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Analysis of a RLC circuit in the dielectric breakdown limit

Marco A. Raupp and Orlando R. Baiocchi

Abstract,

The problem of a non-linear circuit consisting of a resistor, an inductor,
and a capacitor allowing for electric arcs is studied in the framework of
Convex Analysis. The differential inequalities governing the circuit are
shown to yield a unique stable solution which can be computed through
standard schemes.

1. Introduction. This paper is concerned with the use of Convex Analysis
concepts to study non linear circuits. Specifically, we shall consider the
problem of the circuit represented in Figure 1. Non linearity here comes
from the possibility of disruptive currents associated to the phenomenon
of dielectric breakdown. The circuit consists of: i) a resistance R, ii) an
inductance L and iii) a capacitance C in parallel with an “electric arc” of
critical voltage V,.
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Figure 1

With ¢ standing for time, the applied voltage will be indicated by E(t),
the total charge in the circuit by g(z), the total current by i(t), the charge
of the capacitor by g(t), the capacitor’s voltage by V() and the electric
arc current by j.

Sub-circuit (iii) is to simulate the capacitor’s dielectric in the breakdown
vicinity, so that we ask the capacitor’s voltage to satisfy the condition

(1.1) -~V E¥{)SV,any t 20,
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and the eletric arc element to have the characteristic function j=JjVy)
shown in Figure 2. This characteristic function can be achieved with a
couple of Zenner diodes, for example, and in fact it should be pointed out
that to describe it we need more than the usual concept of function. The

Figure 2

appropriate notion is that of a set valued function, or a graph. In analytical
terms, thinking of V. as a function of time, we have

(10} il i<k,
| av,
0% V.=V, and —dtc_ < 0,
; ; dav,
(12) ](Vc) =9 {0} if VC == V; and th > 09
et dv,
RY M Vol and a’tc =0,
LIR_ if V.=-V and dd‘;c =0

Inside the limits defined by (1.1), the characteristic function of the
capacitor is the usual linear relation (Figure 3):

(1.3) gty = C V().

Finally, balance between the circuit variables is given by Kirchoff’s
laws:

(1.4) E@® - L —Z%(t) — Ri(z) — V) =0, L=
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(1.5) Wiy = TG S t>0
: dt Mg ’ i
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Figure 3

The problem we want to discuss in this piece is the compatibilization
of equations (1.1)-(1.5), plus initial conditions. We shall show that this set
of equations represents a well posed mathematical problem, in the sense
that it yields a unique and stable vector state-function (q(t), i(t), V(1))
given the applied voltage and the initial conditions of the circuit. In
Section 2 we propose a correct mathematical formulation of the problem,
in terms of concepts from Convex Analysis, and state a theorem summa-
rizing the results. Section 3 is dedicated to the proof of this theorem, and
Section 4 to the discussion of a computational scheme and presentation
of results of some numerical experiments performed.

We mention at last that the type of analysis we are going to do for
this circuit had been developed by G. Duvaut e J. L. Lions in [2] for antenna
problems, and is of current use in Mechanics.

2. Mathematical formulation of the problem. Let f :{R - (— 20, + ] be
a convex function. For a given x € IR, we define the subdifferential of f at
x as the set 0f(x) = R defined by the criterion
(edf(x) if and only if f(y) = f(x) + {(y — x), VVER
Let now I = IR be a closed interval. The indicator function
Jr R — (= colistoc]

of this interval is defined as

+ oo if x¢lI,

JI(X) ={
0 if xel.
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Then, if we call I, = [— V,, V], it can be verified [1,3] that J e

a’ Ta
convex function and that dJ 1, =J» J being the electric arc element “charac-
lerlstx.c function™ introduced in Section 1. So the correct mathematical
notation for equation (1.5) is, taking (1.3) into account,

j dv,
2.1) ,:1(1?) — O (t)}e&J,a(VC(z)), any t > 0.

C.onsidering the definition of sub-differential, equation (2.1) could still
be written in the following way

dv,
22)  J ) =J, (V) + [i e & df}(r) [v—VdAD)], VveR,

or

dy,
(2.3) [C dtC = i:I ()l l)] = 0, Vel

since v€ R — I, would imply J“(u) = + oo and (2.2) trivially satisfied, and
for v e, 1R Towehave Uy (y =9y, (Vo) =0.

. Collecting ?111 the significant relations we would have then the follo-
wmg.mathemalwal problem to represent the state of our circuit: “To find
functions i(r) and V(t) such that

-

(1) ebe(r) el V=0

(i) LE(n) = L—Z;—(z) HERI(L) A Ke(t) ¥ty = 0)

(2.4) J

(iii) [c ddI:C = i](z) [v— V)] =0, Vi >0, Voel,

L (iv) i(0) =0, V.(0) = 0.

‘Ir.1 .fact the current i(t) can be eliminated in this problem (2.4), resulting
an initial value problem for an integrodifferential inequality in V.. This
is done as follows. From (2.4) (ii), (iv),

e S 1
=+ 1)) = B0 - Vo),
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hence
i(t) = F = E(t) — F * V1),
where

F(t) = —]ld—Y(t)exp[— %t],

U
Y(t)={0 Y

Il

F*G() r F(t — s) G(s) ds,

any G integrable. Thus (2.4) is equivalent to
- Viel, Vit =0,
dv,

25 9 (i) [ (o e Vc] (0) [ = V)] = F*E@) [v — V)],
Vit >0, NYvel,

(iii) V.0) = 0.

In respect to the inequality system (2.4), or (2.5), we observe first that
the initial conditions were taken to be the simplest ones in view of the fact
they do not affect the structure of the problem. We are not loosing any
generality in our results. Second, the case of a “stable” dieletric, where the
classical relation (1.3) holds true for any field V,, corresponds to the limit
situation ¥, — co. This would imply the same set of equations as in (2.5)
with I, replaced by IR. Hence, taking v = V. £ 1, we would have in this
particular case the following integro-differential equation problem to be
satisfied by V,:

(i) [c d;C +F» VC](I) =F*E®), V>0,
(i) V0 =0.

This is, clearly, the classical linear RLC circuit equation.
One last bit of notation is needed. For any given T >0,

C°(0, T) = space of continuous functions on [0, T'] with the supremum
norm;
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L*0,T) = space of functions f(z) on [0, T] for which |f(1) is Lebesgue
integrable, with norm Ifl, = Je1f(e)Pdet]'?, p>1:

space of all Lebesgue measurable functions f(t) on [0, T]
which are bounded, except possibly on a set of measure zero,
with norm

LE(04T)

I fle = inf { sup lg(t)}

g)=f@)ae. (0<t<T

A result describing properties of system (2.4) is the following.
Theorem 2.1.  Let 00 > T >0 and E€ L*0,T) be given. Assume also
dE/dte€ L*(0, T). Then there exists a unique pair of functions (i(t), V1))
such that

(2.6) i€ L®(0, T) A L¥0, T) n C%0, T),

V.€ L*(0, T) n C%0, T),

i | dlie
2.7 Z€L°0, ) A L%0,T), =C e L=, T),
(238) i(0) = 0, V.(0) =0,

which verifies relation (2.4) (i)-(ili) for almost every te (0, T]. Furthermore,
a constant K can be found such that

(2.9) {lil, + lil, + 1Vd.} < K|El,.

And i(T) >0 as T - co.

Remark. The mechanical system in analogy to the circuit we are consi-
dering is a particle of mass L in a bed consisting of an elastoplastic string,
stiffness C and limiting force V,, and a dashpot R. The particle is subjected
to an external force E.

3. Proof of Theorem 2.1. The proof, based on compactness arguments,
consists of four steps:

A. Uniqueness;

B. Regularization: approximated solutions are defined by relaxing con-
dition (2.4) and penalizing the “deviation” from it;

C. A priori estimates: energy type inequalities are established which are
independent of the regularization parameters;
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D. Passage to the limit: accumulation points of the approximated solu-
tions are shown to be the required solution of the problem.

We start then with

Step A

Assume there are two solutions (i, VC‘) and (i,, VCZ). We have,

di

(3.1) Lo ML HIOG
1
(3.2) |:C %L—il][u— Kll1s0 Yvel,
2
(3.3) [c d:tc - i2:| b~ K212 0 Yoel,
(3.4) i(0) = V/0) =0,

where i = i =1, and Vo= V. — V2.
Take v = VZ in (3.2), v = V¢ in (3.3) and add to obtain

: av,
(3.5) v, [z o dtC] > 0.

Multiplying (3.1) by i and combining with (3.5), we get

oA

-2 -250
dtl + Ri ;

S

L
iy

E:‘&

which implies, in view of (3.4),

—g— VA1) + —i%(t) + R f i*r)dr = 0,

for an arbitrary t€(0, T]. That is,
V) =0, i(t) = 0.

Step B
Let us define the function

m,:R-1,
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X IS T
x—=>Il(x)=4 V, i

el o e B

a

and consider j(x) = i (x — M (x)), any u > 0. We pose then the new
problem #
( di, .
(a) L;{—+Rz“+ VY = E), t >0,
m
68 | ® 0 =cE g0z >0
. (c) lu(o) = O’ VCM(O) = Os

for the definition of approximations (candidates!) (i,, V) to the eventual
solution (i, V;) of the original problem. Since, for a fixed y, J, is Lipschitz
continuous, the ordinary differential system (3.6) well defines the sequence
(i,, V). The objective is to show that any cluster point of {(i,, V!)},., is
a solution of (2.4), and for this the next a priori estimations of (3.6) are crucial.

Step C

The first set of estimates derive from the energy identity for system
(3.6). We multiply (a) by i,(t), (b) by V(t) and eliminate common factors
to get

L dig : G d !
BE i e e S
= E(1) i(1), Yt>0.

Integrating from O to ¢ and taking (c) into account:

() -Lz—ii(t)+%vc“’m+kf ()dr+f' (Ve VD) de
0 0

= J' E(7) i(t)dr
0

Given any T > 0, identity (3.7) allows us to conclude that, for u > 0,

| (a) i, remains in a bounded set of L®(0, T) n L*(0, T),
i (b) V¥ remains in a bounded set of L*(0, T),
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in view of the fact that j, is monotone with j (0)=0, and of the arithmetic
inequality a-b < (R/2)a*+ (1/2R)b2, valid for numbers a and b. In fact
we have

i i 1
(3.8) Tw; - 7|VC"|; -

=
2 2R

Next, take derivatives of (3.6) (a) and (b), and multiply by di, /dt'and
dvl/dt, respectively:

Li(di >2+R<diu>2+ L) RO e

2 e \Ludt dt dt dt dt dit

dh, doodupn SwiCr, AUE AN )2 L
R TR B R o \ o

u

! dy,
+ lim S BV + An) — o)) SE

Now eliminate the common factor and observe that

lim (le)z—{ [ (Ve + Ag) — j(VE@)] [VEE + Ar) — V@] = 0
At—0

by the monotonicity of j,, to conclude, after integration on time,

L Ldl C [ dv* 2 di :
HET Sl

EZ(Q J dE ﬂL dr.

dt

From the inequality we ‘deduce as before that, for u > 0,

(a) %;‘— remains in a bounded set of L®(0, T) n L%(0, T),

u
(b) d:;tc remains in a bounded set of L%®(0, T).

Finally we go into equation (3.6) (b) to conclude, after I and II, for
Bz
L j,(V&(-)) remains ‘in a bounded set of L*(0, T).

We observe the most important point that the constants in all the
obtained estimates are allways independent of u. They do depend only on
the data of the original problem.
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Step D

For any t,, t, in [0, T], we have, in consequence of II,

. 7 !
““(tl) T ly(tz)l e J _dl‘:_‘_(r) dr = C‘tl i t2|’
" dpe
VL) — VAL = f S (@) de| SClty — 1,
t2

where the C stands for different constants in different places. This shows
that the families {i },., and {V*},., are not only bounded in C°0, T),
but also equicontinuous. So, by Arzela-Ascoli, there exist functions i,
V. € C%0, T) which are limits of sub-sequences {i,} = {i,},., and {V¢} <
< {V¥},> o respectively, as v — 0.

We have also from I and II, and the compacity properties of bounded
sets in LP spaces [6], taking sub-sequences if necessary,

i, converges weakly to i in L*0, T),

-~

converges weakly-star to i in L®(0, T),

v

V! converges weakly-star to V. in L*(0, T),

di, o 3 e
g converges weakly to - n L0, T),
b converges weakly-star to . in L2(0.7T)
dt i ! dt i
c converges weakly-star to e in -L*(0,T)
dt dr i

when v — 0.

Hence, (i, V,) satisfies (2.6), (2.7). And if we take the limit v—0 in
(3.6) (a), (3.6) (c), (3.8), we obtain (2.4) (ii), (2.8), (2.9), respectively. Since the
last statement of Theorem 2.1 is a consequence of i(t) being in L*(0, co) (if
E e L*0, ©)) and uniformly continuous, it is left for the conclusion of the
proof the checking of relations (2.4) (i) and (2.4) (iii).

For that we introduce the continuous functions

7 = 5= [x = I,
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and
M(x) =1 [x — T(x) P, x€R.
We have
39) - Iy =),
(3.10) M(x) # 0<>xeR - I,
(3.11) M(x) = v J (x)

Now estimates I and III imply
(3.12) V1Vl = 2 UV LIVl + T 0 Vol } S K,
where K is independent of v. From this we deduce
0 = M(V(t) =Ky,
and taking the limit v — 0,

0 = lim M(VX(1) = M(VA1)).

v—0

Hence, from (3.10), Vt)€1,, for all t > 0, which is (2.4) (i)
The function J;a(x) is convex, so that

Ti = srUgres e @ e on N ve IRy cene 2

Hence, by (3.6) (b) and (3.10), if we restrict ourselves to vel, we get

[c i;i - iv:' [v — V()] = 73 (V@)

Taking the limit v — 0 in the appropriate sense defined before,

(3.13) [c dd’;c = i] ® - Vi)l =

> lim J;a(V(_Y(t)), Moy omentin 6 F)

v—=0

251
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Now we define

2
0.(x) = ?PX s (o)
r J;a(x) for xe[—-V
=] > +2G-¥ -9
v 2
L 7 = ?(X + Va + V)

M. A. Raupp and O. R. Baiocchi

sk i

fordi x> 12 Ly,

forgepa ==V = .

It is clear that 6, converges uniformly to 6, and that

J3(0) = 0x),

Hence,

x € R.

Jr(VE@) = 0, (V) + [0;(V2(0) — 0,(V2(@))],

so that

lim J3 (V(0) = 6,(V (1)) =

v—0

by virtue of (2.4) (i). This fact, together with (3.13), implies (2.4) (iii).

4. Numerical results. The theorem proving process of last section suggests
natural schemes for the cornpulation of a solution of our circuit problem:
just discretize system (3.6) in any of the standard ways. For a fixed p ¥
is a nice monotone function, in condition to satisfy the convergence and
stability requirements for the usual numerical processes [4]. The a priori
estimates I, II and III, independent of y, transfer those properties to the

limit y — 0.

We have chosen for our simulation essays a predictor-corrector scheme

defined in the following way:

o= { i o

0 otherwise,

N=1

=Y {I"+@-t)y?

n=0

a1 e,
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Nz L

Vi) = Y (V"4 (@ —t)(V"*! —

n=0

Qm=j (9de = ZH(ﬁ%ﬁﬂj=
0

= charge in the capacitor + added
discharges at the arc,

VEHT TR At

where (I, V™)o<n<n are calculated through the algorithm
(Sp) 1%=0 el

(Sn) I", V" known, n > 0, compute predictors I"*! V"*! by

_(in+1 o In)

- R [
=T n+1 e
I ey Y

1

= 5 (EC,,,) + EG,),

(in+l 9 ]n) i CH—I(I}n+l ok Vn) +_]“(V"),

| -

(S) I", v», I"*', ¥"*' known, compute correctors I"*!, V"*! by
n p

1

LH‘1(1n+1 In) + (In+1 +1n)+ 2 (Vn+l+Vn)=

i

= 5 (E,.) + EG,),

n+1 | %
17(1n+1 +In)=CH—1(Vn+1 _Vn)+j“(V 2+ );

(Sp) stop at n=N — 1.
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Calculations were performed for different but all of them academic
examples, with parameters values u =10"% T =3, H=10"? and R =

=L=C=1

Example 1. Applied voltage was taken to be E(t) = 5¢' and the critical

voltage V, = 2.5. Resulting curves are shown in Fig:re 4.



254

64.00

A : .32L00.

16.00

M. A. Raupp and O. R. Baiocchi

LEGEND
8 v 2.50
Do
E R =1
L =1
c =1
| § T =3
L ¥ H = 0.01
Q 3
F©
S
o
| @
8
[ ©
[
Ve .iS
- S e R T g
1.44 1.92 2.40 2.88
TIME
Figure 4

Example 2. Applied voltage was taken to be E(t) = 20 sin 10t and the
critical voltage V, = 1.0. Resulting curves are shown in Figure $.

LEGEND
] & vp = 100
(3] R =1
L=1
C =1
Wi
| N H = 0.01
g
o
jio
| N
- 8
e T S A L S PN e e s S et D]
0.48 0.96 144 1\ 1.92 2.40 2.88 |
Figure 5

Analysis of a RLC circuit

258

Example 3. Applied voltage was taken to be E(t) = 10?sin 10t and the
critical voltage ¥, = 1.0. Resulting curves are shown in Figure 6.

20.00

—4.00

s
o
J
= Q
o
o
al/ Vv
o c
) |
8]
o
| 4

- o b PR .:ﬁfjﬁ'

0.48 0.96 TIME. 1.92 2.40 2.88

Figure 6

Example 4. Applied voltage was taken to be

i

A

s
2
il

'LEGEND
8VD=1.00
& R=1
s
c =1
T =3
8 ki

g H=o001

—12.00

" LEG

I4H40r 1o

-—56.00 — 24:00

276 1y 388 4.60 5.52.

Figure 7

END.

+10% tefi,j+1), j=0 2 4,
E(t) e 2 G 5
ot 10 tG[],]-{-l), J=193s5,
the critical voltage V, = 1.0, and T = 6. Resulting curves are shown in
Figure 7.
8]
&
Ut

Ok = 2 i
= B
e

8
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Figure 8
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In order to allow the reader a qualitative physical evaluation of the
theoretical and computational results presented here, we finally show in
Figure 8 some osciloscope displays of voltage measurements performed on
circuits like the one in Figure 1, with the electric arc element simulated by
a couple of Zenner diodes. In each photograph we have at the top the
capacitor’s voltage V. against time and at the bottom the resistor’s voltage
(which is proportional to the current) against time. The vertical scale at
the top is 5V, at the bottom 20V, and the horizontal scale is 2u sec.
In (a) the applied voltage E is a triangular ware with frequency 80 Hz and
amplitude 20V, and the circuit parameters are R =2K€, L =1H, C =
=0.5uF, V, =52V. In the other photographs the applied voltage is a
square wave with frequency 100 Hz, amplitude 20 V, and the circuit para-
meters R=9KQ L =1H, ¥V, =52V, C =0.1 uF (case (b)) and R = 10 K(,
L=5H,V, =52V, C=05uF (case (c)).

One may observe the general agreement of the model responses with
the experimental measurements.

Conclusions.

A mathematical model (equation (2.4)) is proposed for the description
of the response of an electric circuit consisting of elements of resistance,
inductance, capacitance and an electrical arc represented in Figure 2, to
an applied voltage E(t). The well-posedness of this response problem is
demonstrated and model consistent numerical calculations were performed
in the IBM 370/145 computer at the Laboratorio de Computagio Cienti-
fica — CNPq. A number of typical numerical results are presented and
shown to agree with experimental measurements held at the Laboratoério
de Eletronica of the Universidade de Brasilia.

Other non-linearities are considered in [5].
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