Since we are considering codimension one
immersions, Z may be identified with IRY, d = m(m + 1)/2. The subspace
K = {0} is, of course, a model singularity and, by Lemma 4.1-(i), it is clear
that p is a planar point of an immersion f :M™ — N"~! if and only if
WF) = K. According to Remark 1) of Section 3, the set Img(M, N) is open
and dense in Im(M, N). Denote by Img(M, N) the family of immersions
from M to N without planar points. If f is such an immersion, then
MF)NK =¢, so f is also K-geometrically transversal. On the other
hand let £ be in Imyg(M, N) and suppose that k, the locus of K-singular
points of f, is nonempty. Then codimk = codimK = m(m + 1)/2 > m,
which is impossible. Then k = ¢ and f €Img(M,N). In summary, we
have

Theorem 4.2.  The set of immersions f :M™ — N"*' such that f has
no planar points is open and dense in Im(M, N).

Consider now the algebraic subvariety P of Z given by
Po= a8 B o B ] €2 SUCH that det(g.) = 0}

and note that p is a parabolic point of M if and only if u(p)€P for all
p in F In [5, pp. 9-11], Feldman studies the case N = R"*' and shows
that P 1s a model singularity and that Im, (M, R"") is dense in Im(M, R™" .
By using the notation ‘of Section 2, it is not hard to carry on these facts for
general N.

In the case m = 2, P has a very simple description, namely P is given
by the zeros of the polynomial ¢@(x,y,z) = xz — y* defined on Z = R>.
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It can be directely shown that P is a model singularity. It is also clear that
the locus 2(f), of parabolic points of an immersion f : M? — N3, coincides
with the locus of P-singular points of f. The result below is just statement
II of the Introduction.

Theorem 4.3. Let M and N be a differentiable 2-dimensional manifold
and a Riemannian 3-dimensional manifold, respectively. The set Im (M, N) is
open and dense in Im(M, N). For each f in Im (M, N), the set P(f) is either
empty or a closed one dimensional submanifold of M; if M is compact, then
P(f) is a finite collection of disjoint circles.

Proof. Note that X(P) = |0} is a model singularity and that P-genericity
implies X(P)-genericity. Since

3 = codim £(P) > 2 = dim M,

we have p(B(M))nZ(P) = ¢ for any P-generic immersion. By the first
part of Theorem 3.3 and Remark 1), Im (M, N) is open and dense in
Im(M, N). By the second part of Theorem 3.3, 2(f) is a closed submanifold
of M with codim #(f) = codim P = 1, for any P-generic immersion f.

4-c. Umbilic points. If p is a umbilic point, then Lemma 4.1 says that
h18(p) = =R p)R =)
HD) =0, 7 i iR

for each p in F,, where ~ depends only on the choice of e,. This indicates
that, in order to study umbilic points of an immersion f, we must consider
the 1-dimensional vector subspace U given by those elements of Z which
satisfies a,, = ... = a,,,, and a;; =0 for i #j. A straightforward calcula-
tion will show that U is a geometric model singularity. Since U is also a
differentiable submanifold of Z, the umbilic generic immersions Imy(M, N)
are open and dense in Im(M, N). It is also clear that the locus of U-singular
points of any immersion f :M — N coincides with the locus #(f) of
umbilic points of f. When m > 3, %(f) must be empty, otherwise we have

m < mm + 1)/2 — 1 = codim U = codim #( f),
which is impossible. So we have

Theorem 4.4. If m >3, the set of immersions f :M™ — N"*! such
that f has no umbilic points is open and dense in Im(M, N).

From now on we will restrict our study to the case m = 2. If f is an
U-generic immersion, then codim U = dim M, so %(f) consists of isolated
points. Also we are able to give an estimative for the cardinality # %(f),
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when M is compact. In order to do this we need some facts on r-fields and
their properties. We follow [9, pp. 275-278] for this discussion.

A r-cross is a set of r unity vectors in the Euclidean plane such that
their tips form a regular polygon. Note that C,, the family of all r-crosses
in the plane, is homeomorphic to S'. Define the associate bundle C,(M) »M
of r-crosses over M as follows: C(M) = {(p, C,(p)), where pe M and C(p)
is a r-cross in T(M)j. A r-cross field is then defined as a cross section of
this bundle, that is, a map ¢ : M — C,(M) such that no = identity of M.
A point pe M where ¢ is not defined is called a singularity of the cross
field. The index of an isolated singularity is defined on a completely ana-
logous way to that of a vector field. As one may expect, r-cross fields have
some of the properties of the vector fields. The proof of the lemma below
is found in [9, p. 277].

Theorem 4.5. Suppose that o is a r-cross field over a compact orientable
manifold M with a finite number p,, ...,p, of singularities. Then

(M) = SZ Index (o, p)).
=l

Finally we present a criterion for the computation of the index of a
singular point p, of a r-cross field ¢. Let D be the disk about p, over
which TM = D x R?, C(M) = D x C,, and such that D contains no other
singular points of 6. Choose a tangent frame field e,e, on D and let ¢, be
one leg of 6. Define args = ¥ (e,,¢,) and note that arga is well defined
modulo 2n/r, up to the choice of the frame.

Lemma 4.6. Let Y : D — R’ be a differentiable map whose Jacobian is not
singular at p,, and assume that there exists a rational number q such that
q-argy = argo (modulo 2n/r). Then Index (a,p,) = + q, where the sign
agrees with the sign of det [Jac Y(p,)].

For the proof see [1, Lemma 7].

We return now to the umbilic points of U-generic immersions f : M2 —N">.
Let W = N be an orientable neighborhood of an isolated umbilic point
p, such that ¥V = W n M is also orientable. Choose a local tangent frame
field e,e, on V and complete this field with a unit normal vector field v
pointwise chosen. Fix on V and on W the orientations given by e e, and
e,e,v, respectively. Let 7:V — B(M) be the cross section of B(M) which
gives the last frame. For each p in V — p, we may select an orthonormal
basis of T, (M), namely the basis given by the eigenvectors E, E, of A;.
Let 4, /, be the associate eigenvalues and notice that 4, # 4, on V — p,.
BoC At~ Ebs /{—E), i =1, 2, so what we really have are four ortho-
normal bases of eigenvectors with associate eigenvalues 4,, 4,. Although
the eigenvectors of A; give not an unique choice of an orthonormal basis
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for T(M), they arise a 4-cross E, ~VE [ =E,! in " FYM); forieach’p
in V —p,. In summary, we have a 4cross field o : V—>C4(M) with a
singular point at p,. We define the index of p, as an umbilic point of f as
being the index of ¢ at p,.

Theorem 4.7. The set Imy (M, N), of umbilic generic immersions from
M?® to N°*, is open and dense in Im(M N). Moreover the index of any
umbilic point of f in Imy(M,N) is + 1/2.

Proof. Since XL(U) = ¢, Imy(M, N) is open and dense in Im(M, N). Let
po be an umbilic point of f and let V and 7 defined as above. For each p
in V — p, we choose a leg E, of the 4-field ¢ defined on V by the principal
directions of A;. Then 6 = ¥ (e,,E,) is the argument of &, which is
defined modulo /2. Let E, be another leg of ¢ such that E, L E,. Then
E, =cosbtle, +senbfle, and E, = —senfle, + cosfe, or E, = senfe, —
— cosble,. In any case

WS B, SNEP2 A Yobs 20,

2h3, = (4, — 4,)sen 26,

12

where ~,, #, are real functions on V such that A4° le) = +{p) Eyfor i=ily 2.
Thus on V — p, we have

2

7 e W]
h?l TE hgz

and this equation determines 6, modulo n/2. This indicates that we must
consider the map y : ¥V — R? given by

Y, v) = (h}, — h3,,2h3,) (x(u, v)),

because for such ¥ one has tg(argy) = tg 26, which implies that

n

;argy = arg ¢ (modulo %)
on V — p,. In order to apply Lemma 4.7 and finish the proof, we only

need to show that det [Jac(¥(p,))] # 0. For this we observe that the model
singularity U is given by the zeros of the polynomials

(01(3) 3 h? hiz, (pz(:) T h?za
where - = (h{,,h},,h3,)€Z. From Lemma 3.2 it follows that the map

@(u, v) = (hy; — h3,, h3,) (2(u, v))
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has non singular Jacobian at p,. But

57,3 A3 33
det Pacty(py)] = (”2; . ) <z 0’11_2) .

cu

b oh? | i an, 5 oh?,
ov Ov du

= 2det [Jac (@(p,))].

which finishes the proof.

Assume now that M? and N* are orientable and M? is compact. Then
#(f) is a finite set of points {p,,...,p,} in M, for each U-generic f Since
x(M) is an integer, we apply Theorem 4.7 and Lemma 4.6 to conclude that

#U(f) |

|x(M)l = Y |Index (o, p) = -

gzl

If M is not orientable, we may consider the orientable double covering
M -2 M of M. The immersion f=fn:M- N is easily seeing to have
the following properties:

1. B(M) = B(M),
2. given pe M and p €M such that n(p) = p, then pe %(f) if and only if
peuf).

Thus f is also U-generic and, since # [7"'(p)] =2,
#US) = 54 US) 2 (M) =2 (M)
We summarize this discussion as follows.

Corollary 4.8. Let M? be a compact differentiable manifold and N* be an
orientable Riemannian manifold. Then there exists an open and dense subset
of Im(M, N), namely ImyM, N), such that

2lxM) = #u(f) <

Jor each f in Imy(M, N). Moreover, if M is orientable, then ¥ AU(f) is even.
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