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Regular sequences of minors, II

José F. Andrade

§1. Introduction and Notations.

In order to answer partially a question posed by Lazard [3, Remarque
6] concerning regular sequences of minors of an mxn (m<n) matrix, we have
studied in [1] the regular sequences of 2x2 minors of the 2xn generic matrix.
In this paper we will establish some results concerning regular sequences of
2x2 minors of the mxn generic matrix.

We begin by fixing some notations: Let M = (Xj;) be the mxn generic
matrix (Xj; are indeterminates over Z and 2<yn<n) and let R = Z[X;].
I,(M) is the ideal generated by all the 2x2 minors of M. We know that grade
I,(M) = (m-1) (n-1) [4, page 171]. From now on, by a minor we mean a
2x2 minor.

'~ We will see that only if M is the 2xn, 3x3 or 3x4 generic matrix, we
can find a regular sequence of (2x2) minors of length grade /(M) (cf. Pro-
position 1). The regular sequences of minors of the 2xn generic matrix were
studied in [1]. In §§3 and 4 we give necessary and sufficient conditions for
a sequence of minors of the 3x3 and 3x4 matrices to be regular.

Let h(m,n) be the integer mn/2 if mn is even and (mn-1)/2 if mn is
odd. We will see that h(m,n) is the upper bound for the length of a regular
sequence of minors (if mn < 3). In §5 we will prove that this bound is
reached.

We denote by DY the minor XjXj — XyXjx of M. If m=3, to simpli-
fy the notation, we take X;; = X;, Xp; = Y}, X5 = Zj, Dy, = Dlz], DY =
D;, D) = D;](, i,j = 1,..,n. My (resp. M") is the ideal generated by the
minors of the 2xn (resp. mx2) submatrix of M formed by its i-th and j-th
rows (resp. columns). A row (resp. column) of a minor is the row (resp.
column) of the matrix associated to this minor. If S is a sequence of minors,
(S) stands for the ideal generated by the elements of S. Finally, we observe
that, since the minors are homogeneous elements of R, if a sequence S of
minors is regular, then every permutation of S is also a regular sequence.
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§2. A basic result.

Now we state our first result:

Proposition 1. If m=3, n > 5 or if m > 4 there does not exist a regular
sequence of length (m-1) (n-1) among the minors of M.

Proof. Let S be a regular sequence of minors of M. Since grade (x,, ... , Xm1) =
= m the Ith column of M appears, at most, in m minors of S. We have n
columns in M, but two columns appear in each minor. Thus we must have

1) grade I,(M) = (m-1) (n-1) <L”21’-.
If m=2, (1) holds for any value of n. If m > 2 we have
) 2m-2
<n<=——
@) [m 8 m-2 ]

Solving (2), yields the proposition.

Remark 1. It follows from the proof of Proposition 1 that the integer h(m,n)
defined above is an upper bound for the length of a regular sequence of
minors.

We often use the following elementary result:

Lemma 1. Let T be an integral domain and X, ... , Xn indeterminates over T.

If ai € T[X,,...,Xi-1], i=1,...,n, then the ideal (Xi-ay, ..., Xn-an) of
T[Xl, s ,Xn] is prime .

§3. The 3x3 matrix.

In this section, unless otherwise stated, M denotes the 3x3 generic
matrix. We have grade I,(M) = 4. The following theorem caracterize the
regular sequences of minors of M.

Theorem 1. Up to renumbering of variables, D} ,D¥,DY¥,D% is the only
regular sequence of minors of M of lenght four.

Before proving Theorem 1 we will establish a lemma.

Regular sequences of minors, II 3

Lemma 2. Let M be the 3x4 generic matrix. Let J, = J,(M) = (M*?,D¥,
D®), J, = ,(M) = (J1,D¥,D¥.D¥) and J3 = Js(M) = My, M'?, M*).
Then J, is a prime ideal, grade J, = 3 and grade J; < S for i = 2,3.

Proof. By [4, Theorem 1], J; is a prime ideal. It follows at once from
[1, Proposition 1] that {D}(’,D?,D‘;} is an R-sequence; thus grade J, = 3.
Let P='(X,, X3, Xa, Y1, . Y20, .0, 2,). Since'J, C P, i'= 123
it is enough to show that-grade J;Rp, < 3 and grade /iR, <5,i =23 [2,
Theorem 134].-In R, we may suppose that our matrix is
1 a, as aa

M = Yl Yz Y3 Y4

Fhondd) 1xifaeii B

i Vil €
where a; € R, i = 234. Let My = M’ €13 and My = M = ¢, * €31 *M;

where e,q, j is the standard elementary matrix with ¢ in the i,j position. So,
we have

1 0 as dq 1 0 as 4
MEWEM] WY aYih RAYRRN AR =135 SUR B, ) E T it

Zaih ZnZpt Zy 0 Z; 23 Z;

where Yi’ = Yi - a,-Yl, Zi’z Zi - a,-Zl, i3 2,3,4.

Now, we note that J;(M)R, = J;(M’) = J;(M), i = 1,2,3. Since J,(M,) =
(Y3,23,Y3), J.(M3) = (Y3,23,Y3,25,Y3Z4-Y4Z3) and J3(M3) = (Y3,Y3,Y3,
Z3.a3Z4—a473), the lemma follows.

Proof of Theorem 1. Let S be a regular sequence consisting of four minors
of M. Then, the following conditions hold:

(a) A row (resp. column) of M appears, at least in two and at most in
three minors of S.

(b) If two minors of S belong to a 2x3 (resp. 3x2) submatrix of M,
then the other two minors of S do not belong to a 3x2 (resp. 2x3) subma-
trix of M.

In fact, if a row of M appears, at most in one minor of S, then three
minors of S belong to a 2x3 submatrix M’ of M and grade I,(M) = 2. If a
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row (the first, say) appears in all minors of S then () C (X;,X,,X3) and
grade (S) < 3 (later on, we will take some reduction analogous to that,
with no comments).

If the condition (b) is not satisfied, we may suppose that the 2x3
(resp. 3x2) submatrix is formed by the first two rows (resp. columns) of M.
Then (S) C J, and grade J, = 3 (the ideal J, was defined in Lemma 2).

Now, let S ={ xl,xz,x3,x4} satisfy conditions (a) and (b) above. We
may suppose that the first column appears in three minors of S (because of
condition (a) it occurs for two columns of M). Thus, we may suppose that
xy = DR, x, = DY, x3 = D}®, x4 = DP and we must determine r and s.
Because of condition (a) we must have r = Z or s = Z. But if r = s = Z
condition (b) is not satisfied. Since we have not distinguished the first two
rows and the first two columns, we may suppose 7 = Y and s = Z. To
complete the proof we have to show that { D¥,D¥,DY,DF | is indeed an
Rsequence: it is a consequence of the next proposition.

Proposition 2. The ideal P = (D¥},DY,D¥) is prime. Since DY & P, it
follows that {D}Y’,D?,D?,D?} is an R-sequence.
PI'OOf: Let Rybe= Di}, X = D?, e D%s, Jet Pi = (Xl,.‘.. ,xi), i= 12,3
and let Z; be the multiplicative system |of the powers Z: j = 0, i=dl
Repeating the following argument for i = 1,2, yields the proposition.

As P; is a prime ideal and x;,, & P;, we have that the generators of
P;,, form an R-sequence. So it follows that the associated primes of P; ,
have grade i+1. Also Z; is not a zero divisor modulo P;,, . Hence, by Lemma 1,
in (R/P; )3;» the ideal (Z x,,,l) R/P; )z; is prime. It then follows that (xm)
(R/P;) is a prime ideal, i.e., P;,, is a prime ideal.

§4. The 3x4 matrix.

In this section, M stands for the 3x4 generic matrix. We will study the
regular sequences of minors of M. We have grade I,(M) = 6.

Theorem 2. Up to renumbering of variables,
D¥.D¥.Dy.D¥.D7.DZ
DY, DY, DF,D¥.D¥.D%
D¥,DY,D%,D¥,D% DY

are the only regular sequences of minors of M of length six.

Proof. Let S be a regular sequence consisting of six minors of M. Then, the
following conditions hold:
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(@) If M’ is a 2x4 (resp. 3x3) submatrix of M, then exactly two (resp.
three) minors of S belong to M’, or equivalently, a row (resp. column) of M
appears in exactly four (resp. three) minors of S.

(b) If there exist two 3x2 submatrices M; and M, of M such that two
minors of S belong to M, and two other minors of S belong to M, then the
two remaining minors of S do not belong to a 2x4 submatrix of M.

(c) Suppose -that there exist two 2x3 submatrices M; and M, of M
such that two minors of S belong to M; and two other minors of S belong
to M,. If the jth (resp. k-th) column of M appears in the two minors that
belong to M, (resp. M,) then no other minor of S belongs to the 3x2
submatrix of M formed by the j-th and the k-th columns of M.

In fact, if condition (a) is not satisfied, there exists a 2x4 (resp. 3x3)
submatrix M’ such that at most one (resp. two) minor of S belongs to M’.
We may suppose that M’ is formed by the first two rows (resp. three columns)
of M. Then there are five (resp.. four) minors of S that belong to the ideal
(Z1,2,,Z3,Z4) (tesp. (Xa,Ya,Zs)). Since grade (Z,,Z,,Z3,Z4) = 4 (resp.
grade (X4,Y4,Z4) = 3) S cannot be regular and we have a contradiction.

If condition (b) (resp. condition (c)) is not valid, beanng in mind
condition (a), we may suppose S = {D”,D ,D¥¢,D¥, oD ,D } (resp.
s ={D¥,D%,D¥,D¥ ,D¥.DY D). But (§) C J5 (tesp. (§) C J,) (the ideal
Js (resp. J,) was defined in Lemma 2) and grade J3 <5 (resp. grade J, <5).

Now, let S be a sequence of six minors satisfying the conditions above.
Because of condition (a), we know that there are exactly three minors in
S (say x,x,,x3;) that belong to the 3x3 submatrix of M formed by its
first three columns. We may suppose that {x;,x;,X3} is a subsequence of
the particular regular sequence{D¥,D},Dy,D% .}n the last three minors
of S, the fourth column of M appears. Using only the condition (a) we may
suppose that S is equal to one of the following sequences:

{p}.0% D 1)}4 p¥.D¥%}
{D" D 1, 0¥, D%}
{p¥ %,0%.D%}
{D¥ i.0%.0%}
{D”,D ,D23,DX .D¥.D¥Y}
But only the first three sequences satisfy conditions (b) and (c). All we have

to prove is that these sequences are regular. In the next proposition, we pro-
ve that the first is. The proof for the others is analogous.

Proposition 3. The sequence S = {D¥, D}, D¥, D¥, DY, D%} is regular.

Proof. Tt follows from [1, Proposition 1] that S’ = { DY, DY, D¥, D%} is
a regular sequence and the associated primes of (S’) are: @; = M2, M),
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= (M?Y3,Ys), Qs = (Z,,Z, M*) and Qs = (Z1,2,,Y3,Y,). Since
DY ¢ Q;,i=1,..,4,8”={DE, DY, D¥, D¥, D¥} is a regular sequen-
ce.

Now we will study the associated primes of (S”). For, let P be a such
prime. Then P D (S”) and by [2, Theorem 130] grade P = 5. We will divide
the proof in four steps.

a) First we suppose that Z, € P and Y; € P.

Since Z,,D¥,D¥,D} € P, it follows that Y,Z,,X,Z,,X,Z5 € P.

Since Y3,D%,D¥ € P, it follows that Y,Z3,X;Y, € P.

If Z, ¢ P and Y, €P then P D (X,,Y,Z,,X3,Y3,Z3). Since grade
(X,,Y,,Z,,X3,Y3,Z3) = 6, this possibility can not occur.

If Z, ¢ P and Y, € P, then P D (X;,Y,,Z,,Y5,Ys) D (8). Let
Py = (X,,Y,,Z,,Y3,Y,). Since grade P, =5, P = P;.

If Z, € P and Y; ¢ P, then P D (Z,,Z,,X5,Y3,Z3) D (S7). Let

P2y, Z OGS 2% Thalbps: A

If Z,,Ys € P then' P D (Z,,2,,Y3,Ys,X; Z3) D (S”). Let Py =

(X1,21,2,,Y3,Ys) and Py = (Z,,Z,,Z4,Y3,Ys). Thus P=P; or P = P,.
b)If Z, € P but Y; €& P we determine as above the associated primes

of (S”): We have P = Ps = (Z,,Z,,Z5,Z4,D¥) or P = Ps = (X,,Y,,Z,,M*)
or P =P, = (X,,Z,,Z,,M*).

¢)If Z, ¢ P and Y; €P then P = Py = (M'%,X;,Y3,Z5) or P = Py =
(M'2,DY,D3,Y3,Y,). (It follows at once from Lemma 2 that Py is prime
and grade Py = 5).

d) Finally if Z,Y; ¢ P, we consider the multiplicative system = of
the powers Zy V5, i,j = 0. In Ry, (S)Rx = (V2-Z7'Y,Z,, X,-Z{'X,2,,
X5Z1X1Z3, X4-Y3' X3Y4, Z4-Y3'Y4Z5) is prime, by Lemma 1.

Since D% ¢ S)Rs, P, i =1, ..,9, the sequence S is regular.

§5. The mxn matrix.

We have seen in Remark 1 that the integer A(m,n) defined in the intro-
duction is an upper bound for the length of a regular sequence of minors of
the mxn generic matrix (m,n=>3). In this section we will see how to
construct such a sequence of length A(m,n).

Theorem 3. Let M be the mxn generic matrix (3<m<n). Then we can find
a regular sequence of minors of M of length h(m,n).

Proof. We remark that if M has a regular sequence of minors of length s
then the transpose ‘M has also such a sequence. We obtain the proof in two
steps.
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First we prove using the methods of the proof of Proposition 3 that:

i)if M is 3xS then the sequence { D{,D}?,D¥,D¥.D¥ .D¥.D¥ } is
regular.

ii) if M is 3x6 then the sequence { D¥},DV¥.D¥.DZ DY DY Dy .D¥}
is regular.

iii) if M is-4x4 then the sequence { D13 12 D3, D3.DA DA DY
is regular.

iv) if M is 4x5 then the sequence { Di3,0%,D33,D13,D3;,D4;,D%.D3i,
D¥.D% }is regular.
v) if M is 5x5 then the sequence { DB D13 013,013,032 ,Di2.D% D%,
33.D%.D:5, D J}is regular.

v1) if M is 5x6 then the sequence { DB ,D13,D13,D13,D% 2D,
D%5,D3§,D%5,D3s D3 D1t} is regular.

After that, we can suppose that if m is even (resp. odd) then n = 6
(resp. n = 7). We alsc suppose, by induction, that the statement is valid for
the m’xn’ matrices such that either m’<m orm’ = m and n’<n.

If m is even (resp. odd) we consider the mx(n-3) (resp. mx(n-4))
submatrix M; formed by the first n-3 (resp. n-4) columns of M and the
mx3 (resp. mx4) submatrix M, formed by the remaining columns of M.
By induction, since m = 4 and n = 6 (resp. m = 3 and n = 7) we can
find a regular sequence S; of length h(m,n-3) (resp. h(m,n-4)) among
the minors of M; and a regular sequence S, of length h(m,3) (resp. h(m,4))
among the minors of M,. It follows that the sequence S; U S, obtained by
joining the minors of S, to the ones of §; is regular and its length is just
h(m,n).
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