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Sharp existence results for a class of semilinear elliptic problems.

H. Berestycki and P. L. Lions

Abstract.

In this paper a semilinear elliptic second-order problem is considered.
Under very general assumptions we give a precise description of the number
of solutions of the problem. These results extend in particular a result due to
A. Ambrosetti and G. Prodi.

Introduction.

The problem considered here is of the following type: let & be a
bounded regular domain in RN , we look for solutions u of

1) -Au = g(x,u) + f(x) in Q, u € C*(Q), g—:)i =0 on 0%2;

where v is the unit outward normal to 3%, f € C*®*(Q) (for some 0 < a <
< 1) and g(x,u) is a smooth nonlinearity satisfying essentially:
?2) lim g(i;tl< 0 <1_irgi(xt;t) (uniformly in x € Q);

= =-o00 > 4o

and some appropriate growth condition at +o°.
*If f(x) = to(x) + f1(x), where t € R, ¢ € C**(Q) with

3) ¢>0in0,0#%0

we prove (see Section I) that there exists #o(F #o(¢,f1)) € R such that

i) if ¢ > to, there is no solution of (1);

i) if ¢ = t,, there is at least a minimum solution of (1);

iii) if ¢+ < to, there is a minimum solution of (1) and there are at least
two distinct solutions.
This result extends and sharpens many earlier results due to A. Ambrosetti
and G. Prodi [2], M. S. Berger and E. Podolak [5],.P. Hess and B. Ruf [9],
J. L. Kazdan and F. W. Warner [11], H. Berestycki [4], H. Amann and P.
Hess [1], E. N. Dancer [8]. The main assumption that we remove is the ‘“‘at
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most linear growth at +” and in addition we prove the existence for t < %,
of two ordered solutions.

In Section II, we consider the special case of f(x,#) convex in ¢ and
we give some results of a geometrical nature concerning the set of functions
f for which (1) admits a solution. Our main concern is to extend the results
of H. Berestycki [4] to the case in which we no longer assume that g grows
at most linearly at +oo.

I. The general case.

Let a be in (0,1) and let f € C°*(2). We assume that the nonlinearity
g(x,7) belongs to C° *(Q) (uniformly for ¢ bounded) and g(x,?) is Lipschitz
continuous in ¢, uniformly for x in Q. In addition, we restrict the growth of
g(x,1t) for t large by the following assumption:

@) lim g(x,?) t™P = 0, uniformly in x € Q, for some p < NN2 .
1> 400 Ao

Gf N = 2, N*]YZ may be replaced by any p < o0; and if N = 1, we make no

assumption at all). We then have

Theorem 1.1. Under assumptions (2), (4) and if f(x) = to(x) + f1(x) with
¢ € C% *(Q) satisfying (3), there exists ty € R (to = to(0,f1)) such that:
i) if t > to, there is no solution of (1);
ii) if t = to, there is at least a minimum solution of (1);
iii) if t < to, there is a minimum solution of (1) and there are at least
two distinct solutions.

Remark I.1. As it will be clear from an inspection of the proof, the same
result holds if we replace -A by any uniformly elliptic second-order operator
(with smooth coefficients) and if we suppose that g depends also on Vu:g =
= g(x,u,p) for (x,u,p) € Q X R X RN; we then need to assume that g(x,?,p)
is bounded for (x,p) € Q X RV and ¢ bounded and that the limits in 3),
(4) hold uniformly in p € R¥. In addition, we may also replace (1) by

1) -Au = f(x,u,t) in Q, u € C2(Q), 27“= 0 on 392;
assuming as in [1]:
Q) Vm € R, 3¢ € C(Q) such that —gij @£ 2 0() >0,

for xin Q, § =2 m and t € R.
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Remark I.2. Assumption (4) is a technical assumption which insures that
solutions of (1) are a priori bounded (cf. the proof of Theorem I.1 below).
We believe that the same result is true with-Nl_2 replaced by %i% For a
similar reason, if we replace Neumann boundary condition by a more general
one, then we need to replace N 5 by N 1 (we then use in the proof of
Theorem 1.1, the a priori estimates of H. Brezis and R. E. L. Tumer [6]).

Proof of Theorem I.1. The proof is divided in several steps: we prove 1) there
exist arbitrary negative subsolutions of (1), 2) the set of # such that (1) has
a solution is of the form (-o,¢y], 3) that (1) has always a minimum solu-
tion if ¢ < ¢y, and finally 4) that (1) has two distinct solutions for ¢ < #,.

1) Let y € C%*(Q), then there exists v € C2(Q) such that

-Av<g(x,v)+f(x)in§,v<x[1in§,g—3=00n Q.

Indeed, because of (2) we have
) g(x,) = -at - C for t,x €R X Q and for some a,C > 0.

Then if we define v by v = - max {&—(Mfllm + ), ||\ll||°°} we have obviously
< ¢ and
SAy =0 < -av - C+ f(x) < g(xv) + f(x).

2) We first prove that if ¢ is bounded, all possible solutions of (1) are
bounded in C?’%(2).
Indeed, because of (6), we deduce obviously from the maximum principle

that if u is a solution of (1), one has: u(x) = -%(Ilf ll_ + C). In particular

u”is bounded in L7(2). Next, if we integrate (1) on {2, we obtain

fé(x,u) = — f‘};(x) < Const.;

since g satisfies (2) and #~is bounded in L7(S2), this implies:

flg(x,u)ldx < Const., fluldx < Const. .
Q Q
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In particular we have: |[-Aull, llull,, < Const. . This implies by well-
N \ ]
know regularity results: |lull;» < Const., vp < 7> N3 Since g satisfies (4), it

is easy to obtain by a bootstrap argument:
IIuIILm < Const.

Let us prove now that if (1) has a solution for some ¢, then for all
s < t, (1) has a solution. Indeed let u be a solution of (1) for ¢ and let
s < t, obviously u is a supersolution of (1) (for s) ie.:

“Au = gleu) +to + f; = glx,u) +sp + fi.
On the other hand, by step 1) above, we know there exists v satisfying
Ay <g(x,v) +sp+fi,v<u

Then by classical results on sub and supersolutions, this proves our claim.

Thus we know that the set of ¢ such that (1) has a solution is either
(-0,t9] (with #; < +9) or (-o0,+%0) (it is necessarily closed in view of the
a priori bounds proved above). We just need to prove that (1) cannot have a
solution for all #: we argue by contradiction and we suppose (1) has a solu-
tion u; for all t. Then we define u,,u, by

LU0 on 00 3, & CEHD)

-Au, + au; = ¢in Q,
av

-Au; tau; =f; -Cin SZ,%L% =0ondQ, u, € C*Q).

In view of (6), we have
up =tu, +u, in Q.
Since ¢ satisfies (3), we have u; > 0 in Q and thus. for ¢ large enough
u; > 0in Q.
Because of (2), we have: g(x,#) = at - C for t = 0 for some a, C > 0.
Then integrating (1) on §2 and using the fact that u, is positive, we obtain

afg,dx + tf¢ dx < Const. (indep. of ?);

- since f ‘pdx. > 0, we obtain a contradiction for ¢ large enough.

3) Now let ¢t < t,, then (1) has always a minimum solution if # < #,. We
already know that (1) has a solution u and that all possible solutions of (1)

satisfy: u = - —(||f|| + C) (a,C given by (6)). But v = - —-(||f|| +(C)is a
subsolution of (1) (take ¢ = 0 in Step 1)) and thus u = v. Then, by well-
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known results, this implies that (1) has a minimum solution # among all
solutions satisfying: w > » in Q. Since all solutions w of (1) satisfy: w >
in Q, @ is in fact the minimum solution of (1).

4)  Finally let t+ < to, and let us prove that (1) has two distinct solutions.
We are going to use a topological degree argument (we refer to J. Leray and
J. Schauder [12], or to L. Nirenberg [15] for a definition and the main
properties of the Leray-Schauder degree).

Let us first introduce some notations, let Uz, be the minimum solution
of (1) where f is given by to¢p + f;. By Steps 1), 2), 3), we know there
exists a strict subsolution v of

-Av < (xv)+t¢+f1,——00n o

and a minimum solution u; of (1) (with f given by ty + f,) satisfying:
v<u <uwy in Q.
We are going to prove the existence of a solution # of (1) which does not
satisfy:
v<u<u in Q
and thus u > u; in Q, u € ur in Q.
By Step 2) and the a priori bounds, we may choose C; > 0 such that
all solutions u of (1) satisfy: IIuIIC(“Q‘) < C;, and we may assume

”V”C(ﬁ) : ”uto”C(ﬁ) <.

Now in view of the smoothness of g(x,t), there exists A > 0 such that
g(x,t) + At is nondecreasing on [-C,, +C,], for all x in . Obviously u is a
solution of (1) if and only if u is a fixed point of the compact operator K
defined on C () by: Kv = u is given by

SAu tAu=gxpy)+ v +tp+f; in Q u € WHP(Q) (p < =),

a_u= 0 on 3Q2.
ov

We first prove that if M is large enough, the degree of 7 - K on By,
= {w € C(Q), ||W||C(Q) <M } (w1th respect to 0) is well defined and d(I-
B, 0) =
In order to prove this, we define a family K of compact operators in C(Q2)
defined by: Kgv = ug is given by

L
-Aug + Aug =s@x, )+ v+ f)+ (1 -5) (1 +v + W) in Q,

%y odi D6,
ov
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The same proof as in Step 2) gives, that all solutions u, of: ug = K
satisfy: IIusHC(Q) < M (indep. of s € [0,1]). We will also assume that M >
> C;. Thus the degree of /-K; on Bys is well defined and independent of
sSij0lb] ;

d(I-K, B,,, 0) =d({I-K,, By, 0).
Now, if uq is a solution of: uy = K, ug, we have

i dug
-Aug = uo+1,a = 0 on 3L, u, € C*(Q),

and thus f (1 + up)dx = 0, which is impossible; thus there is no fixed point
Q

of K, and d(I—KO,BM,O) =0

We then prove that if O = {w E) (D) VM Up, in Q} then
d(I - K,0,0) is well defined and is equal to +1. Indeed let ¢ € O, and let us
define Kv on C(Q2) by

C;v=sKv+ (1 -s)y, fors € [0,1].
Because of the choice of v,ut, and A\ we have obviously:
K :6 -0 and thus K;: 6 > 0.
This implies that d(I - K;,0,0) is well defined and independent of s € [0,1],
therefore we deduce
d(l - K,0,0) = d(I - K;,0,0) = d(I -K o,0,0).
Now K,V is constant, equal to ¢ which belongs to O, thus
d(I -K,,0,0) = +1.
We are now able to conclude: indeed by the above arguments we have
dI-K,By-0,0) = -1;

and this means that (1) has a solution which- does not belong to &.

II. The convex case.

We now consider the case where g is convex, more precisely we deal
with the following problem:

@) -Au = p(u) + f(x) in Q, u € C*(Q), u = 0 on 3N,
where f € C° *(Q) (for some a € (0,1)) and where ¢ satisfies
®8) ¢ is strictly convex on R, ¢ € C!(R);
) lim * ¢(t) <\

> -

where A; is the first eigenvalue of -A in €2, with Dirichlet boundary
conditions.
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It is well’known that if lim ‘iL[) < Ay, then (1) has a unique solution

[— 4o
u for every f € C%*(Q). In what follows, we will assume in addition to

(8)9):

(10) : lim 3;(_’) P

=+
We then define K to be the set of functions f in C°!(Q) such that (7)
has at least one solution. In addition we set
={f € C>'(Q), (7) has at least two distinct solutions } C K
Ay ={f € C>'(Q), (7) has exactly one solution} C K;
obviously K = 4,, U 4,.
Our first result states (setting X = C°'1(Q)):

Theorem IL1. Under assumptions (8)-(9)-(10), K is a convex set, unbouded,
with K # ¢ and E - K is nonempty, unbounded.

Furthermore for all f € K, there exists a minimum solution u of (7),
such that the first eigenvalue of the operator -A - ' (u) (with Dirichlet
boundary conditions) is nonnegative.

In addition A4,, C K (and 0K C A,) and for all f € K then the first
eigenvalue of the operator -A -¢'(u) is positive.

Remark II.1. This result may be extended to the case of more general elliptic
operators and to more general boundary conditions (in particular Neumann
conditions). In addition, we may assume that ¢ depends on x ((9), (10)
being uniform in x € Q).

Remark II.2. This result is an extension of a result due to H. Berestycki [4],
where it is assumed in addition that: lim =~ () < \,, where A, is the second
= 4+ o
eigenvalue of -A. However in that special case a more precise description of
[e] —_—
K may be given: indeed (see [4]) i) K is closed, ii) 4, = K ={f € C°'1(Q),
(7) has exactly two solutions}. We will see below that if we relax the

assumption: lim M oMy

[—>+ o0

Am = ]2’, and that K is closed.

then we need some assumption to ensure that
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Let us for the moment indicate that in general for f in K (7) may have
more than two solutions (even an infinite number of solutions): take y(u) =

2
wo € and £=0,N <10 with Q the unit ball in RV — see D. D. Joseph
d

and T. S. Lundgren [10]). Furthermore we do not know any other assump-

: : /A o
tion than: lim Q < A, to ensure that for f in K, (7) has exactly two

[—>+c

solutions.

Remark IL.3. For f in K, the minimum solution u of (7) depends continuously

on f.

To simplify notations, we may assume without loss of generality: ¢(0) s

Before going into the proof, let us give two results which answer the
questions raised above (in Remark II.2): (we assume for the sake of simpli-
city N = 3).

Theorem I1.2. Under assumptions (8)-(9)-(10) and if we assume:
N#2

(11) Jim «{<I>(t) h(t)-“"’rz} =0, lim el 320w O

t )
where ®(t) = fxp(s)ds and h(t) = Y%o((t)t - D(¢) > 0, then A,, = K and thus
)

A, = 0K. In addition, for f in 3K, the first eigenvalue of the operator
(-A -y¢'(u)) is zero, where u is the corresponding solution of (7).

Remark II.4. Let us give a few examples where the (technical) condition (11)
is satisfied:

i) if ¢ satisfies: 6 ¢(r)t - ®(t) > 0 for ¢ > ¢4, and for some 6 € (0,%) then
h(t) = (%-0) t o(¢), and if we know that

lim o) rM2/NV-2) = o

[+
N-2
N
then @(1) (D)2 172 < Cro@) 172 o) 2N 2 < ¢ ‘p(z?a and
&

thus (11) is satisfied and soon as we have
(12) Bp(t)t-@(t) = 0 for t > ¢, and for some 6 € (0,%)
lie pr)soY RUN <Dy

=+

Semilinear Elliptic Problems 17

(12) has been introduced by A. Ambrosetti and P. H. Rabinowitz [3], and
N+2

contains in particular ¢(¢) = I#|P for 1 <p < N

ii) if ¢ satisfies: lim @(¢) FNIN-2) - 0, then (11) is satisfied. Indeed since

[—+o

¢ is convex, it is easy to prove that A(¢¥) = ayp(?) - C; and then
N-2

<I>(l‘)h(t)—2/N 72 < Cttp(t)gp(t)‘”N 2= C&.__ .

If we consider the particular case ¢(t) = [t[P (with 1 < p < o) then

+
(8)49)<(10) hold obviously and (11) holds if and only if p <]>/v—_§ . The
. BI15109 N+2 .
following example shows that such a restriction is needed and ‘ha‘ﬁ is

o
the critical exponent for A4,, to be equal to K.

Example. We assume that § is starshaped (VW = 3), ¢(z) = [¢t/P with p >
> N+2

N=2"
(7)) Au=uP in Q,u=>0in Q, u=0o0n 3, u € C*Q).
Then in view of the results of S. I. Pohozaev [16], (7’) has a unique solu-
tion u = 0. Thus 0 € 4,. But by an obvious application of the implicit
function theorem, for f in 0C("‘l(ﬁ) small, (7°) has still a solution and
therefore f € K. Hence 0 € K.

Finally concerning the question of the closedness of K, let us just

indicate that problem is entirely similar to the following problem: let (0,A*)
be the maximal interval such that there exists a solution of

(13) ~Au = NoW) + f(x)), u € C*(Q), u = 0 on dRQ;

where we assume f = 0, ¢(0) > 0; then does there exist a solution of (13)
for A = A*? This question is answered in M. G. Crandall and P. H. Rabinowitz
[7] (see also F. Mignot and J. P. Puel [14]) and just applying their results
and techniques, we obtain:

and we take f = 0. Then (7) is equivalent to

Proposition I1.1. If one of the following conditions is satisfied

t’(t) = 0 ¢(t), for t =ty and for some 6 > 1, t, > 0,

[—+e



18 H. Berestyeki and P.L. Lions.

o) = at™ + Y(@), for t = 0 and for some a > 0, where ) satisfies:
{E5) fim YO - YO _ .
1

b

[—> — [—>+oo tm_ |

or
@.is a class C* and satisfies: By'(£)* > o(t) ¢”(t) = u(¢' (1))
for t Z1o;with 0 <B<2+pu++uand N <4 + 2u + &/ ;
where to > 0; then K is closed.

(16)

Let us remark that the results of D. D. Joseph and T. S. Lundgren
[10] show that these conditions are nearly optimal (see also [7], [14], for
examples of nonlinearities ¢ satisfying (14), or (15), or (16)).

Let us now prove Theorems II.1 and Theorems II.2:

Proof of Theorem 1I.1. We only prove that Ay s Ig, since all the other
statements follow directly from the proof of H. Berestycki [4].

Let f, € A,,, there exist at least a minimum solution of (2) u and another
distinct solution, say # > u. Since we have

~A@T-u) = o) - p) = { LD Z 0@
U =5

this implies that the first eigenvalue of the operator

-A - %@ (this last function being extended by ¢'(u) on 3a82) is 0.
But since ¢ is strictly convex, we have
.‘pﬂ)___. o) > ¢ (u) in Q,
u-u

therefore the first eigenvalue of the operator -A -¢'(u) is positive. Then by
an obvious application of the oimplicit function theorem, for f near f, in
X, (7) has a solution ie.: f, € K

Proof of Theorem 11.2. Let f € 12, we know (by Theorem I1.1) there exists
u minimum solution of (7) and that the first eigenvalue of -A -¢'(u) is

positive. To prove that f € A,,, we just need to show there exists a solu-
tion v of

-Av = p(u(x) +v) - o)) in Qv € CXQ)

A7 Yy gaarel 249 ) g
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Since ¢ satisfies (11) and since the first eigenvalue of -A -¢'(u) is positive,
we may apply the existence results of P. L. Lions [13] to conclude.
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