Embedding Lens spaces in a homotopy type of CP(2)

Janey A. Daccach

1. Introduction.

In this work we give partial results on embeddings of Lens spaces in M^4 where M^4 denotes a four dimensional manifold having the homotopy type of CP(2).

The results presented here were motivated by Epstein's work [2], where he shows that L(2k, q) does not embed in S^4 .

All maps and manifolds involved here are C^{∞} , and M^4 always denotes a connected closed four dimensional manifold having the homotopy type of CP(2).

2. Statements of Results.

Basically we obtain non-embeddability results of L(n, q) in M^4 .

Two cases will be considered. The first case concerning n odd, and the second $n \equiv 2 \mod 4$.

In the first case we make use of the μ -invariant, wich is defined for every Z/2Z — homology 3-sphere.

In the second case we use results obtained by Rocklin [5].

The main results are contained in:

Theorem 2.1. If n is odd and L(n, q) embeds in M^4 then $\mu(L(n, q))$ is zero.

Theorem 2.2. If $n \equiv 2 \mod 4$, then L(n,q) does not embed in M^4 .

3. Outline of the Proofs.

A $\mathbb{Z}/2\mathbb{Z}$ homology 3-sphere X, bounds an orientable four-dimensional manifold Y with the properties:

- 1) $H_1(Y; Z)$ has no 2-torsion
- 2) The intersection form in $H_2(Y; Z)$ is even.

So the μ -invariant of X is defined by $\mu(X) = -\tau(Y)/16 \mod 1$, as an element of Q/Z, where τ denotes the signature of Y.

Let us suppose now that L(n, q) embeds in M^4 .

Since $H_3(M^4; Z) = 0$, L(n, q) separates M^4 in two components.

Embedding Lens spaces in a homotopy type of CP(2)

So we have $M^4 = A_1 \cup A_2$ and $A_1 \cap A_2 = L(n, q)$.

Lemma 3.1. If n is odd and L(n, q) embedds in M^4 , then L(n, q) bounds an orientable four manifold Y such that:

- 1) $H_1(Y; Z)$ has no 2-torsion
- 2) $H_2(Y; Z) = 0$.

Proof. The proof follows easily by applying the Mayer-Vietoris sequence to the decomposition $M^4 = A_1 \cup A_2$.

Now the proof of theorem 2.1 follows from this lemma; since $H_2(Y;Z)=0$ we have $\tau(Y)=0$ and so $\mu(L(n,q))=0$.

When n is odd and q even, there is a recipe to compute $\mu(L(n, q))$; see [3, p. 51]; which can be described in the following way.

There is a unique expansion

$$\frac{n}{q} = b_1 - \frac{1}{b_2 - \frac{1}{b_3 - \frac{1}$$

where $|b_i| \geq 2$.

Denoting by P^+ the number of positive b's and P^- the number of negative ones then we have $\mu(L(n,q)) = (P^+ - P^-)/16 \mod 1$.

With respect to canonical orientations we have that L(n, q) = -L(n, n-q), and so this recipe can also be used to compute $\mu(L(n, q))$ for q odd.

Lemma 3.2. Let n be an odd number: then $\mu(L(n, 1) = -\frac{n-1}{16} \mod 1)$ Proof. Induction on n.

Corollary 3.3. If $n \not\equiv 1 \mod 16$, $n \mod L(n, 1)$ does not embedd in M^4 .

Comment: The result of corollary 3.3 can be used to show that the classes $n\alpha$ in $H_2(M^4; \mathbb{Z})$, n odd $n \not\equiv \pm 1 \mod 8$ can not be realized by S^2 .

If the class $n\alpha$ could be realized by S^2 , the Euler number of the normal bundle of S^2 in M^4 would be n^2 , and so the associated sphere bundle would be $L(n^2, 1)$, which is impossible by corollary 3.3.

So in this case corollary 3.3 gives the same sort of information as a theorem of Kervaire-Milnor [4, p. 1652].

Now we outline the proof of theorem 2.2.

Let U_h denote a non-orientable surface of genus h, and $N(2k, q) = \min\{h/U_h \text{ embeds in } L(2k, q)\}$.

Bredon and Wood [1] have shown that U_h embeds in L(2k, q) iff h = N(2k, q) + 2i for some integer $i \ge 0$.

In the same work Bredon and Wood presents an alternative recursion formula N(2k, q):

$$N(2, 1) = 1$$

 $N(2k, q) = 1 + N(2(k - q), q')$ for $0 < q < K$

$$q' \equiv \pm \bmod 2(k-q) ; 0 < q' \le k-q.$$

Lemma 3.4. N(2k, q) and k have the same parity.

Proof. Using induction and the recursive formula above it is easy to show that N(2k, q) + k is even for all k.

From now on we consider just the case n = 2k where k is odd.

By the above results we have U_h embedded in L(2k, q) for some odd integer h.

If L(2k, q) embeds in M^4 we have U_h embedded in M^4 . Since the normal bundle of L(2k, q) in M^4 is trivial, the normal bundle of U_h in M^4 has a non-zero cross-section.

Thus the class represented by U_h in $H_2(M^4; Z_2)$ is the zero class and the normal Euler number (twisted) of the normal bundle of U_h in M^4 is zero.

Using Rocklin's results [5, p. 47-48] we can construct a ramified double covering

$$Y$$
 $\downarrow \pi$
 M^4

ramifield exactly over U_h where

rank
$$H_2(Y; Z) = 2$$
 rank $H_2(M^4; Z) + h$

and $\tau(Y) = 2 \tau(M^4) - a/2$ where τ is the signature and a the Euler number. So rank $H_2(Y; \mathbb{Z})$ is odd and $\tau(Y) = 2$.

This contradiction proves theorem 2.2.

Comment: It is known that the class 2α in $H_2(CP(2), \mathbb{Z})$ can be represented by S^2 and so using the same argument of the last comment we have L(4, 1) embedded in CP(2).

We do not know in general if L(4k, q) embeds CP(2).

References

- [1] Bredon G., Wood J., Non-Orientable Surfaces in Orientable 3-manifolds, Invent. Math., 7, 83-110, (1969).
- [2] Epstein D. B. A., Embedding punctured manifolds, Proc. A. M. S. 16 (1965), 175-176.
- [3] Hirzebruch F., Neumann W. D., Koh S. S., Differentiable manifolds and Quadratic Forms, Marcel Dekker, Inc. New York, (1967).
- [4] Kervaire M., Milnor J., On 2-spheres on 4-manifolds, Proc. N. A. S. USA, 49, (1961) 1651-1657.
- [5] Rocklin V., Two-dimensional submanifolds of four-dimensional manifolds, J. Functional Analysis and Applications, 5 (1971), 48-60.

Departamento de Matemática Universidade Federal de São Carlos Cx. Postal 676 13560 — São Carlos — SP Brasil.