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Periodic solutions of a nonlinear propagation equation via a
fixed point argument

Mauricio Vieira Kritz

Abstract.

In this work the initial value problem for the equation
u + fu, + yf(u), —ou_, =g, Vx€R, Vte [0, T),

with periodic boundary conditions is interpreted in the sense of periodic
distributions and studied via fixed point arguments. Weak solutions exist
if feC%R) and ge L*(L*(0, 1)). Moreover, regularity in f, g and the initial
data implies regularity of solutions.

1. Introduction.

Let f and y be real numbers and 6 and T be positive real constants
(under proper conditions T may be + o0). We shall consider the following
problem: :

Given real functions f and u, defined on R and a real function g
defined on R x [0, T), find a real function u defined on R x [0, T) such
that

(1.1) u + pu, +yfw), — ou, =g, Vx€eR, Vte [0, T),

(1122) u(x, 0) = uy(x), Vx€R,
and
(1.3) u(xisL p)i=tu(oe, 1), Vte [0, T).

The above Equation (1.1), is a generalization of

xt

(el u + fiu, + yuu, — ou_, =0,

which was proposed by T. B. Benjamin, J. L. Bona and J. J. Mahony in
[1], as an alternative for the KdV equation, to model the propagation of
long waves in nonlinear dispersive media.

The homogeneous case of problem (1.1)-(1.3) was studied by L. A.
Medeiros and G. P. Menzala in [2]. There they showed ekistence and
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uniqueness of classical solutions when the third derivative of u, is square
integrable. Also M. M. Miranda studied this problem in [5] where theo-
rems concerning the existence of weak periodic solutions are presented.
Numerical algorithms for computing solutions of this problem were ana-
lysed by M. A. Raupp [9]

The generalized problem (1.1)-(1.3) was first studied by B. P. Neves
[7], [8] In [7] the author obtained theorems asserting existence of
classical and weak solution but only for f =0, y <0, g =0, and f two
times differentiable with positive first derivative. These conditions are
clearly not satisfied in equation (1.1), where f(s) =s?/2. In [8] the
restriction that f” > 0 is relaxed for infinitely differentiable f. In [4] L. A.
Medeiros and M. M. Miranda proved the existence of weak solutions of
(1.1)-(1.2) with the more stringent boundary condition

(1.3) u(0,1) = u(l, 1) = 0, Vte [0, T),

which are defined on [0,1] x [0, T). A numerical analysis of problem
(1.1)(1.3), by C. A. de Moura et al, can be found in [6]. The non-periodic
problem (1.1)-(1.2) was studied by Fixed Point techniques by L. A. Medeiros
and G. P. Menzala [3].

The aim of this work is to study the existence, uniqueness and regula-
rity of solutions of the periodic initial value problem (1.1)-(1.3). The approach
that will be taken 1s quite different from the above mentioned works on
this and related problems. The existence theory results from an application
of the Schauder fixedpoint theorem. As a consequence, solutions which
are global in time are obtained directly, rather than by iteration. Moreover,
existence of weak solutions is warranted provided the nonlinearity f is
continuous. Uniqueness of solutions, corresponding to a given initial data
u, and g, is established when f is a locally Lipschitz function.

In the following we interpret problem (1.1)-(1.3) in the sense of periodic
distributions theory. Making the nonlinear term independent, we decom-
pose equation (1.1) and solve the associated linear equation by standard
Galerkin procedures (the Fourier series method is not appropriate for this
linear equation). Then we obtain a fixed point by mean of Schauder’s
Fixed Point Theorem. A “bootstrap” argument is again used to study
regularity.

It is shown that weak solutions exist when f is continuous and are
unique if, in addition, /* is Lipschitz. Moreover, the solution is as regular
as u, and a bit more regular than f and g.

. In section 2 the framework and the weak form of problem (1.1)-(1.3)
that will be used are introduced and it is shown that f can be replaced
by a slightly different but more convenient function. In section 3 existence
and regularity of solutions of the associated linear equation are analyzed.
Finally, in section 4, a fixed point argument is used to lift the results to
the nonlinear equation.
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2. The weak formulation.

Before presenting the weak form of problem (1.1)-(1.3), we need to
define some notation and standard results that will be useful later. The
following is a list of spaces for further reference:

P, = H°(0,1) = L?(0, 1), the space of square integrable functions on (0,1);
HX0, 1), the space of functions in P, with (generalized) derivatives up to
order k belonging to P,:

P,, the closed subspace of H*0,1) whose functions v are such that
Div(0) = Div(lyfor i =0, ...,k — 1;

C*(I), the space of continuous functions whose derivatives up to order k
are continuous on I, | — R;

C*(1I), the space of infinitely differentiable functions on I.

All these spaces are endowed with their usual topologies. For subs-
paces, the topology of the larger space is induced. We denote by D, (resp. D,)
the derivative with respect to x (resp. t). If i is a non-negative integer, D'
and D; are the i-th powers of D_ and D,. In the sequel V will stand for a
Banach space. Its dual space will be denoted by V' and the duality pairing
will be denoted by (-, ). The innerproduct and norm of H¥0, 1) (and P
are denoted respectively by

(21) k.= 0 WD
i=0

and
k

(2.2) B B 1208 8
i=0

except for k =0 when (-,')=(-,"),.
We need also to consider the space of periodic test functions

2,(0,1) = {pe C([0,1])| D @(0) = D (1), Vi,

and its dual 2/(0, 1), the space of periodic distributions. A sequence {¢,}
converges to ¢ in 2,(0,1) if and only if Di¢p, — D¢ uniformly for all i >0
(note that D% = ¢). Its dual 2'(0,1) is endowed with the weak* topology.
More information on these spaces can be found in [10, Chap. IV].

The spaces above are spaces whose elements are functions of a single
variable (which will be the spatial variable x). To take account of the
variable t we need some spaces of strongly measurable functions from
[0, T) into ¥, a Banach space. The space L!(V) of integrable functions is
normed by
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T
23) i f () dt.
0
Its subspace L*(V), of essentially bounded functions, is normed by

|

= ess sup |u(t)l,.

a0
i 1[0, T)

The subspaces of L*(P,) defined by
K(m, k) = {ue L*(P)| Diue L*(P) i =1,...,m},
are endowed with the product norms

= max |Diul

0o<i<m

Ul Loy

for all non-negative integers m and k.

The following properties of these spaces will be used in the sequel
As P, is a closed subspace of HX0,1) it follows that P,,, is compactly
imbedded in P,. Since 2,0, 1) contains the trigonometric basis and P, is
a subspace of C*7'[0,1], 2,(0,1) is densely imbedded in all P,. This last
statement is a consequence of Fourier series convergence theorems [12].
Finally, by the compactness criterion of Lions-Aubin [11, Chap. I], the
space K(1,1) is compactly imbedded in K(0,0) = L®(P).

Next we point out in what sense the weak solutions of problem (1.1)-(1.3)
are to be considered. Since 2,(0,1) is dense in P, and P,, we identify P,
with its dual and consider all the spaces P, and their duals as subspaces of
2,(0,1). Then the weak problem is to find a function u € K(1, 1) such that
for almost every t€ [0, T)

(2.5) Cuft), 9> — Blu(®), @,> — y{S(®), @,> + 6<u (1), 0. > =
= <4(1), 9>, Voe2,0,1),
(2:6) u(0) = u,.
Since solutions of the weak problem should be in K(1,1) (conditions
under which such a solution exists will be made precise in section 4),

equation (2.6) makes sense. Moreover, due to the density of 2,0,1) as a
subspace of P,, (2.5) can be modified to read as follows

2.5y Cu(t), v —-Bu(t), v,) — YD), v,> + 0Cu ), v,> =

=Lglt) vy, YoeelP,, telb T)ae
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From now on, and without any loss of generality, we shall take
Hen=0=1

The following lemmas show that under reasonable conditions on f
and g, f can be replaced by another function f*, as regular as f, which is
bounded and constant outside a bounded interval. This will be necessary
for some arguments of section 4.

Lemma 2.1. If geL'(P,) and f € C°R) then any solution of the weak
problem is uniformly bounded. That is, there is a constant C depending only
on g and u, such that

2.7) €ss sup sup |u(x,t) < C.

te[0, T) xe[0, 1]

Proof. Choose v = u(t) in (2.5), then it follows that
(2.8) (u,(2), u(?)) + (u (1), u (1)) =
= (u, (), u(®)) + (S (1)), u (1)) + (g(2), u(t))

almost everywhere in t. But if ve P,

1 a1
(29) (v,v) = J vo dx = j <T) dx = 02|é = 0.
0 0 X

Generalizing this, if F is any primitive of f, it follows that

1 v(x)
(210) (f(v),v) = f f)v dx = J D _F(s) ds = F(v(1)) — F(v(0)) = 0,
0

v(0)

for all ve P,, since v(0) = v(1). Thus, for almost every te [0, T),

(u(t), u (1)) = (f @l0), u(6) = O,

and so

2 D(u()l5 + 1u(0]5) = (g(t), u(t) =< g(D)]o [u(®)],.
Integrating the above equation we obtain

T

[u(®)? < |ugl? + 2 j 1g(D)lo lu(T)l, dt,

0
and from this it follows that

t
ess sup |u(t)|} < |uyl? + ZJ g(0)lo lu(t)l dr =
te[0, T) 0



222 M. V. Kritz

Swaf+2mswpwmbj ol

te[0, T) 0

Therefore, for any ¢ < 1,

(2.11) (1 — €) ess sup |u(t)? =< |uyl} + Llgl}ip,)

(2.11) implies (2.7), as sup |v(x)| < c|v],, if veP,.

Lemma 2.2. Let f€C%R) be Lipschitz on any bounded interval. Then
there exists at most one weak solution satisfying (2.7).

Proof. Let u,, u, be two solutions of the weak problem. Then w = u, —
— u, € K(1, 1) satisfies

(2.12) (W (®), ) — (W(2), v) — (f (u, (1)) — flu,(®)),0,) +
+ (w,,v) =0, VveP,,
for almost every t. For v = w(t), equation (2.12) becomes
2 D(W)IG + W (D) = (W), w,(0) + (f (u (1) — S (u,(0)), w,(0)),
which by (2.9) implies that
2D WO S 1 (uy(0) = fuy@O)lg 1w @),

Let L be the Lipschitz constant of f on [— C, C], where C is the constant
of (2.7). Then,

S, () = Syl = Liwlo)l,
and
(213) D W)} < L(w(®)ig + Iw,(0I3) = L Iw(e)I}
from which it follows that

ess sup |w(t)l? < LT |w(0)? = 0.
te[0, T) J
Therefore, w = 0.

Lemma 2.3. Suppose that f is Lipschitz continuous on bounded intervals
and that the solution of the weak problem satisfies (2.7). Then there is a
bounded function f*, as regular as f, such that the solution of the weak
problem with equation
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2.5 <ufo),v) — ult), v,y — {SHuD), v, + {u o), v,> = <gt), v>

which satisfies (2.6) is the same as that of (2.5).
Proof. Take C as the constant of (2.7). If f is continuous let

s e i) e
2.14) o= lfe | e o

O i S0

Now let u* be a solution of the weak problem for equation (2.5)". We
can suppose that u* satisfies (2.7) with the same constant as the original
solution u (because, u, and g are the same and then

(2.15) Sru*(x, 1) = fu*(x, 1)

almost everywhere in x and t. Consequently u* also satisfies equation (2.5),
and by Lemma 22 u* = uu.

Suppose now that f has more regularity, say f € CXR) for k > I.
In this case we define f* to be

e S| RS o R

. if C<—-—s5s<C+e,
(2.16) f*s) =4 16), if |s=<C,
6 ifus Gacs <@ ohee,

2

f(C + ¢), if s>C+e

where 0,, 0, are generalized Hermite interpolants on [— C — ¢, — C] and
[C, C + €], respectively, such that

01(_C_8)= f(_C_8)7
(2:1.7) D:0,(-C—¢ =0, e O o

Di 8,(— C)

D;f(— G); 1 =0k
and

0,(C + 8 = f(C+9)
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(2.18) DiL0,(C +¢) =0, ik

D'.0,(C) = D £(0), i=0,..,k
Then clearly f*e€ C*(R) and u* satisfies (2.15). Therefore, u* = u.

3. The associated linear equation.

The study of solutions of the weak problem will be pursued in two
steps. First, we reduce the non linear equation (2.5)" treating the non
linear term as an independent one, thus obtaining a linear problem whose
solution depends upon a given function w. That is, given w in a proper space,
we study solutions of

(3.1) Cuft),v) — <ult), v, + (u (t),v.) =
= {f*w@) > + {g(t),v), YveP,, ae t €[0,T),

(8.2) u(0) = Uy,

which belong to K(1,1). Secondly, the mapping that associates u, the
solution of (3.1)-(3.2), with the function w is shown to have a fixed point.

In this section we consider the linear problem derived from (3.1)-(3.2)
which, given functions g(x, t), h(x, t) and u(x), is to find a function ue€ K(1, 1)
satisfying (3.2) such that -

(3.3) Cut),v) — <ult), v, > + u(b),v,> =

= {g(t),v) + <h(t),v,), VveP,,

almost everywhere in t.

Two results are presented below. The first is concerned with existence
and uniqueness of solutions of the linear problem. The second relates the
regularity of solutions to the regularity of h, g and u,,.

Theorem 3.1. if uy€P,, h and ge L*(P,) = K(0,0), and T < oo, then
there exists a unique function ue€ K(1, 1) which satisfies (3.3) and (3.2).

Proof. The argument follows the usual path of the energy method in which
compactness theorems are used. So we shall have three steps:

1. Finite dimensional approximation in Xx,
2. A priori estimates,
3. Passage to the limit.
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Step 1. If i and m are non-negative integers, let

i c; cos (mix) when i is even,
7 e sin (m(i — 1) x) when i is odd,

L
m)

V,

m

Span (wy, suaw
and

Vi —=span {{W;, ... W

® m> te

Hi=hGRl

where ¢; are normalizing constants. Observe that

34 VacV,cV,=2)01)

whenever m <n and that V,_ is a dense subspace of P, for all k, since
{w};>0 1s a basis of P,. This last claim, which implies that 2,(0, 1) is dense
in P,, is a consequence of convergence theorems for Fourier Series [12].
We define the finite dimensional approximation problem to be the finding
of a function u,, : [0, T) = V, such that

(3'5) (um,(t)’ W,‘) T (um(t)9 w,'x) A (um,“(t)’ w,'x) =5
= (g, w) + (h(t),w,), O0=<i=m, te][0,T),

(3.6) u,(0) = ug,,

where u,,, is such that u,, €V, and u,, = u, in P,. More precisely, we
take u,,, to be the truncated Fourier series of u, and recall that, as u,€ P,,
Ugm — Uy in P,. Writing

um(x, t) 5 Z a‘-(t) Wl-(X),

i<o
hon() = T o),
and putting
alt) = (@,(2), ..., 4, ()7,

T
i =t (o, o

it is easy to see that (3.4)-(3.5) is equivalent to the problem
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3.5) (A + B)o' = Ca + F(t),

(3.6) A0) = o,

where the matrices 4, B and C have as their elements the quantities

A = (w,w),

¥

Bl] = (“119 M.jx)’
Cij = (o)
and the vector F has the components
F(t) = (h(t), w,) + (g(t), w,).

The existence of a unique measurable local solution of (3.5)-(3.6) in
[0, T) is assured, since A + B in non-singular for all m.

Step 2. Since (3.5) is equivalent to
37 (u,(t),v) — (u,(),v,) + (4, () v,) = (9(t),v) + {hie), v.), . Noe V.,
choosing v = u,(t) leads to

d
003 + ) =

= (U(2), U (1)) + (9(2), 1, (8) + (h(D), u,, (1))

and

d
S [u (01 = 1g(t)lo [u(®ly + 1h()] 1t (Do

| —

(3.8)
since (u,,(t), u,, (1) = 0. Integrating (3.8), we have

|t (O1F =luomli + 2j 19(lo lun(t)lo dT + 2J~ 1h()lg [t (D dt,

0 0

and so

T T
ess sup |u, ()12 =< |ug,l3 + ZJ 1g(7)l lu,(T)l dT + 2J 1h(T)lg [t (D AT
te[Q_T) 0 0
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This, by the same reasoning used to arrive at (2.11),

(3.9) (1 — ¢, —¢&,) ess sup |u,(t)? <
te[0, T)

1 1
< 2 ) 2 it 2
= lugmly + = 19l11pg + L py-
3 2

Then, for £, = ¢, small enough, it follows that

(3.10) & 0 Silmlt -+ Cllgh . + B30 = Ko,
te[0, T)

from (3.9) and the inequality |u,,|, < |ugl,.

Estimate (3.10) is enough to guarantee that we can take t, = T in
Step 1 but, to pass to the limit, another estimate is needed and to obtain
it we take v = u,(t) in (3.7). Thus,

|t (D13 + |ty (DI =

= (Up(2), U (1)) + (g(2), U, (1)) + (h(2), u,, (1))
Consequently,
|t (O3 S | (D5 + 3 (14,0, (B3 +
+ 319013 + 5 (O3 + IKOI5 + § |t (I3
and
(3.11) |t () < 210, ()3 + 19015 + 2113
Therefore,

(3.11y ess S;lp l (0F = |ty SI2KE o (gl ¥ 200G s
te[0, T)

Step 3. Estimates (3.10), (3.11) mean that the sequence u, is bounded in
K(1,1). Hence, by the weak* compactness of bounded sets in K(1, 1), we
can extract a subsequence of u, converging weakly* to a function u € K(1, 1).
Denote the subsequence by u,, for convenience.

But, K(1, 1) can be identified with a closed subspace of L*(P,) x L*(P,).
Also [*(P,) is the dual of L'(P}) and

i W A
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with dense imbedding. Then L'(P,) = L'(P,) continuously and the weak*
convergence of u, to u in K(1,1) means that

T

T
(3.12) j- (D%, D} u,(2), v(t)) dt- — f

(D, D! u(t), v(t)) dt,
0 0 s
for 0 <ij<1 and for all ve L'(P,). Thus, a fortiori, (3.12) holds for all
ve L'(P)).
Therefore u satisfies

T
(3.13) J- [(u (@), () — (u(t), v, (1)) + (u(0), v,(2)]dt =
0

T
& J' [(g(2), (1) + (h(r), v, (2))] at, VoeL'(P,).
0

In particular, (3.13) holds for u(r) = 6(t) w(x)€ L'(P,), where wEP,
and 0(t) = y(A)~' & ,(t), for A an arbitrary measurable subset of 0, 7)
with positive measure and &, the characteristic function of 4. Hence any
solution of (3.13) is also a solution of (3.3).

Since (3.11)" implies that u is a continuous map of [0, T) into B
satisfies (3.2). This accounts for existence.

To show uniqueness, note that, if u; and u, are two solutions of (3.3)-
(3.2), then w = u;, — u, satisfies the relation

(3.14) (w(1),v) — (W(t),v,) + (w(t),v,) =0, Vve P ate S i el[0) )
and is such that w(0) = 0. Take v = w(t). It follows that

1

d it
(3.15) 7 F'W(tﬂl =0,

and since w(0) =0, w =0 in L*(P,) > K(1,1).
The regularity theorem is as follows.

Theorem 3.2. Suppose that u, € P, , and that g and h belong to K(&,k)
Jor some positive integers & and k. Then u, the solution of (3.3)-(3.2), belongs
to K@ + Lk + 1)

Proof. To prove that u€ K(¢ + 1, k + 1) it is enough to show that u, is
bounded in this space. To see this, note that the space K(, k) is continuously
imbedded in K(1, 1) and can be identified with a closed subspace of a power
of L*(P,). Then repeat the arguments in Step 3 of the proof of Theorem 3.1
to see that any subsequence that converges weakly* in K@ + 1, k + 1)
converges to the solution of (3.13).
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To show the boundness of u, in K + 1, k + 1), observe first that,
as g and h belong to K(2, k), then D/g and D’h belong to K(0,0) for 0 <j < g,
Next, since

Di(f (1), w) = (DIf(1),w), Yi=0,
when Dif € L*(P), it follows that (with F as in (3.5))
DIF(t) € L*(R").

Due to his fact we can differentiate equation (3.5) j times (j < #) to arrive
at the relation

(3.16) Di*'a = (A + B)"' CDia + (A + B)™' DIF(1).

Now, by the Caratheodory Theorem, on the existence of solutions of
Ordinary Differential Equations,

DJae L*(R™), 0<j<g+1
Consequently,
Diu, € L*(V,), o=y i it
Moreover, (3.16) is equivalent to
(3.17) (DI ' (1), v) — (Diu (1), v) + (DI D u, (1), v,) =
= (Dig(t),v) + (D!h(1),v,)
for all veV,, whenever 0 <j < g Thus if we take v = D/"'u, (1) in (3.17),
IDI* Yu, (02 + ID,DI* u (o) =
= (Diu,(t), D DI 'u, (1) + (Dig(t), DI* u, (1)) + (Dh(t), D,Di* ‘u,,(1)).

Thus,

(3.18) IDI* 'u, (02 < 2|Diu, (I3 + IDigt)3 + 2IDh(NE, 0 <j <2
(note that for j = 0 we have (3.11)). Thus, recursively,
@AY, ) [Bitte 2 Ol MR bl i o + RIS o)

for 0 <j <. The estimate (3.19) means that u,, is bounded in K(& + 1, 1).
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: Next we shO\y that the spatial derivatives are bounded. To do this
pick v = D?'u,(t) in equation (3.17) and integrate by parts i times. Then,

(3.20) S A inty

> o (D, (i + 105 ', (1)3) =

= (D, (8), D ', (1)) + (Dig(t), Dl (1)) + (DLh(t), Di* 1u (2)).

x m

But since Diu, €P, (diu,1), D" 'u,(1) =0, and thus (3.20) implies

xm

I
— (Dl (03 + 1D ', (0F) <

< 1 D2g(0)ly ID5u, (), +IDih(t)lo|Dstn(0)l o,
which integrated in time is

DG £ D (R B e Ay

0

+ J ID g(t)lo IDiu, (1)), dT + f IDLh(D)lo 1D ', (2)G .
0

Since g and he K(0, k) and u,€ P, we have, by the argument used
for (3.10), that

(3.21) ID u

x"'m

&

i :
6.5 DK 'u =

IZ
m'Q, 0

= |Diugly + 1D 'ugl + ClglLrpy + 1hiEs,),

for 0 =i <k That is, u, is bounded in KO,k + 1).

One is left now with the estimation of the mixed derivatives. For this
purpose, for 0 <j <g and 0 <i <k, take v = D/*' D?y, () in (3.17) and
Integrate by parts i times in x to obtain

DI \Diu, ()3 + |DI DI Yy, (1) = (DD u (0, D2 L DE Yy ()
+ (D/Dig(1), DI* ' Diw, (1)) + (DIDih(t), DI* ' Di* 'y, (1)).
Then

(3.22) ID{* 'Diu,(0)3 + |DI*' D 'u, ()2 <

X

<.2|D{Diu,(1)3 + IDIDig(t)2 + 2 |DIDih(r) 2.
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The above inequality for j = 0 is

ID, D u,(t)3 + DD Tu, ()2 <

e

< 2|Diu,(0)g + |Dig(t)2 + 2DLh(1)2,
whose right-hand side is bounded for all i as a consequence of (3.21).
Therefore, by recurrence on j, (3.22) implies

(3.23) DI o o 1D D el &

x m

= C(DLugl* + DL 'ugl + Ig12sp,y + (Mise,y + D317 o + IDLALS o)

forlOi= = Qi= ¢ =<'k
Estimates (3.19), (3.21) and (3.23) show that the sequence u, of solu-

m

tions of (3.5) is bounded in K(% + 1, k + 1), and therefore ue K(2 + 1,k + 1).

Remarks.

1. We may take T = oo in Theorems 3.1 and 3.2 by requiring that g and
h belong to K(0,0) n L'(P,), g and h belong to K(&, k) n L'(P,) respectively.
2. The constants appearing in estimates (3.19) and (3.23) depend on ¢,
growing with it. Thus, Theorem 3.2 does not take care of the case & = oo.
However, this is due to term (i, v) in equation (3.3) and, since this term can
be embodied into (f(u),v,), this limitation will have no significance in the
nonlinear case.

4. The non-linear equation.

This section is devoted to showing that, for functions w belonging to
a properly chosen space, the operator which associates the solution of
(3.1)-(3.2) with w is well defined and has a fixed point. Also, through a
“bootstrap” argument, solutions of (2.5)" are shown to be as regular as u,,
J and g.

Theorem 4.1. Let u,€ P, and g€ K(0,0) and let f € C°(R) be Lipschit:
continuous on bounded intervals. Then if T < oo, there exists a function
ue K(1,1) satisfying (2,5)-(2.6).

Proof. After Lemmas 2.1-2.3, we can work with equation (2.5)". Let
we K(0,0). Since f* is bounded, say

(1) sup | f*(s) < C*,
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then
4.1y |f*(w(®)l, = C*,
and f*(w)€ K(0,0). Therefore, by Theorem 3.1, for each we K(0,0) there

is a unique solution u,, of (3.1)-(3.2). Moreover u, € K(1,1) = K(0,0). Thus,
the operator

(4.2) F : K(0,0) —» K(0,0)
w—o F(w)=u,

is well defined.

) Next we see that operator F is continuous and maps K(0, 0) into a bo-
unded subset of K(1,1).

To show continuity of F let w, and w, be in K(0,0) and set u, = F(w))
and u, =F(w,). Then, y = u, — u, satisfies

(4.3) ), v) — (1), ) + (y (1), 0,) =
= (f*(w, (1) — [*(w, (1), v,), YveP,, te [0, 7)
and y(0) = 0. Taking v = y(t) above and using (2.9), equation (4.3) yields

1

5 (Y@l + 1y 013 = 1£*w, (@) — *(w,0)lg [y, Dlo-

&\&

But since f* is Lipschitz continuous, with constant L,

Lf* W (0) = [*(w, (g S Liw,(t) — wy(D)l,.

And

d
—r VOIS L w (1) — wy(t)lg + X015,
which implies, integrating and using Gronwall Lemma, that

(4.4) IMD)I? < L*exp(2) J" lw,(t) — wy(1)I3 dr.
0

Therefore,

(4.5) Uy — le o < LT 2 exp(T/2)Iw, — w

20,0

so that F is continuous.
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To _prove F maps K(0,0) into a bounded subset of K(1, 1) let v = u(t) =
= F(w)(t) in (3.1). Then,

(), u(t)) + (u (1), u (1) ={S*(w(1)), u (1)) + (g(t), u(r)),

as a consequence of (2.9). This implies the inequality

u(t)lz S SO lu (0l + 1)l [u(®)lo,

0| —
&1&_

and so
u(e)? < jugl? + f |f*(wW(D))lg lu ), dT + j (1)l lu(T)l, dt.
0 0

Then, by the same arguments as for (2.11), (3.10) we arrive at

2
(4.6) g, < 2uol} + 19131pp) + (f |f*0wt) *d‘>
and since, by (4.1),

7
f |f*w(@®)odt < TC*,

0

inequality (4.6) yields the bound
4.7 iy 1 = 2lugly + 18lfap, + TC) =K,

where K, does not depend on w.
Also, taking v = u(t) in (3.1), we have

(0I5 + lu ) =
= (u(t), u (1)) + (S * (WD), u (1) + (g(2), u(t)).

Pursuing now the same steps that were used to obtain (3.11), the above
equality implies that

lu (012 < 21u@®)3 + | *w@)2 + 2190013
so that, using (4.1),
4.8) )i . < 2K, +(C* + 2193, = K,

where K, does not depend on w.
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Estimates (4.7)-(4.8) show that F(w) belongs to a bounded subset of
K(1,1) for all we K(0,0). Hence F is a continuous operator which maps
the closed convex set K(0,0) into itself in such a way that its range is a
precompact subset of K(0,0). Therefore Schauder’s Fixed Point Theorem
ensures the existence of a fixed point for F. That is, there is an element
u€ K(0,0) such that F(u) = u. This is obviously a solution of (2.5)".
Moreover u belongs to the range of F and thus ue K(1, 1).

Remark 3. Theorem 4.1 gives solutions of (2.5 for T < co. If the
hypothesis are changed to require that

4.9) g€ L (P L(P,)

we may take T = oo. This can be done in the following way. Let T, <
be such that nT, = T. Theorem 4.1 says that there is a function u, : [0, T,) > P,
solution of (2.5 and Lemma 2.1 implies that

T,

(T} < lugl} + Cf lg(®)l, dt.

0

Since the arguments of Theorem 4.1 are independent of the origin of time
there is a function u, : [T,, T,) = P, solution of (2.5) such that u,(T,) =
= u,(T,). Therefore

i) {ul(t), if te [0, 7))
w0 i 1e (T, L)

is a solution of (2.5) on [0, T,) satisfying
u(0) = u,

and

T, T2

lg®) dt < |uyl? + C J lg(t)) dt.

0

T2 = (T2 < fu (TP + C f

T,

Repeating the process, we can define u on [0, T). Clearly this proce-
dure can be repeated indefinitely, and u may be extended to [0, o).

The next theorem tell us about the regularity of solutions of (2.5)".
First note that equations (1.1) and (2.5) are invariant when f (or f*) are
replaced by f — f(0)(f* — f*(0)). Thus we can suppose, without loss of
generality, that f(0) = 0. In this case, using a result of Sobolev [5], it is
easy to see that f(w)e K(m,k) if we K(m, k) and f e C%*(R), where % =
= max (m, k). Then we have:
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Theorem 4.2. In the case that f € C4(R), g€ K(m, k), uye P, , .and T < oo,
the solution u of (2.5)" (or(2.5)) is such that

(4.10) ue Kim+ 1,k + 1).

Proof. Since K(m, k) = K(0,0) and P,., = P, there exists a function
ve K(1,1) which is a solution of

@11 (@), ) = (1), v) + (u, (1) v,) = (f(W(),v,) + (g(t),v), VveP,

If m=k =0 there is nothing to do. If m, k>0, let h = f(u(t)). Since
u€ K(1,1) so is h. Then, by Theorem 3.2, ue K(2,2). This reasoning can
be repeated until he K(m, k), showing that ueKm+ 1,k + 1).

Remark 4. If ge K(m k) n L'(P,) the result of Theorem 4.2 remains true
for T = oo because Theorem 3.2 can be used when T = oo for fwyeL(P)
and, if f(0) =0 and fe€CXR), we L'(P,) implies that f(w)e L'(P,).

Remark 5. With a slight modification in the argument of Theorem 3.2,
one can weaken the hypothesis on g, in both regularity theorems, by requi-
ring that ge K(m, k — 1).

Concluding, we observe that the weak solutions for m > 0 and k > 1
are indeed classical solutions.
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