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Q-stability of plane vector fields

Fopke Klok

The purpose of this paper is to give sufficient conditions for $2-stability
of plane vector fields, which also imply genericity. It thus solves the question
posed by Mendes in [4]. I would like to express my thanks to Floris Takens
for suggesting the problem and helpful conversations.

1. Definitions and statement of the result.

By Xr(R2) (r=1) we denote the complete C"-vector fields on the
plane R?, endowed with the C"-Whitney topology.We write X, X’ for elements
of X'(RZ). X, denotes the flow induced by X. Critical elements of X (singu-
larities and closed orbits) are denoted by o, and the subset of R?, consisting
of all points on critical elements is Jo; (i €1).

For x ER* vx(x), Yy (x), Yy (x) is the trajectory of x, the positive
half-trajectory of x, the negative half-trajectory of x, respectively, under X,.

Q(X) C R? is the nonwandering set of X. (for a definition see Palis-de
Melo [5] pp. 129-130)

For a vector field X and x € R? we define the first positive prolonga-
tion set D} y (x) by: :

Dix (x)= {y € R?|3 xp—x, t, > 0 such that Xt, (n) = y}

and the first positive prolongation limit setJi y (%) by

Ji,x(x) ={y € R?|3 xn > x, t, > = such that X; (x,) —>y}.

By induction we define for £ > 1:

le,X (x) = {z € R?|z € D} x (y) for some y € D]f‘)} (x)}

JJf,X x) = {z € R*|z € J} x (y) for some y EJ’f“}( (x)}.

By transfinite induction it is possible to define higher prolongation (limit)
sets Dy, y (x), J, x (x) and DZX (x) for each ordinal number o by:
Dé’X(x)={y€R2 13 x, >x,yn >,k, >0, ordinals 8, <a with y, EDlg”:,X(xn)}

J&,X(X)ﬂy €R?13 x, ~>x,y, »y,k, >0, ordinals 8, <a with y, EJIE;Z,X(xn)}
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Then Dﬁ,X(x) = {gf_X(x) U vx(x) (Bhatia-Szego [1]).
For X € X (R?), R(X) C R? is the subset consisting of those points

x, for which there exists an ordinal number « and a positive k& with x €~

= Jf x(x). Now (X) is the subset of R(X) consisting of those points x for
which x € Ji x(x).

We will call a vector field X € X (R?) Q-(R-)stable if for every
neighbourhood U of Q(X) (R (X)), there exists a neighbourhood U of X such
that for each X’ € U:

i) QX)) C U (R(X’) C U);

i) if a connected component of U contains points of Q(X) (R(X)),
then it also contains points of Q(X’) (R(X’));

iii) there exists a homeomorphism hy.: Q(X) = QX)) (R(X) - R(X?))
transforming trajectories of X into trajectories of X’

The usual definition of (-stability only states (iii); our definition is
closer to the notion of “absolute stability” introduced by Guckenheimer [2].

We denote the Kupka-Smale vector fieldsin X'(R?) by xj_, ie. for
heiggoy:

i) every o; is hyperbolic;

ii) iy,i; € I, then W“(o; ), W¥(0;,) (the unstable and stable manifolds
of 0; and o;,) are in general position.

In this paper we prove the following:

Theorem. Vector fields X € Xk-s are R-stable if and only if R(X) = Uo; and
these vectorfields are generic.

Because always Ug; C Q(X) C R(X) we also have:

Corollary. All vector fields X € Xk-s with the prroperty R(X) = Uo; are
Q-stable, and Q-stability is a generic propérty in X(R?).

2. Proof of the theorem.

We start with proving the sufficiency of the condition in the theorem.
Here we need the following.

Remark. Let X be a C’vectorfield on a manifold M (not necessery two
dimensional) with R(X) = ¢. Then there is a C!-function I on M with X (L) <
<0.
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Proof. By results of Auslander, (see e.g. [1] p. 132) there is a continuous
function L on M with L(X;(x)) <L(x) for each x €M and each positive .
From the proof of this statement in [1], it is clear, that we may assume
L to be a C'-function, thus satisfying X(L)<0. Now we can change L on
flow boxes in such a way that the inequality becomes strict.

The above remark enables us to control vector fields outside neighbour-
hoods of recurrent points. To get local Q-stability in the critical elements we
need.

Proposition. Let X € Xk-s» with critical elements {ojli € I}and R(X) = Uo;.
For each compact set K C R?, the subset I(K) of I, defined by I(K) =
={i € 1io; N K # ¢}, is finite.

Proof. It is clear, that there is only a finite number of singularities in K.
Now suppose there is an infinite subset /, of I(K') such that for each i € [,
0; is a closed orbit which intersects K. Choose x; € ¢; N K (i € I,), then
after taking a subsequence we may assume X > x € K. Now x € Q(X) C
C R(X) and x does not belong to a closed trajectory, because these are all
hyperbolic and isolated, so x is a singularity.

Again by hyperbolicity, x must be a saddle. Take a small neighbourhood
U of x, not containing closed orbits and singularities, except x, in its closure.
Then each o; has a point x; on the boundary of U for i large enough.

Again after taking a subsequence we may assume Xi=

Now x” € Q(X) C R(X) but x’ is not a singularity and x’ lies not on a
closed orbit.

This contradiction proves the proposition.

From this proposition it follows that for vector fields as above we may
choose nejghbourhoods U; of each o; with mutually disjoint closures. R-stabi-
lity for such vector fields then reduces to the existence of a neighbourhood U
of the vector field X with the property that R(X’) C U U; and X’ possesses a
unique critical element o}, of the same kind (sink, saddle, closed orbit, etc.-)b
as o0j in each U;, for every vectorfield X’ in U. The existence of such a
neighbourhood U is proved in:

Lemma 1. Every vector field X € X}e.g With R(X) = Uo; is R-stable.
/]

Proof. We construct a neighbourhood U of X as above”
Let L be a C!'-function on R*-Ug; with X(L) < 0.

Choose neighbourhoods U; of each o; with disjoint closures as follows:
If o; is an attractor or a repellor then we choose U,

with its boundary
transverse to X.



24 F. Klok

If o; is a saddle we choose a neighbourhood U; on which the vector
field is topologically equivalent to its linear part. On the boundary of each
saddle neighbourhood U; we can choose small open arcs a;y, ... , &jq, transver-
se to X, each containing one point of a separatrix, (see fig.) with:

max {L(x)lx €aiy Vais} <min {L(x)x Eai Uaia} .

Let 71, ..., 7ia be trajectories of X, such that arcs of iy, o1, Yiz, - »
aj4 constitute the boundary of a neighbourhood V; of o; with V; C U;.

Let Tj; be a flow-box neighbourhood of v;; N U; (j = 1, ... , 4) with
[;j N bd(U;) € Vg

At last we’ define neighbourhoods W; of each o; as follows. If o0; is a
saddle then W; C V; and W; N I'; = ¢.

If o; is not a saddle then W; = Uj.

We get a neighbourhood U; of X consisting of vector fields X, which
satisfy on U closU; the following conditions:

1) for each X’ in U, and for each i with o; not a saddle there is a
unique critical element o] of X’ in U; of the same kind as o;, and X’ is
transverse to bd(U;).

2) for each X’ in U, and for each i with o; a saddle there is a unique
saddle of of X’ in W;. Furthermore X’ has trajectories v;;, ..., ¥ia With j; N
NU; CTyj (j=1i,..,4), and X’ is transverse to the o;; ’s.

Outside the U;’s we can control perturbations of X by choosing a
neighbourhood U, of X, only imposing conditions on R*-UW;, such that
X’(L)IR*-UW; < 0 for each X € U,. Finally we show that R(X') = Ug;
for each X’eU=U, N,.

To this end, choose X’ € W arbitrary.

By construction of U,, L strictly decreases on trajectories of X’, which
are totally contained in R2“LI.JWi,~ so each orbit in R(X’) intersects at least
one W;.
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Using the assumed inquality about values of L on the boundary of
saddle neighbourhoods, we have that L(y) < L(x) for any two points x,y €
€ R*-UU; with y € vy (x). From this, using continuity of L, it is easy to
see that for a point z € Jz'Xy(x), x,z € R*-UU;, we have L(z) < L(x).

Now if R(X’) # Uo] then there is a trajectory 7’ in R(X"), crossing the
boundary of a saddle neighbourhood Wi, . ;

Assume ﬁrs’; that v’ is not a separatrix of 0}0, then 7’ intersects two of
the o;zq j’s, succesively in x; and x,, so L(x;) < L(x,).

But because v’ C R(X’), x; € Jf‘X'(xz) for some « and k, and thus
L(x;) < L(x,) which is a contradiction.

The other possibility,” where vy’ is a separatrix of o;,, is showed to be
impossible with the same arguments, so R(X’) = Uo; and the lemma is
proved.

In the following it is shown that there exists a residual subset of
x (R?) consisting of vector fields X with the property that R(X) = Ug;.
This, together with lemma 1 will give the theorem.

We denote by X~ the subset of x"(R?) containing all vector fields X
with the following four properties:

i) X is a Kupka-Smale vector field.

ii) Q(X) = Ug;.

iii) X is not -explosive.

iv) X is a max-tolerance stable.

Here we call X not Q-explosive if for each neighbourhood U of Q(X)
and for each compact set K C RR? there exists a neighbourhood U of X with
QX)) N K C U for each X’ € U. A vectorfield X is called max-tolerance
stable if for each positive € and for each compact set K C R? there is a
neighbourhood W of X such that for each X’ € U the following holds:

a) for each X *trajectory v’ with v’ N K # ¢ there is an orbit y of X,
such that v’ N K is contained in the e-neighbourhood of 7.

b) for each X-trajectory y with y N K # ¢ there is an orbit y’ of X,
such that ¥ N K is contained in the e-neighbourhood of 7’.

Now %’ contains a residual subset of x"(R?), ([3], [6] and [7]) and
we will show that R(X) = Ug; for each X € .
1

The following lemma is just a slight extension of lemma 4 in [8]:

Lemma 2. For each X € X' we have D} x = D} x.

Proof. Suppose there are two points p and ¢ in R?, with ¢ € Di x(p),
q ¢ D},X(P) We first show that we may assume p and ¢ to be regular
points:



26 F. Klok

If p is on an attractor, then g is on the same attractor, so g € D%, x(@) -
- D} x(p) is impossible.

If p is on a repellor oy, then there exists a neighbourhocod V of oy,
with its boundary transverse to X. Now if ¢ € D} x(@®) - D1, x(p) then there
is a point p’ on bd(V) with ¢ € D} x(p’) - D} x(0).

Finally, in the case where p is a saddle point, there exists a point p’
on an unstable separatrix of p with ¢ € D x(p’) - D} x(p").

Thus p, and, with the same arguments, ¢, may assumed to be regular
points. Let m € R? be a point with ¢ € D} x(m) and m € D! x(p). If
m is a regular point, then by definition of ¥ we have p,q,m & Q(X). Now
the arguments in the proof of lemma 4 in [8] apply to give a contradiction.
If m is not a regular point, then by hyperbolicity m is a saddle and we may
choose my, m, on separaties of m in such a way that g € Di x(my),m, €
€ D1,x(my), my € D} x(p). Again p,q,m;,m, ¢ QX) and applying the
arguments of lemma 4 in [8] twice, gives a contradiction.

Lemma 3. For X € X we have R(X) = Uo;.

Proof. We will show by transfinite induction, that for each ordinal number «
and for each positive number k:D{:’X =Di,x.

Because Q(X) ={x € R*|x € J1 x(x)}and Jff‘,X(x) = D’ac,X(x) -7'(x)
for each @ and k we then have Q(X) = R(X).

By definition of X then R(X) = Uo;.

Induction:

DIfYX = Di x follows from lemma 2.

Now assume Dlé,x = D{,X for each ordinal number § < « and y €
€ Dy, x(x) for two points x,y € R?.

Then there are sequences x, - x, y, — y ordinal numbers 8, < « and

k
positive numbers k,, with y,, € Dﬁg, x(xn).

By hypothesis y, € D] x(x,). Let € be a small positive number, then
there exists n, with Xn,,¥n, in the %e-neighbourhood of x,y respectively.
Because y, € D},X(xno) there is a trajectory y of X intersecting the
% e-neighbourhoods of both Xn, and y, .

e was chosen arbitrary, so y € D} x(x).

Now Dy x = Di, x and thus also‘Dlé,X' =Di x.

Because R(X) = Uog; holds for a residual and hence a dense set of
vectorfields X € x"(R?), this is a necessery condition for R-stability. The
proof of the theorem is complete.
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