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" A characterization of tori with constant mean curvature in space

form

Renato de Azevedo Tribu:zy

1. Introduction.

1.1. The purpose of this paper is to present complete proofs of some
results stated in [11]. Let M? be a surface endowed with a Riemannian
structure and E3(c) be the space form with curvature c. Let x : M? = E*(c)
be an isometric immersion, and denote by H(x(p) the mean curvature of
x at p€ M: the following definitions simplify the statement of the results
below, and will be useful on the whole paper.

An H-deformation of x is a continuous map F:(—¢&¢ x M — E3(¢)
such that, denoting x(p) = F(t, p), we have: 1) x, is an isometric immersion,
i) x, =x, ili) H(x(p)) = H(x,(p)), for each t€(—e¢¢) and peM. An
H-deformation is said to be trivial if, for each t, there exists an isometry
L of E*(c), such that x, = Lox,. An isometric immersion x is H-defor-
mable if it admits a non trivial H-deformation. X is said to be locally H-de-
formable if each point of M has a neighborhood restricted to which x is
H-deformable. X is said to be away from umbilics if there exists a real
number r such that K — ¢ — H* <r <0.

The following result gives a characterization of tori with constant
mean curvature. In fact it is more general than that in [11].

1.2. Theorem. Let M be a surface homeomorphic to the torus T and let
x.: M — E3(c) be a locally H-deformable isometric immersion. Then H(x) =
= const.

1.3. Remark. The converse is true for all surfaces by a Lawson result of
Lawson [8].

If the immersion is analytic, then the hypothesis on x can be weakened.
1.4. Theorem. Let M be a surface homeomorphic to the torus T? and let
x : M — E3() be an analytic isometric immersion. If there exists an open
subset of M restricted to which x is H-deformable, then H(x) = const.
1.5. Remark. It follows from the proof of (1.2) that, if M is homeomorphic

to T2 and H: M — R is a non constant function, then there exist at most
two isometric immersions of M into E3(c) with mean curvature H.
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Klotz and Osserman in [7] classified the immersions into IR® of com-
plete surfaces with H = const # 0 and Gaussian curvature K having cons-
tant sign. Observe that in the case K <0, the hypothesis H = const # 0
implies that the immersion is away from umbilics. The next theorem
generalizes the result of Klotz and Osserman for immersions into hyper-
bolic space (¢ < 0).

1.6. Theorem. Let M be a complete surface and let x : M — E’(c), ¢ <0,
be an isometric immersion with H(x) = const. Assume that the Gaussian
curvature K of M does not change sign; if K =0, assume further that x is
away from umbilics. Then x(M) is either a geodesic sphere in E3(c) or else
x(M) is the set of equidistant point from a complete geodesic of E3(c).

1.7. Remark. Hoffman in [4], generalized the result of [7] for immersions
into 4-dimensional space form E*(c) with ¢ > 0. Some related result was
also obtained by Yau (see Remark 4.12).

1.8. Remark. The result of 1.6 can be extended for immersions into” E*(c)
with parallel mean curvature vector in the normal connection, using the
Theorem 4 of Yau [12] to reduce the codimension.

The techniques of this paper are inspired by those of Hopf in [5]
This work is part of my Doctoral Dissertation at IMPA under the orien-
tation of Manfredo do Carmo to whom I am grateful I would like to
thank Gervasio Colares and Lucio Rodriguez for valuable suggestions.

2. Symmetric Forms.

2.1. In what follows differentiable means C®. All manifolds will be diffe-
rentiable as well as its maps vector fields and exterior forms.

Let E be a n-dimensional manifold, {e,,...,¢,} a frame defined on

an open subset of E, {w,,...,w,} its coframe and {w,}, i j=1,...,n the
associated connection forms. We have the following relations:

(2.2) dw, = Z w, A w,, W= o W,
: k
(2:3) dw;; = Y w, A wy; +
k
where Q. i,j =1,...,n are the curvature forms of E. We say E has con-
stant curvature CEIR 1f Q,==cw, Aw; everywhere on E. In this paper

E3(c) will be a complete sxmply connected riemannian 3-dimensional ma-
nifold with constant curvature c, that is, it is a 3-dimensional space form.
We will consider surface immersions in E3(c). All surfaces are oriented and
have a riemannian structure.
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Let M be a surface and x : M = E3(c) an isometric immersion. For
each pe M we may define a frame {¢,,¢,,€,} on a neighbourhood of x(p)
adapted to the immersion. Since x is locally an embedding, we may
identify M with x(M) (locally). Under this identification {e,,¢,} is a local
frame on M. The induced forms x*w, and x*w, (which we will denote by
w; and w;) satisfy (2.2) and (2.3).

Using Cartan’s Lemma and w, =0 (from where it follows

0=dw, = ;wk Niws)

we get

(2.4) W, = Zhij Wi h.=h.
j

where hl . I,j = 1,2, are differentiable functions. The second fundamental

form h of the immersion is defined as h = T h;w,w;, and H = ‘Z h;
is the mean curvature of the immersion. -
The gaussian curvature K of M satisfies dw,, = — Kw, A w,. Put-

ting w,, = aw, + bw, we get

dw,, = {—&,(a) + &,(b) + a> + b*} w; A w,;
then we have
(2.5 K = ¢,(a) — &,(b) — a* — b*.
If follows from (2.3) and (2.4) that

dw,, = {—det(h) —c}w; A w,;

o)
(2.6) K = ¢ + det(h),

which is known as the Gauss equation.
By taking derivatives in (2.4), using (2.2) and comparing with (2.3), we

get
2.7) = etk o) + 64k, 5) + alh,,, — hy,) + 2bhy, =0,
(2.8) &,(hy,) — &5(hy,) + 2ah,, — bb,, — b,;) = 0.

Eaquations (2.7) and (2.8) are called the Codazzi equations.
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2.9. We say that a bilinear form T of M is differentiable if, its local expre-
ssion in a frame is given by differentiable functions.

2.10. Definition. We say that a symmetric bilinear form T defined on
M satisfies the Codazzi equations if

(2.11) il (Tog) ok 8ot Tsh Aol T midaa) 4 20T s = 0
and
(2.12) tul Do) 8ak Toadok 200 7 Mo Tagk =0

where T;; are the components of T in a local frame ¢,, ¢, of M.

2.13. Consider the complex quadratic form Y(T) built from local com-
ponents T;; of a symmetric bilinear form T on M

Y(T) ={T,, — T,, — 2iT,,} (w, + iw,)%.

2.14. Lemma. The complex form y(T) does not depend on the chosen frame:
therefore, it is globally defined.

A proof of this Lemma may be found in [3].

2.15. Remark. Let us denote by U(f) the 6O-rotation on each tangent
space of M (in the positive sense of the orientation), and let T be another
symmetric bilinear form on M. Suppose that the matrices of T, T and U(6)
on the basis {¢,,¢,} (denoted by [T], [T] and [U(9)] respectively) satisfy
[T] = [U®)]IT] [U(() )]”'. An easy computation give us:

W(T) = &2 Y(T).
2.16. For each pe M there exists a neighbourhood V of p with a confor-

mal parametrization, that is, there exists an open subset U S IR* and a
diffeomorphism ¢ : U — V satisfying

Opul) o X
and T rt >— 0,

¢
Ox

where x and y are IR?*-coordinates. A proof of this may be found in [2].

2.17. Definition. A complex quadratic form y defined on M is holomor-
phic if its expression in a conformal coordinate system is given by Y = fdz?,
where z = x + iy and f is a holomorphic function on U (for simplicity,
we identifv ¥ and o*(W). where 0 : U - M is a chart.
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2.18. Lemma. Let T be a simmetric bilinear form on a connected surface M.
If any two of the conditions below are satisfied, then all of them hold

(i) the trace of T is constant.

(i1) T satisfies Codazzi equations.

(1) Y(T) is holomorphic.

Proof. Let ¢ :U—>V S M be a conformal parametrization. We take
&, = 1/A x 0¢/0x and &, = 1/4 x 0p/0y, where A = |0¢p/0x| = |0¢p/dy|. The
corresponding coframe is given by w, = 4dx and w, = Ady. Easy compu-
tations show that

W, = ——L'sz(/)u At 1 g (Aw

Therefore the Codazzi equations are written as

S e (I (T =2 —/1:-82(/1)(’1‘“ il SR 2 e, ) T =840,

- {220 VBT (T ) ~ 2 &N T, —%sl(i)(Tn =45, =0

Since (w, + iw,)* = A%dz%, Y(T) =(T,, — T,, — 2iT,,) ~*d=*. Let us
find under what conditions the function f =(T,, — T,, — 2iT,,) /* satis-
fies Cauchy-Riemann equations. For that, we write f = U + iV, where
U=(T, —T,,)A* and V = — 2T, 4% Since ¢ is conformal, f satisfies
Cauchy-Riemann equations if and only if

£,(U) — &,(V) = &,(U) + ¢,(V) = 0.

A straighforward computation give us

£,(U) —g,(V) =
= 2)2 1 1 2 2
= 24595 [64(Thy) — &4(T55)] + &x(Ty,) + = &,(O(Ty, — Top) + &,(4) T,

and

&,(U) + ¢,(V) =

=225 6T~ ) - e(T) + TG, = ) = ST}
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Therefore, f is holomorphic if and only if the equations below are satisfied:

1

(2.21) 7{51(T11) —&(T;,)} +,(T,,) + e, —T,) % — 2 82(A) =)

: 2 )
(2.22) %{82(7“11) —&y(Ty,)} —&,(T;,) + /1'__82(")(T11 A F )b 782(") T,,=

We suppose now that (i) holds and we will show that (ii) is equivalent
to (ii1)). Since the T-trace is constant, we have g(T,,) = — £,(T,,), i =1, 2,
from where (2.19) is equivalent to (2.22), and (2.20) to (2.21).

Now, if (i) and (iii) are true then (i) holds. In fact, from (2.20) and
(2.21) we get ¢,(T,,) + 81(Tzz) 0. From (2.19) and (2.22) we get &,(T;,) +
+ ¢,(T,,) = 0. But M is connected, so T,, + T,, is constant.

223. Let f:M — R be a differentiable function. Using a local frame
and the associated forms w;, w,, i, j = 1, 2, we may write df =} f,w, and
define f, ; by the equatlons i

Zf,.;jwj=df‘.+2wﬁ, =112
j j

If we define the laplacian of f by Af = Zf”. and write w,, = aw, + bw,
we get

(2.24) Af = e.e,(f) + &,6,(f) — f + be,(f).

2.25. We say pe M is umbilic with respect to a given simmetric bilinear
form T if there exists c€ IR such that T(x,x) = c, for every x€ TM with
|x| = 1. We remark that in those points the matrix (T) of T (in any basis)
satisfies T.J = cd,;, where 0, is the Kronecker symbol. It is easy to verify
that pe M is umbilic with respect to T if and only if 4 det T = {Trace of
T}? in p.

In what follows T will be a symmetric bilinear form on a surface M
satisfying the Codazzi equations and with constant trace t. D will denote
the determinant of T.

2.26. Lemma. For each non umbilic point of M (with respect to T) one has

i 41dD?
= (4D — tz) {K HF W}

Proof. On a neighbourhood of each non umbilic point there exists a
frame {e,,¢,} that diagonalizes T, since T is symmetric and varies diffe-
rentiably. The Codazzi equations give us
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= &,(T,,) + ol —T;5) =0

B 1) (1 = ) =

As D=1, %, and dT,, = — dT,,, we get from the above equations
(2.27) L) = KT, —T,,)
and
(2.28) e.(D) = — aT,, — T,,).

By using (2.27), (2.28), the Codazzi equations and dT,, = — dT,,, w
get

g,2,(D) = (T, — T,,) {¢,(b) — 4b*}
and
e,e,(D) = = (T,, — T,,) {e,(a) + 42°},
from where, and by (2.24), we get
AD) = (T,, — T,,)* {¢,(b) — &,(a) — 3b* — 3a*}.
As (T.) =1 ) =1 — 4D and

|dD|?

2 iy
i

using (2.5), we finally get

A(D)={4D—z2}{1<+ il d }

@ 4Dy
2.29. Lemma. If t =0, we have
A{log(— D)} = 4K
in points where D # 0.
Proof. If follows easily from the preceding lemma.
2.30. Lemma. Suppose t> — 4D > o > 0. Then, the metric \/mdsz,

where ds® is the metric of M, has zero curvature. Besides, if M is complete,
then M is parabolic.
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This is essentialy lemma 4 from [7].

231. Lemma. The set of symmetric bilinear forms on M that satisfy the
Codazzi equations is a subspace of the vector space formed by the symmetric
bilinear forms on M.

3. Proof of Theorem 1.2.

3.1. First of all we will consider local immersions that admit non-trivial
H-deformations in the neighborhood of non-umbilic points. Scherrer in
[9] has a characterization of these immersions. The method and result
to be described here are different from [9].

Let x : M — E3(c) be an immersion. For each point p € M, there exists
a neighborhood V of p and a conformal parametrization ¢ : U — ¥, where
U is open in IR?. The quadratic form y(h) of Lemma 2.14 can be described
in this neighborhood by y(h) = f(z) dz?, where z = x + yi and (x, y)€ R2.

We wil consider the following operators

SR 1, §

e Y
CWE N SR
5z 2 \ox 'y

By the Cauchy-Riemann equations, a complex function h(z) is holo-
morphic if and only if 0h/0z =0 (or oh/oz = 0).

3.2. Proposition. Let V = M be open and simply connected, let ¢ : U - V
be a conformal parametrization and let x :V — E3(c) be an isometric immer-
sion without umbilic points. Then, x admits a non-trivial H-deformation if
and only if the complex function f defined in U by y(h) = f(z) dz?, satisfies
2

A° 08 f) = 4| - o8 )

where A° is the Laplacian in the canonical metric of IR? given by

g
R SO
B 0z 0z
Proof. For each real function 6, let U(6(p)) be the rotation of angle 6(p)
in T,M in the positive direction of the given orientation. We point out
that if there éxists: an H-deformation x, of x, the matrices of h and h,
are similar, where h, is the second fundamental form of the immersion x,.
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The reason is that h and h, are symmetric, with the same trace and the
same determinant. It is not difficult to show that for all t€(— ¢ ¢) there
exists a function 6, such that

[h]=[UG@)] K] [UO] ',

where [h ], [U(8)] and [h] are matrices of h, U(f) and h respectively.
By the Remark (2.15), it follows

2i6t

(33) Y(h) = e Y(h).

Since by 2.31, h — h, satisfies Codazzi equations and its trace is zero,
it follows from Lemma 2.18 that y(h — h,) is holomorphic.

Since f(z)dz? is the expression of Y(h) in U, it follows from (3.3) that
fa - em’) dz* is the expression of yY(h — h). Therefore the function
fa - em‘) is holomorphic.

We will now consider the following families of functions: #, = 26, and
g, =e"™ The functions g, satisfy dg,/0p, =ig,, g, =g ' and 0g/0p, =
= —ig,. To simplify the notation, we will write in the computations
n=mn,and g =g, Since f(1 — g) is holomorphic, then

ara — 0 0
Therefore,
0 0
(3.4) = — i — 1) (log f).

Since f(1 — g) is holomorphic, we have

Hf(l —a of ch
Hence
d 0 2
(3.5) - = ilg — 1) 5—(log /) = 0.

By the Schwarz theorem,

o’ o*n

920z 020z
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Then

1, 0 P by
- 0 Foos ) + 5 {o - 05 n}

By derivation, using (3.4) and (3.5), and the fact that

afs ot df
0z —<5z>

and
log f = (log f),
we obtain
0 0 3 1 0 2
73:—{(9 ) a'f(logg)} =(g —1){7A°(108f)— ‘—a?(logf) }
and
. im0 Y 1y )L Avog 7 a12-
E{(g— )’a_:‘(ng) =(@-1 1 (log f) — —6?(0gf)
Then
g — 1 1A"l i 1 o[
g-—-1 v (log f) — E(ng) i
1 - 0 z
+dg~ 1) {?A"(logf)— —E(logf) }=0-
Multiplying this equation by g, we get
LR 2 oz 11l
(6) {3 aton 1) | 30w | -

1 , = 0
-9 {; A(log f) + Av(log f) — 2 ‘ - (log /)

1o

1

= 0
+ g {% A(log /) — l"a;f(“’g f
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We point out that the left hand side of equation (3.6) is a complex
polynomial P of degree 2 which vanishes in g. Therefore, if for a point
in U the family of functions g assume more than two values, then the
coeficients of P are zero in this point. If this happens in a dense subset of
U, then P =0. In this case
2

0
Aleg.f)='4 ‘ -5 (log f)

Therefore, we just have to show that there exists such a dense set
If, for each isometry L of E*(c), x,, # L°x,,, then it is not difficult to show
that there exist an open and dense subset U, in U, where g, # g,,. This
can be done by using Lemma 2.18 for h, — h,, and the fact that the zeroes
of holomorphic functions are isolated. Let t,, k=123, satisfy the
conditions above and take V = n(U,.j). Then V is dense in U and g,
assumes more then two values.

Suppose now that

2

0
A°(log f) = 4 l—az_(l"g f)

We will show that there exists a non-trivial H-deformation of x.

We will use the next result, to obtain the existence of functions 7,
satisfying the equations (3.4) and (3.5).

3.7. Proposition. The system of equations

ow
o Alz, w)
ow
—6—2— == B(Z, W).

where w is any real function defined in an open subset of the complex plane,
has local solution if and only if 0A/0z = 0B/0z. The solution is unique if
we have the initial condition w(zy) = t.

This proposition follows from the existence and uniqueness of solutions
of ordinary differential equations, and from the differentiability of solu-
tions with respect to initial conditions.

In the system (3.4) (3.5) we have:

P &
4 =ilg — )—_(log J),
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e 0
B = —ilg — 1) 5=(log f).
As we have seen, 04/0z — 0B/0z = 0 is equivalent to the equation (3.6),
and (3.6) follows from

2

%108 f) = | 5 og 1

By proposition 3.2, for each t€IR there exists a function n, satisfying
(34), (3.5) and n(p,) =t, p,€U. Let 0, =%n, and consider the bilinear
form h, given by

[h,] = [UB)] [r] [UG)]".

The forms h, will be the second fundamental forms of immersions x,.
To show that, we will show that h, satisfy the Gauss and Codazzi equations.
Since h, and h have the same trace, the forms h — h, have trace equal to
zero. By Lemma 228, h — h, satisfy the Codazzi equations if and only if
Y(h — h,) are holomorphic. Since the forms h, were obtained by functions
n, satisfying (34) and (3.5), Y(h — h) are holomorphic. Therefore, h — h,
satisfy the equations of Codazzi. Since h satisfies the Codazzi equations,
then by Lemma 2.31 the same hold for h,.

Now, by taking initial conditions in p,€ U, namely x,(p,) = x(p,) and
dx(p,) = dx(p,), we will obtain by the theorem of existence and unique-
ness for immersions the H-deformation that we want.

3.8. We will give now the proof of Theorem 1.2. Let x: M — E*(¢) a
locally H-deformable isometric immersion, where M is a surface isometric
to the torus T2. We will show that H(x) = constant. Let ¢ :IR? > M be
a conformal covering. It is easy to see that the conclusions of Proposi-
tions (3.2) are still true in this.case. That is,

2

o8 ) = | - o8

where f is defined in IR?. Therefore, the imaginary part of log f is har-
monic, and the real part of log f is subharmonic. As |f| is bounded, log | f|
is bounded from above. The points where log f is not defined, that is, the
umbilic points, are isolated. This follows using Lemma (2.18) for h — h,,
for each t of the deformation, and using the fact that the zeroes of non-
constant holomorphic functions are isolated. Then, we can conclude that
i~z |f] is constant [1]. Therefore, A°log|f| =0 and
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2

0 = &g ) = | 508 1)

It follows that log f and hence f is holomorphic. Since h satisfies the
Codazzi equations and y(h) is holomorphic, it follows from Lemma 2.18
that H(x) = constant.

39. Theorem 1.3 is a consequence of proposition 3.2 using the same
argument as before and the analiticity of x.

4. Proof of Theorem 1.6.

4.1. The idea is to show first that immersions in the hypothesis come
from surfaces with K = constant. Then, we show that these surfaces immer-

sed in E3(c) with H(x) = constant are either umbilic, or have K =0.
Finally, we describe surfaces with K =0, immersed in E3(c) with H =
= constant.

4.2. Proposition. Let M be a complete surface and x:M — E3(c) an iso-
metric immersion with H(x) = constant. If K >0, or K =0 and K — ¢ —
— H? < const < 0, then K = constant.

Proof. Suppose K > 0. We first observe that if x is umbilic, then K =
— const. This follows from the Gauss' equation K = c + H? Suppose
x is not umbilic. Then, since Y(h) is holomorphic (Lemma 2.18) and the
zeroes of y(h) are precisely the umbilic points, these points are isolated.
By Lemma (2.26),

2

at the non-umbilic points. By continuity, AK = 0.

Since M is complete and K > 0, it follows from [6] that M is compact
or parabolic. As K is superharmonic and bounded from below, then
K = constant.

Suppose now that k <0 and K — ¢ — H? < const <0. Consider the
form T = h — Hds?. Since h and Hds® satisfy the Codazzi equations by
(2.31), T satisfies them too. Let D = det(T).

Then
D =K —c— H? < const. <0.

Since trace (T) =0, it follows from Lemma 230 that M is parabolic.
Moreover, the function log(— D) is defined and bounded from below.
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It follows from Lemma 2.29 that A{log(— D)} =0. Hence D = cons-
tant. Since by 226, 0 = AD = 4KD and D # 0, then K = 0.

43. Observe that the immersed surfaces in the hypothesis of Theorem 1.6
have K = const > 0.

4.4. Proposition. Let M be a surface of constant curvature K and let
x : M = E*(c) be an isometric immersion with H(x) = const. Then, either x
is umbilic or K equals 0.

Proof. Let D =det(h) = K —c. Then D is constant and hence AD =0.
By Lemma (2.26) if pe M is non-umbilic then

AD(p) = 4D — H)K = 0.

Moreover, as D # H? at non-umbilic points, K(p) =0. Hence, since K
is constant, if there exist a non-umbilic point in M, K equals 0.

4.5. Proposition. Let M and N be complete surfaces with the same curva-
ture K = constant, and let x :M — E3(c) and y:N — E*) be isometric
immersions, with the same mean curvature H = constant. Then, there exists
an isometry L of E*(c), such that y(N) = L o x(M).

Proof. We can suppose without lost of generality that M and N are simply
connected. In fact, if it is not the case we can use the universal covering.
By a theorem of Cartan, there_exists an isometry f:M — N. Consider

the immersion ¥ = yo f of M in E3(c). If x is umbilic, apply 2.18 to h — h
<o conclude that there exists an isommetry L of E*(c) such that X(M) =
L ox(M). Hence, y(N) = (M) coincides with x(M) except for an isometiy
of E3(c). If x is not umbilic, it follows from Proposition (4.4) that K = 0.
We shall use £ to build another immersion X whose second fundamental
form h coincides with h.

46. The forms h hand h determine in M two pairs of line fields {v,,v,}
and {#,,5,} which are the principal directions line-fields. Since M is
simply connected, we may orient these line fields. We shall then have the
frames {e,,¢,} and {,,&,} obtained from the line fields {v;} and {5,}. It
follows easily that these frames may be taken to be positive. Let t(p) be
the angle between ¢, and & mm T M and U(t(p)) the rotation in T,M of
angle t(p). It is easy to show that h(p) = U(t(p)) h(p) U(t(p))'. From 2.15
we have

Y(h(p)) = e Y(h(p)).

Since y(h) and Y(h) are holomorphic forms and |¢"?| = 1, we conclude
that ¢ is a constant function.
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47. Suppose there exists an isometry g : M = M such that dg, = U(1) (p)
for each pe M. Then dge, =, i =12. Hence if X = xeog, then X 1s an
isometric immersion of M whose 2™ fundamental form h is diagonalized
by {e,,¢,}. Apply the same argument in 46 now to x and X to conclude
that h = h. By the theorem of uniqueness of immersions, x and X differ by
an isometry in E3(c) [10]. Then y(N) = X(M) coincides with x(M) except
for an isometry in E3(c). It suffices to show that there exists an isometry
g in the hypotheses above. But this follows from the fact that M is isome-
tric to IR%.

48. We are now able to prove theorem 1.6. Let x: M i) e <0
an immersion in the hypothesis of 1.6. By Proposition 4.2 and 4.4, x is
umbilic or K = 0. Without loss of generality, we suppose H > 0.

If K>0, it is not difficult to show that x(M) is a geodesic sphere.
To do so,we prove that for each t > 0 there exists a geodesic sphere with
mean curvature H =t and apply Proposition 4.5.

Suppose K = 0. It follows from the Gauss equation that H > J-c
The horospheres are complete surfaces with K =0 contained in E*(c) with
H = ./ —c. The inclusion of the horospheres are umbilic ([10] vol. IV,
pg. 170) and hence do not satisfy K —c¢ — H? <const <0. For each
t > —c, we shall show that there exist a surface equidistant from a
geodesic with H = t.

For each p >0, let S(p) be the surface of the points at a distance p
from a complete geodesic in E*(c). The principal curvatures in S(p) are
given by:

k, = \/[-¢ cotgh(py/ —¢)

and
k, =/ —ctgh(py —¢)

The mean curvature H of the inclusion of S(p), given by

(4.9) H = H(p) = ﬂ{cotgh (py/ —¢) + tgh(py/ — o)}

2

is constant. Moreover by Gauss equation we have K = 0.

Given t > ./ — ¢, it follows from (4.9) that we can choose p, such that
H =1t for S(p). By Proposition 4.5, S(p,) is the only surface in the condi-
tions of theorem 1.6 which satisfies H = t.

4.10. Corolary. Let M be a complete surface and let x : M — E3(c), ¢ <0,
be an isometric immersion with H(x) = constant. If K <c, then x(M) is a
minimal surface in E*(c).
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4.11. Corollary. Let M be a complete surface with K =0 and K # 0.
If x:M — E*c) is an isometric immersion with H(x) = constant then ¢ <
< - H2

The proofs of these corollaries are immediate from 4.2 and 4.3.

4.12. Remark. The fact that if K > 0 then x is either umbilic or K =0
was also proved by Yau [12]. Actually the diverse pieces of the proof of
Theorem 1.6 are more or less known. However we could not find in the
literature its statements.
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