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A survey of the geometric results in the classical theory of minimal surfaces

William H. Meeks III
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Section 1. Introduction.

In recent years there has been a beautiful flowering in the theory of
minimal surfaces. Many fundamental conjectures have been solved and deep
unexpected applications to other parts of mathematics and physics have been
attained. The author has written this survey in an attempt to organize and
present the new and classical results in this theory.

Since the quantity of the new material is rather overehelming and
because the analytic material is already well presented in books and papers
(see [3], [18], [30], [49], [57], [81], [86]),the author has emphasized
those aspects of the subject which have an intuitive or geometrical flavor.
Even with this limitation on the subject matter, the survey covers approxima-
tely seventy theorems in twenty four sections.

Because of lack of time and space the author has unfortunately been
unable to include a discussion of the many fascinating unsolved problems in
this theory. He refers the interested reader to his book ‘“Lectures on
Plateau’s problem” for a discussion of more than fifty unsolved problems.

The author would like express his gratitude to Gudlaugur Thorbergsson
who carefully read and criticized the first attempts at organizing this survey.

Section 2. The definition of a branched minimal surface.

The theory of minimal surfaces begins with the following variational
formula in the calculus of variations.

Theorem 1 (first variation formula). Let f:M—-R>® be a compact immersed
surface with boundary. Let f;:M—R® be a smooth variation of M for t €
" € (-1,1) such that f, = f and f;|0M = floM. Let V be the variational vector
field restricted to f, = f. If A (t) is the area of f; then

d NPT ]
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i

A survey of the geometric results in the classical theory of minimal surfaces 31

where H is the mean curvature of M, N is a unit normal vector field on M,
and dM is the induced area form of the immersion f.

An immediate corollary of theorem 1 is that if the mean curvature H
of M is identically equal to zero, then M is a critical point to area for
smooth variations of M that fix the boundary of M. The converse of this
statement, if M is a critical point to area for smooth variations which fix the
boundary, then the mean curvature H is identically zero, also follows from
the first variation .formula by choosing appropriate variational vector fields V.

Immersed surfaces in R with mean curvature identically equal to zero
are called minimal surfaces. For analytic reasons it is natural to generalize the
definition of minimal surface to surfaces which have a finite number of
singularities called branch points. In order to understand the concept of
branch point on a minimal surface we make the following definitions.

Definition 1. A Riemann surface M is a surface with an atlas of conformal
coordinates. If an orientable surface M has a Riemannian metric, then a
classical theorem implies that there exists a system of conformal coordinates
on M which is called a system of isothermal coordinates on M.

Definition 2. A smooth mapping f:M->R?® of a Riemann surface M into R3
will be called conformal if in conformal coordinates (x,y) on M, If,|= | fyl
and <fy.f, > = 0 where <,> is the inner-product on R3.

Definition 3. If f2M—>R> is conformal, then a point p=(x,y) € M is a branch
point of f if the differential df, is zero or equivalently ifllf, | = | fyl =0.

Definition 4. A smooth map f:M—R3 from a Riemann surface is harmonic
if the coordinate functions of f are harmonic functions on M. A function
&M—R on a Riemann surface is called harmonic if in conformal coordinates

. e
the Laplacian Ag = —3

Py + W is identically zero.

Theorem 2. Suppose f:M—R> is an immersion of an oriented surface M and
A is the Laplacian of M with respect to the induced metric. Then

Af = H*N
where Af = (Af1,Af2,Af3), H is the mean curvature of f{M) and N is the
unit normal on f(M).



32 W. H. Meeks I1I

The above theorem immediately implies that a conformal immersion
f:M=R? of a surface is minimal if and only if f is harmonic. This property
naturally leads to the following definition.

Definition 5. A conformal harmonic map f:M—~R> of a Riemann sutface M is
called a branched minimal immersion and the image f/M) a branched minimal
surface.

Section 3. Minimal surfaces with boundary and boundary regularity.

In the previous section we gave the definition of a branched minimal
surface as being a conformal harmonic map of a Riemann surface into R°.
Since it is natural to consider examples of minimal surfaces which have
boundary, we will consider examples of minimal surfaces f:M—R> where M
has a boundary oM. We shall assume that f(0M) is a collection of pairwise
disjoint curves called the boundary of f(M). We shall also assume that floM
is a homeomorphism with the boundary curves f(3M).

In 1949 H. Lewy proved the following surprising boundary regularity
theorem for minimal surfaces.

Theorem 3. Let 7y be an analytic Jordan curve in R® and f:M—R® a branched
minimal surface with boundary <. Then f is analytic and f(M) is contained in
the interior of a larger branched minimal surface.

Lewy’s proof was based on an analytic reflection principle of which the
following is a special case.

Theorem 4. If o is a straight line segment on the boundary of the minimal
surface M, then M can be continued analytically across a by reflection.

Lewy’s theorem was later improved by Hildebrandt [41] using elliptic
methods (and later by others, see page 86 in [49]). Hildebrandt proved the
following '

Theorem 5. If f-M—R?> is a branched minimal surface with smooth boundary
curves, then f is smooth.

Once the minimal surface /:M—/R?3 is known to be smooth one can
consider the problem of the existence of branch points on the boundary of
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the minimal surface. Nitsche showed in [80] that there are at most a finite
number of branch points for f when the boundary curves are smooth and M
is compact.

Section 4. The maximum principle for minimal surfaces and a generalization
of a theorem of Rado.

The word ‘“minimal” is naturally associated to minimal surfaces for
several reasons. ‘The first reason being that a compact minimal surface with
boundary is frequently a surface of least area having this given boundary.
The second reason is that small pieces of an unbranched minimal surface
always have least area with respect to their boundaries. Since all immersed
surfaces are locally graphs over their tangent planes this local area property is
a consequence of the following theorem [61] and the fact that we can
choose a small piece of the surface to be a graph over a small planar disk.
Actually, this special case is much easier to prove.

Theorem 6. Let y be a continous Jordan curve which has a monotonic
parallel or central projection onto a convex Jordan curve Y in a plane P.
Then 3
1. There exists a compact minimal surface M in R*® with M =y and M
is a graph over the interior of the disk in P with boundary 5.
2. M is the unique compact branched minimal surface with boundary 7.
3. M has least area with respect to all compact piecewise smooth surfa-
ces with boundary 7.

The proof of the above theorem is somewhat delicate in the generality
stated ‘and depends in an essential way on the maximum principle for mini-
mal surfaces. The maximum principle for minimal surfaces which is given
below follows from the more general Hopf maximum principle [91].

Theorem 7 (Maximum principle for minimal surfaces). Suppose that M, and
M, are two connected branched minimal surfaces such that for a point
p € M{NM,, the surface M, locally lies one side of M, near p. Then the
surfaces My and M, coincide near p.

We now give a sketch of the following important special case of
theorem 6 using the above maximum principle (see [57]).

Special Case: If v is a continuous Jordan curve which has a one-to-one
parallel projection onto a convex plane curve y and f-M—R® is a compact
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branched minimal surface with boundary curve v, then f(M) is a graph.
Furthermore, there is at most one such graph.

Proof of the special case: The curve v is the boundary of a convex disk D in
the plane P containing the curve y. We shall assume the plane P is the xy
plane. Geometrically the curve 7y lies on the boundary of the convex cylinder

= {(x,y,z)lz € R and (x,y) € D}. Since C is convex and M is compact,
the maximum principle for harmonic functions implies that the interior of
the compact minimal surface f:M—R> is contained in the interior of the
solid cylinder C.

If f(M) is not a graph of a contmuous function, then by elementary
differential topology there is a point g € D with 771 (g) N f(M) consisting of
at least two points where m:R*® - R? is orthogonal projection ontothe
xy-plane. Let p,,p, € n7'(q) N f(M) be two points with the z coordinate
of p, greater than that of p,. Then the surfaces f(M) and f(M) + ®2-p1)
intersect in the point p,. Thus, there is a nontrivial vertical translation (0,0,t)
so that the intersection of (f+(0,0,£)) (M) and f(M) is nonempty.

Let T = max {r €R | (f + (00)) (M) N f(3) # P} . Note that T>0
and exists by the compactness of f(M). Now let p be an element in the
intersection (f+(0,0,7)) (M) N f(M). Since (f+(0,0,£)) (v) is disjoint from v
for all >0 and this curve is contained on the boundary of the cylinder C,
p must correspond to two points p;,ps € M with f(p3) = (f+(0,0,7)) §p4)
By our choice of T, the immersed surfaces f(M) and (f+(0,0,7) (M) must
locally lie on one side of each other near p. Otherwise, the surfaces
(f+(0,0,T+¢€)) (M) would intersect f(M) for some €>0.

By the maximum principle for minimal surfaces, f(M) and (f+(0,0, T))
(M) must agree on a open set. However, as these surfaces are analytic, the
unique continuation property implies that they must have the same image
until one of their boundary curves. Since the boundary curves of the surfaces
are disjoint, we arrive at a contradiction which proves the surface f(M) is a
graph.

If f1,f2:M-R>® are two distinct compact minimal surfaces which are
graphs, then there is a nontrivial vertical translation (0,0,7) so that (f; +(0,0,))
(1) N f,(M) is nonempty. The argument used above using the maximum
principle gives a contradiction and implies the special case of theorem 6.

Remark. Rado [94] was the first person to give a result in the direction of
theorem 6. He proved: If a curve y has a one-to-one parallel or central
projection onto a convex plane curve, then vy is the boundary of a unique
branched minimal disk and this disk is a graph over the plane (see also page
224 in [25]).
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Section 5. Stable minimal surfaces and soap film examples.

An interesting class of minimal surfaces are those for which the second
variation of area, A”(0) is positive. Such surfaces are well known to arise
from physical experiments with soap film surfaces on bent circular wires. The
soap film has the property that it is a local minimum of energy because it is
physically stable. By formulas in the calculus of variations, surfaces which are
local minimums to energy are also local minimums to area and vice-versa.
Because of this relationship with energy it is natural to call a minimal surface
stable if for every compact subsurface the second variation of area is positive.

The following wire configurations give rise to some famous classical
examples of minimal surfaces which can be realized as soap film surfaces.

helicoid

superman

mobili strip

Fig. 1

The helicoid, whose boundary consist of three line segments and a
helix, is ruled by stralghtJlnes The boundary of the catenoid consists of two
circles on parallel planes with the same axis. It is topologically an annulus
which is the surface of revolution of the catenary curve. The superman
surface S is the building block for a complete triply periodic minimal surface
(see [56]). That is to say, there exists a lattice L such that M = {v+S|vEL}
is a connected complete minimal surface which is invariant under translation
by elements in the lattice L. Mdcbius strip surface shows that a least area
compact surface with boundary a fixed Jordan curve may be non orientable.
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Returning now to the theory of stable minimal surfaces in R> we have
the following global uniqueness theorem (see [22] and [27]).

Theorem 8. If M is a complete minimally immersed surface in R® which is
stable, then M is a flat plane.

The following formula by Manfredo do Carmo and Lucas Barbosa gives
a very important criterion for a minimal surface in R3 to be stable.

Theorem 9. Let G:M~S* be the Gauss map for a minimal surface M. If the
area of G(M) is less than 2m, then M is stable. In particular, if

o) = fM KdA > - 21
where K is the Gaussian curvature, then M is stable.

The proof of the theorem is based on an idea due to Schwartz.
Schwartz showed that the stability of M can be determined by the first
eigenvalue of the Laplacian of the image of the Gauss map if the Gauss map
is a diffeomorphism with its image (see [7]).

Remark. Recently a number of people have shown that a stable minimal
surface has no interior branch points (see for example [99]). It is probably

true and possibly known that a stable minimal surface cannot have branch .

points on part of its boundary.

Section 6. The minimax principle, the existence of unstable minimal surfaces
and the isoperimetric inequality.

Recall from elementary calculus that a proper smooth function f:R"->R
with two strict local minima, also has a critical point p which is not a local
minimum. This property of more than one local minima for certain real
valued functions defined on certain topological spaces implying the existence
of an unstable critical point is quite common in problems encountered in
the calculus of variations. Sometimes it is possible to prove the existence of
an unstable critical point from what is called “‘the minimax principle” (see
(18]).

From physical experiments with soap films is not difficult to find
curves which bound two stable minimal disks (see for example the figure 2
in section 10). An application of the minimax principle could therefore imply
the existence of an unstable minimal disk for these curves. The spaces
involved in the case of minimal disks are infinite dimensional and hence the
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application of the minimax principle becomes quite delicate. In our situation
the following application of a Co minimax principle has been proved by
Morse-Tompkins [75] and Shiffman [104].

Theorem 10. Let vy be a smooth Jordan curve which is the boundary of two
geometrically distinct minimal disks of locally least area (energy) in the
C° itopology on piecewise smooth immersed disks with boundary . Then 7y
is the boundary of an unstable minimal disk which may have branch points.

The unstable minimal disk given in the above theorem cannot have very
large area compared to the length of its boundary curve. This follows from
the isoperimetric inequality below for minimal surfaces proved by Carleman.
For some interesting generalizations of the isoperimetric inequality we refer
the reader to the survey article [85].

Theorem 11 (isoperimetric inequality). If D is a branched minimal disk in
R® with area A and the boundary of the disk has length L, then

L? > 474
and L* = 4nA if and only if D is a round disk in a plane.

Section 7. The uniqueness theorem of J.C.C. Nitsche.

It is quite natural to consider how the geometry of a Jordan curve
influences the existence, number and geometric properties of compact mini-
mal surfaces with y as boundary. For instance, what properties on 7y imply
that vy is the boundary of a unique compact minimal surface. For a long
time the only uniqueness condition was due to Rado who showed that a
plane curve and a curve with a one-to-one convex projection onto a plane
were the boundary of unique branched minimal disks. The results of Rado
were recently generalized by the author without the condition that the
surface be simply connected. (Recall theorem 6 in section 4). In [61] an
elementary proof is given that shows that for every smooth plane Jordan
curve y an €>0 can be calculated geometrically so that any curve v e-close
to v in the C?*-norm is the boundary of a unique compact minimal surface
which is a graph over the plane containing 7.

The following theorem of Nitsche [78] presents one of the most
beautiful global relationships between the geometry of a curve y and the
existence of minimal disks with boundary 7. The existence of at least one
minimal disk follows from the solution of Plateau’s problem 1 to be discussed
in section 9.
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Theorem 12. If v is a smooth Jordan curve with total curvature less than or
equal to 4m, then v is the boundary of a unique branched minimal disk and
this minimal disk is an immersion.

The idea of the proof is as follows. From a formula of Gauss-Bonnet
type for branched minimal disks with boundary 1, it can be calculated that
the minimal disk must be immersed.

By the Gauss-Bonnet formula or an immersed minimal disk D

_[l') KdA = 2m - _/; kg (1)dt
where kg(t) is the geodesic curvature of y(z). Since the geodesic curvature
is less than or equal to the curvature, the above formula yields the inequality
J,, ka4 > 2n .f7 k()dt > - 2m

If fD KdA > -2m, then D is stable by theorem 9 of Barbosa and
Carmo. Nitsche actually shows that the case f KdA = -2m and D unstable
cannot occur so we may assume that D is stable.

The crucial point in the proof by Nitsche is to prove that the disk is a
strict minimum in the C°topology. Theorem 10 in section 6 implies that if
v is the boundary of two disks, then 7y is the boundary of an unstable
minimal disk. Since all minimal disks with boundary 7 are stable, v must be
the boundary of at most one minimal disk.

Section 8. A theorem of Shiffman.

Another uniqueness theorem that depends on the geometry of the
boundary of the minimal surface is a theorem of Shiffman concerning the
uniqueness of the catenoid. That is to say, given two circles on parallel
planes with the same axis of symmetry, then any minimally immersed
annulus with boundary being these two circles is actually a part of a
translated catenoid defined implicitly by z? + y? = g-cosh?(x). However this
catenoid need not be unique because these two circles will in general bound
a part of a catenoid that is stable and a part of another catenoid which is
unstable.

More generally, Shiffman considered the geometric properties of
immersed minimal annuli whose boundary curves are circles in parallel planes.
He proved in this case that the minimal annulus has the property that the
intersection of an inbetween parallel plane with the surface is a circle. B.
Riemann in [95] explicity expressed in terms of elliptic functions all minimal
annuli with this property. The uniqueness of the catenoid then follows from
Shiffman’s theorem and the Riemann representations.
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Shiffman also considered the case of minimal annuli whose boundary
curves are convex curves on parallel planes. Shiffman’s geometric results
are given below (see [106]).

Theorem 13. Let vy, and vy, be two Jordan curves on parallel planes P,
and P,, respectively, and let P be a parallel plane between P, and P,. Let
f:M~R?® be a branched minimal annulus with boundary vy, and 7,. Then:
1. If v, and vy, are convex, then f(M) N P is a convex Jordan curve.
2. If v1 and v, are circles, then f(M) N P is a circle.

Section 9. Plateau’s problems and the regularity of the solutions.

Let v be a smooth Jordan curve in R3. Then there naturally arise
three basic “Plateau problems™ or least area problems which are listed below.

Plateau’s Problems

(1) Does there exist a minimal disk f:D->R> of least area with f(aD) = v?

(2) Does there exist a compact surface fM—>R> of least area with.f(dM) =
v?

(3) Does there exist a compact orientable surface f"M—R> of least area
with f(oM) = v?

Note. The topological type of M is not fixed in problems (2) and (3) above.

The classical problem (1) was solved independently by Douglas [23]
and Rado [92] in 1930. Their solution can be stated as follows (for general
references see [49]).

Theorem 14. If v is a rectifiable Jordan curve in R3, then there exists a
solution f:D~R> to problem (1) that is conformal, harmonic and such that
f1dD gives a monotonic parametrization of v. Such a solution is called a
Douglas solution to Plateau’s Problem.

For the purpose of fixing notation, let us recall the ideas of the proof.
One observes initially that is suffices to minimize the Dirichlet integral also
called the energy of f.

E = —;—j;‘(lfxlz + f, 1?)dxdy
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For that, we first minimize F among all maps with finite energy that restric-
ted to 8D give a monotonic parametrization §: 0D ~>Y of . Each such parame-
trization gives rise to a solution g:D—R> called the harmonic extension of g
which has least energy with respect to the parametrization g. The space of all
such harmonic extensions is denoted by # (y). By noticing that E is inva-
riant under conformal transformations of the disk, we normalize all the
elements in H(Y) by requiring that three fixed points of 3D are taken to
three fixed points of +; the resulting space is denoted by H(y). The crucial
point is now to prove that &= { EEH(Y), E@) <N } is compact in the
topology of uniform convergence. The theorem then follows from the lower
semicontinuity of E in H(Yy). See [18] for further discussion.

Unfortunately the method of arriving at a Douglas solution to Plateau’s

problem tells us very little about the geometric properties of the solution.

For a long time it was not known whether the resulting minimal disk could
have branch points of not. In 1968 R. Osserman [84] proved the following
interior regularity theorem.

Theorem 15. A Douglas solution to Plateau’s problem is an immersed surface
in its interior.

Osserman’s proof was based on a cutting and glueing argument at an
interior “geometric branch point”. Later Gulliver [34] gave a proof that in
fact the least energy solution of Douglas was actually an immersion and
therefore there did not exist any “false interior branch point” which arise
from bad parametrizations.

The problem of whether there exist boundary branch points for a
Douglas solution to Plateau’s problem is still unsolved. However, the following
has been proved by Gulliver and Lesley [35].

Theorem 16. If v is an analytic Jordan curve and f:D~>R? is a Douglas solu-
tion to Plateau’s problem, then fis an immersion.

While there exist continuous Jordan curves in R? which do not bound
compact surfaces of finite area, many Jordan curves such as all extremal
Jordan curves do bound disks with finite area. (A Jordan curve is extremal if
it lies on the boundary of its convex hull.) For such curves there exists a
Douglas solution to Plateau’s problem an while we can not expect boundary
regularity, the following can be easily proved.

Theorem 17. Let 7y be a conz‘ingous Jordan curve. Suppose f:D—>R> is a
branched minimal immersion on D whose restriction floD gives a monotonic
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parametrization of a fixed Jordan curve . Then floD gives rise to a
homeomorphism with 7.

The following simple proof of the above theorem was told to the
author by Blaine Lawson: If f:D—->R?> is a minimal disk such that f13D gives a
monotonic parametrization of 7y which is not one-to-one, then some open
interval [ in oD is mappe% to a point p which we may assume to be the
origin in R3. Considering D to be the upper half plane and the interval I as
part of the real axis in ¢, the harmonic coordinate functions of f can be
extended analytically across I by applying the reflection principle [2], that is
we extend f; as a harmonic function by setting.

fix,») = fix,-»)
for each i Since the extension is analytic, the extension gives rise to a
conformal harmonic map near / which is constant on /. Since the branch
points on a minimal surface in R> are easily seen to be isolated, using for
example the Weiesrstrass representation in section 18, we arrive at a contra-
diction which proves the theorem.

We now return to the consideration of the other Plateau problems (2)
and (3). With respect to the solutions of these problems we have the recent
beautiful theorem of Hardt-Simon [38].

Theorem 18. Let T" be a finite collection of pairwise disjoint smooth Jordan

curves in R3. Then

a) There exists a branched minimal immersion [:M— R* of a compact surface
M (possibly disconnected) which bounds T and has least area with this pro-
perty.

b) There exists a branched minimal immersion f:M - [R® of a compact orienta-
ble surface M (possibly disconnected) which has boundary T and has least
area With this property.

¢) All such solutions f to (a) and (b) are smooth embeddings.

d) There is only a finite number of solutions to (b) and only a finite number of
distinct topological types in part (a).

The proof of the theorem of Hardt-Simon depends on the existence of
least area embedded ‘‘surfaces” with boundary I' that arise in the theory
of minimal currents. Their key result is a boundary regularity theorem for
these surfaces. The finiteness of the number of solutions in part (b) uses the
finiteness theory developed by F. Tomi which will be discussed in the next
section.

A compact minimal surface is always contained in the convex hull of
its boundary. Thus the next theorem [5] by F. Almgren and W. Thurston
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shows that a solution to Plateau’s problems (2) and (3) may be forced to
have large genus for purely topological reasons even for unknotted curves.

Theorem 19. There exist unknotted analytic Jordan curves 7, in R3 with
total curvature 4m + %and such that if M is a compact orientable embedded
surface with boundary v, and M is contained in the convex hull of v,, then
the genus of M is greater than n.

Section 10. Finiteness theorems for minimal disks.

One of the fundamental problems in minimal surface theory concerns
the question of whether a smooth Jordan curve vy in R® can be the bounda-
ry of an infinite number of compact minimal surfaces. One of the first and
most basic results is a theorem of Tomi [110]. He proves for example that
if every Douglas solution to Plateau’s problem for vy is an immersion, then
there are a finite number of Douglas solutions to Plateau’s problem. Because
of the unresolved question of boundary branch points for a Douglas solution
to Plateau’s problem his theorem does not imply that there are a finite
number of solutions. However, the boundary regularity theorem 16 in section
9 and an application of the strong Hopf maximum principle show that for
analytic or extremal vy, the Douglas solutions are immersed. Thus:

Theorem 20. If vy is an analytic curve or if vy is smoo\z‘h and extremal, then
there is a finite number of Douglas solutions to Plateau’s problem for 1.

The following symmetric curve which is essentially the seam curve on a
baseball shows that a fixed Jordan curve may be the boundary of two
distinct solutions to Plateau’s problem.

Fig. 2
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Using the above example and the bridge principle to be discussed in
section 14 it is possible to show that the following Jordan curve is the
boundary curve of an infinite number of embedded stable minimal disks.
This curve is formed from smaller and smaller replicas of the curve in figure
2 joined by thin “bridges”.

Fig. 3

After consideration of the above examples, it is natural to ask whether
a smooth Jordan curve can bound an infinite number of compact minimal
surface. While the answer to this question is still unresolved, F. Morgan has
found a counter example if one allows more than one Jordan curve as the
boundary. F. Morgan’s examples [71] show that there exist four circles in
three parallel planes which have the same axis of symmetry and which bound
a connected embedded minimal surface of high genus. Since the boundary
curves are invariant under a circle family of rotations, this minimal surface is
part of continuous family of minimal surfaces. See the figure 4 below.
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Nitsche [83] proved the following interesting finiteness theorem which
again makes an application of the stability theorem of Carmo and Barbosa in
section 5.

Theorem 21. If vy is a smooth Jordan curve with total curvature less than 6m,
then vy is the boundary of a finite number of branched minimal disks.

A generic approach to the question of the finiteness of the number of
minimal disks has been developed by A. Tromba [114] and later, with
different methods by L.P. Jorge [46]. The idea is to give H(y) a structure as
a Hilbert manifold so that the energy function E:H(y)—~>R is differentiable
and the critical points of E are the branched minimal disks. A crucial point
is then to find a notion of non-degeneracy for the minimal disk that is
invariant under small perturbations of the curve 7 in the space I' of embedd-
ings of S' into R>. With these methods it is possible to prove that a
generic curve in I' is the boundary of a finite number of branched minimal
disks. Recentlx, [11] Bohme and Tromba proved that there exists an open
dense subset I' C I in the C~ topology such that the curves in I bound a
finite number of branched minimal disks. In [72] F. Morgan proved that a
generic element of I' is the boundary of a unique solution to the Plateau
problems 2 and 3.

Section 11. The Meeks-Yau condition for the embedding of a Douglas solu-
tion to Plateau’s problem.

Recall that solutions to Plateau’s problems (2) and (3) for smooth
Jordan curve <y are embedded by the Hardt-Simon theorem. However, by
theorem 19, this is not the case for a Douglas solution even for unknotted
Jordan curves. This can be seen in the following example.
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In this case the self-intersection set

ST = {p € R3If ! (p) has more than 1 point}
is nonempty. We now have the following theorem of Meeks-Yau [64] that
gives a natural condition for S(f) to be empty.

Theorem 22. Suppose f:D~>R? is an immersion which has least area with
respect to vy = f(dD) in some e-neighborhood of its image. If S(f)N v = ¢,
then S(f) = 9.

The above theorem implies that least area immersed disks in R*® which
selfdntersect only in their interiors are embeddings. If y is an extremal
Jordan curve (i.e. 7 is contained on the boundary of its convex hull), then
the interior of a compact minimal surface with boundary v never intersects
v. For the special case of an extremal Jordan curve the next theorem can be
proved. ‘

Theorem 23. A Douglas solution to Plateau’s problem for a continuous extre-
mal Jordan curve is one-to-one.

The proof of the embedding of the Douglas solution to Plateau’s
problem in theorems 22 and 23 is based on the regularity theorems discussed
in sections 3 and 9, a nontrivial approximation argument, the case when 7 is
analytic and a key topological construction called the tower construction
which is discussed in section 24. The basic embedding argument is topological
and hence is valid in three dimensional manifold. This generalization and the
following theorem will be discussed further in section 16.

Theorem 24. Let R be a smooth region of R® whose boundary 3R has
nonnegative curvature with respect to the inward normal. Let T be a collec-
tion of continuous pairwise disjoint Jordan curves on dR and suppose that T’
is the image of the boundary of a continuous map of a planar domain into
R. Then:

1. There exists a (finite) least energy map f:Q—>R of a compact,
possibly disconnected, planar domain S0 such that f(02) = T.

2. Any such f has least area and is smooth on .

3. Any such f has is a smooth immersion if T is smooth.

4. Any such f is one-to-one.

0 UPRs g ({Jt’sk D gnd g:D-R is another least area solution with

g(@D) = v and if gD) N f(D) # ¢, then g(D) = f(D).
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In particular the above theorem shows that if the curves I' bound an
embedded planar domain in R, then they bound an embedded planar domain
of least area in the space of embedded planar domains. This corollary to the
theorem in the case 7y is extremal was proved by Almgren-Simon using the
theory of minimal currents. However, their methods do not show that their
embedded minimal disk is actually a Douglas solution to Plateau’s problem.

In [113] A. Tromba and F. Tomi showed that the space of smooth
immersed minimal disks is a Banach manifold and the natural projection to
the space of immersed circles in R® is smooth. Using their manifold
representation of the immersed minimal disks, they were also able to prove
the existence of an embedded possibly unstable minimal disk in the case of
an extremal Jordan curve (see also [112]).

The following theorem is essentially a converse to theorem 24 in the
case I' has one boundary curve (see [66]).

Theorem 25. If a smooth Jordan curve vy in R® is the boundary of an
embedded stable minimal disk, then v is contained on the boundary of a
region which is a smooth ball having nonnegative mean curvature on its
boundary.

Section 12. A uniqueness theorem for extremal Jordan curves with total
curvature less than or equal to 4.

Theorem 24 in the previous section can be generalized to the case
where the boundary of the region R is piecewise smooth with interior angles
on the nonsmooth parts being less than or equal to m. One application for
this generalization is the following.

Theorem 26. Suppose vy, and 7y, are two smooth Jordan curves on parallel
planes. If vy, and v, are the boundary of a comnected compact branched
minimal surface M, then <, and <y, are the boundary of an embedded
minimal annulus that has least area in a small regular neighborhood.

The idea of the proof when M is embedded is as follows. Let 7 be
the region between the parallel planes and let R be the closure of the
unbounded component of 7-M. Now the boundary of R is piecewise smooth
with zero mean curvature on the boundary and the curves y; and 7, which
lie on the boundary of R are the boundary of a continuous map of an
annulus into R. The piecewise smooth generalization to theorem 24 implies
that there exists an embedded least area annulus in R with boundary y; and
Y2
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Another nice application of theorem 24 is the following generalization
of a special case of Nitsche’s uniqueness theorem 12 (see [57], [61], [66]).

Theorem 27. If v is an extremal Jordan curve which is the boundary of a
strictly unstable minimal disk or is the boundary of a compact non simply
connected branched minimal surface, then v is the boundary of at least two
embedded minimal disks which have least area in some regular neighborhood.
In particular, if the total curvature of 7 in less than or equal to 4w, then v
is the boundary of a unique compact branched minimal surface which is an
embedded minimal disk. :

We now give a sketch of the proof of the above theorem in the special
case that 7 is contained in the boundary sphere S of the unit ball B and v is
the boundary of a compact embedded minimal surface M which is a strictly
unstable minimal disk or M is not a disk. In this case M disconnects the ball
B into two compact regions R; and R,. The boundaries of the regions R,
and R, are piecewise smooth with interior angles less than = and with
non-negative mean curvature on the smooth parts. Furthermore, by the
Jordan curve theorem 7y bounds two disks on the sphere S and hence 7y
bounds a disk in R, and in R,. The piecewise smooth generalization of
theorem 24 implies that v is the boundary of an embedded least area disk
D, in R, and D, in R,. This completes the sketch of this special case of
theorem.

It is very possible that a smooth Jordan curve with total curvature less
than or equal to 4w is the boundary of a unique compact branched minimal
surface. If this were true, then theorem 18 would imply that the Douglas
solution to Plateau’s problem for 7y is embedded. Thurston’s examples in the
next section show the uniqueness part of theorem 27 is sharp.

Section .13. Examples of W. Thurston.

We now give a sequence of examples by W. Thurston which show that
theorem 27 is sharp. W. Thurston constructs for every integer n an analytic

. 1
curve v, on the unit sphere such that the length of 1, is less than . (thus
v, is almost contained in a plane) and the total curvature of v, is less than

4 + l The curve v, has the property that for every k, 1<k<n, 7, is
n
the boundary of n stable embedded minimal surfaces of genus k and the so-

lution to Plateau’s problem (2) has genus equal to n. The construction of 7y,
is as follows.
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First consider a collection of three Jordan curves, as in figure 6A, made
up of short arcs on large circles in the xy plane and such that the total cur-

) 1
vature of these arcs is much smaller than — . Now connect these arcs by
n

pairs a,,a, and £ ,Bz of very close arcs and perturb this example slightly in
the plane so that the resulting curve ¥, is analytic and has total curvature

less than 47 + % as in figure 6B. Let p be any point on ¥,. Consider for

every r the sphere S, of radius r with nonpositive z coordinatés that is
tangent to the xy plane at the point p.

6-A 6-B

Fig. 6
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Let 7v,(r) be the intersection of the cylinder over ¥, and the sphere
S,. If r is sufficiently large and the arcs a;,a, and (3,8, are sufficiently
close, then

7 = (G1() C S,

is the required curve. We refer the reader to figure 6-CDE for the examples
of the minimal surfaces produced. A rigorous proof of the existence of these
surfaces would use the bridge principle in the next section. To create v, one
uses more Jordan curves in the initial construction.

Section 14. The Bridge Principle.

The bridge principle is related to a physical property of soap films. The
physical experiment concerning this principle is as follows: Consider two soap
film surfaces with boundary curves being two bent steel wires. Change the
wire configuration by joining these wires. Change the wire configuration by
joining these wires by close parallel wires which we shall call a bridge pair.
Mathematically we take the connected sum of two wire curves along what
we will call a bridge curve. The physical property of the new wire configura-
tion is that it is the border of a new soap film surface that is close to the
old surfaces joined together with a soap film bridge joining the old surfaces
(see figure 7).

Fig. 7
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Since soap films correspond to stable minimal surfaces, the bridge
principle can be reformulated using the concept of stable minimal surfaces.
Unfortunately the bridge principle is not true in general. This can be easily
seen by considering S, and S, to be disks of radius 1 and radius 2, respecti-
vely, in the xy-plane. If the boundary curves of S; and S, are joined by a
bridge pair in §;-S,, then the unique compact minimal surface with the new
boundary does not contain a bridge. Thus, in order to prove the bridge
principle some care must be taken with the choice of the bridge pair.

We now give a correct version of the bridge principle whose proof is
based on the topological methods developed in [66].

Theorem 28 (the bridge principle). Let S; and S, be two stable compact
minimally immersed surfaces in R® and o a- bridge curve. Then given any €
there exists a bridge pair € close to « and such that the new configuration
is the boundary of a compact stable minimal surface e-close to ‘\Sl and S,
joined by a strip e-close to o. Furthermore if S, and S, are embedded and
disjoint and o intersects S; U S, only at its boundary points, then the new
surface is also embedded.

The idea of the proof of the above bridge theorem in the geometric
case wheré S, and S, are disjoint stable embedded minimal disks and the
bridge ‘curve  intersects S; and S, only on its boundary points is as follows.
Let v, and 7y, be the boundary curves of S; and S,, respectively. Using the
proof of theorem 25 (see [66]), there exists smooth balls B, and B, close
to Sy and S, which have nonnegative mean curvature on their boundaries
and such that B; N S; = ;. A small regular e-neighborhood X of « also has
positive mean curvature. It is then shown that after a small perturbation X
of X near B; U B,, the region R = X U B, U B, is smooth and has
nonnegative mean curvature with respect to the inward normal. The new
configuration curve 7y is now formed by taking the connected sum of v: and
72 by a bridge pair contained in the boundary of X on R. Next one takes
a least area disk D in R with boundary 7y given by theorem 24. This disk is
embedded and it is close to the old surfaces joined by a strip in the re-
gion X.

Section 15. The free boundary value problem for minimal surfaces.
There is another type of minimization problem similar to Plateau’s

problem. Consider an embedded solid torus in R<. Then is it possible to cut
this solid torus with a cross-section disk of least area?
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Least area cross section

Fig. 8

In general, such an embedded least area cross-section does not exist.
However, if the boundary of the solid torus has nonnegative mean curvature,
then the following theorem in [65] shows that there is a cross-sectional disk
of least area. Problems such as these in the calculus of variations where the
minimizing map does not have a fixed boundary are called free boundary
value problems. As stated, part 1 of this theorem also depends on results in
[60] .

Theorem 29 (the free boundary value problem). Let R be a compact smooth
region of R} whose boundary OR has nonnegative mean curvature with
respect to the inward normal and suppose that R is not diffeomorphic a ball.
Let F = { f:D—=>MIf(dD) is a non homotopically trivial curve in M } Then

1) F is non-empty.

2) There exists an element [ € F with least area (energy).

3) Any such least area f:D—~R is a one-to-one smooth immersion
orthogonal to oM along the boundary curve of f (D).

A If f and g are two solutions to the free boundary value problem,
then their images are either equal or disjoint.

For discussion of the proof of the theorem we refer the reader to the
next section. One of the applications of part (4) is to prove the existence of



52 _ W. H. Meeks III

an embedded disk invariant under an isometry. For example, consider the
following region of R® which has positive mean curvature on its boundary.

A4
>

Minimal
disk

Fig:. 9

The above region is invariant under rotation g: R = R around the x-axis.
The solution of the free boundary value problem for R is invariant under g.
To see this first note that the crossectional disk D of least area of this
region must be near the center of the figure and disconnects R. Sing g is an
isometry, g(D) is another solution to the free boundary value problem and as
such g(D) equals D or is disjoint from D. Clearly D must intersect the x-axis
and g has a fixed point on D. Therefore, g(D) must equal D.

The idea of the proof of the disjointness of solutions of the free
boundary value problem for a non simply connected compact region R with
nonpositive mean curvature on 9R is as follows. Let D; and D, be two such
embedded least area solutions and suppose that D, and D, are in general po-
sition. In this case D; N D, is either empty or consists of a finite collection
of Jordan arcs and curves.

Suppose that there is a Jordan arc @ in D; N D,. In this case a discon-
nects D; into two subdisks D; and D/ for i = 1,2.
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Fig. 10

Suppose, after a possible relabling, that D] has the least area of the four
new disks formed.

Now consider the new piecewise smooth disks D3 = D} U D3 and
D, = D} U Dy. Since these disks are not smooth along @, their areas can be
decreased by a variation in the interior of M to get new disks D3 and D,.
By the least area choice of Dj,

Area (D3) < Area (D,) and Area (D,) < Area (D,).

Since D, is a solution to the free boundary value problem for R, the
boundary curves of )3 and D, must be homotopically trivial in dR. However,
dD, can be expressed as a product of dD; and 9D, in the fundamental
group of OR. This shows that 3D, is homotopically trivial contrary to the
definition of a solution to the free boundary valued problem. This contradic-
tion shows that D; N D, cannot contain a Jordan arc. A similar disk repla-
cement argument implies that D; N D, does not contain a closed Jordan
curve and hence D; N D, is empty. We refer the reader to [65] for a proof
in the case that D, and D, are not in general position (see also the proof of
theorem 69 in section 24).

Another problem considered in the calculus of variations is the partially
free boundary value problem of which the following is a special case ([18]
and [67]).

Theorem 30. Let v be a smooth Jordan curve in a plane P, and suppose
that v is one of the boundary curves of an immersed annulus S) with the
other boundary curve of QL on a parallel plane P,. Suppose that the area of
Q is less than the area of the disk in P, with boundary 7. Then

1) There exists a map f:Q—>R> with least area such that one of the
boundary curves of [ is v and the other boundary curve is contained on the
plane Py .

2) Any such f is a one-to-one immersion which is orthogonal to P,.
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Section 16. Generalizations and applications of the Meeks-Yau embedding
theorems in three dimensional manifolds.

In sections 11, 12 and 14 we discussed the embedding properties of the
Douglas solution to Plateau’s problem, the existence of minimal surfaces in
regions of space with nonnegative mean curvature on the boundary, and
applications of these existence and embedding theorems. The theorems in
these sections are based on natural generalizations to compact three
dimensional Riemannian manifolds with boundary. For the rest of this
section we will let M denote a smooth compact three dimensional Riemannian
manifold whose boundary is lipshitz and convex or smooth with non-negative
mean curvature with respect to the inward normal vector. For these manifolds
we have the following fundamental topological-geometric embedding theorems.

Theorem 31 (the geometric Dehn’s lemma for planar domains). Ler T' =
={71,72,... 5o } be a collection of pairwise disjoint continuous Jordan curves

on OM and suppose that T' is the boundary of a map of a compact planar
domain in to M. Then

1) There exists a map f:Q~>M of least area (energy) from a compact
possibly disconnected planar domain Q such that f(02)=T.

2) Any such f is one-to-one. g

3) Any such f is a smooth immersion on SQ.

4) If T and OM are smooth, then any such f is an immersion.

S)If n =2 and v, is homotopically nontrivial in M or if the curves in
I’ generate a subgroup of rank n-1 in H,(M,Z), then SZ is pathoconnected
and if g:Q2=>M is another least area map, then either g(Q) NFE) =P or
g(Q) =1(Q).

Theorem 32 (the geometric loop theorem). Suppose that F ={ f:D->M5(aD)
is @ homotopically non-trivial curve in oM } is non-empty. Then:

1) There exists an element f € F of least area (energy) called a solution
to the free boundary value problem for M.

2) Any such f is one-to-one.

3) Any such f is a smooth immersion on Q

4) If OM is smooth, then f is a smooth immersion orthogonal to dM
along f(9D).

5) If g:D—>M is another least area solution to the free boundary value
problem for M, then either g(D) = f(D) or g(D) N (D) = ¢.
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Theorem 33 (the geometric sphere theorem). There exists maps £, f,, ... , F
from S? into M such that

1) f,:8%2>M is’ homotopically nontrivial and minimizes area among all
homotopically nontrivial maps from S* into M. For each i, f; does not
belong to the my (M) submodule of m, (M) generated by {fl, ,f,~_1} and
fi minimizes area among all such maps.

2){f,, ,fk} generate my(M) under the action of my(M).

3) For any set of maps {gl, ,gm} from S* into M which satisfy
property (1), then g; is either a conformal embedding or a two-to-one
covering map whose image is an embedded RP*. Furthermore, if{ L1303 ,,fk}
and { £ 2 gm} are two sets of mappings satisfying property (1), then for
all i and j, either the images of fi and & are disjoint or equal.

The above theorems (see [64], [65], [66], [67]) are called geometric
because of analogous purely topological theorems in the theory of three
dimensional manifolds (see [24], [39], [89], [103], [116]). We now glve
a quick summary of the elements in the proof of these theorems.

The existence of a solution to theorem 31 follows from a generalization
of a theorem of Morrey to manifolds with boundary. Morrey first defines the
concept of a ‘“homogeneously regular’” Riemannian manifold which includes
as examples all compact manifolds and some noncompact manifolds such as
R". His theorem states that if M is a complete homogeneously regular
manifold and if I' is a collection of disjoint rectifiable Jordan curves which
are the boundary curves of a map of a planar domain, then there exists a
map f:Q—M of least area (energy) and such an f is smooth on Q In [64]
and [66] it is shown that M can be extended to a complete homogeneously
regular manifold M in such a way that the Morrey solution in M for T is
always contained in M.

The existence of a solution to the free boundary value problem is a
new result and its analytic proof appears in [65]. The existence of the
minimal spheres in theorem 33 follows from a slight generalization of the
beautiful existence theorem of Sachs-Uhlenbeck for minimal spheres in
Riemannian manifolds [97].

The regularity results are based on the interior regularity theorem of
Morrey [13] and on the regularity results for Plateau’s problem discussed in
section 9.

The proof of the embedding of the least area solutions is based on
approximation arguments and on the tower construction in the theory
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of three dimensional manifolds. This type of construction was first used
in the proof of some topological versions of the above theorems by
Papakyriakopoulous. An application of a tower construction to the proof of
theorem 31 is given in section 24.

Parts (5) in theorem 32 and (3) in theorem 33 have some very
important applications to finite group actions in three dimensional manifolds.
These applications arise from the following situation. Suppose that G is
a finite group of diffeomorphisms acting on M. After first averaging a
Riemannian metric on 0M, there exists a metric on M which is invariant
under G and which is a product metric on some e-neighborhood of aM. Such
metrics give M a convex boundary. Thus, we may assume that G acts as a
group of isometries on M in a metric where the boundary of M is convex.

Now consider a disk D C M which is a solution to the free boundary
value problem. If g € G, then g(D) is another least area solution to the free
boundary value problem and the disjointness property implies that g(D)=D
or g(D) N D = ¢. Thus theorem 32 yields the following new topological
result [65].

Theorem 34 (equivariant loop theorem). Suppose that M is a three dimensio-
nal manifold and suppose G is a finite group of diffeomorphisms of M. If
the map 14:my(0M)~> 7y (M) induced by inclusion has a nontrivial kernel, then
there exists an embedded disk D in M with oD being a homotopically
nontrivial curve in M and such that for all § € Dg(D)=D or g(D) N D = ¢

The above theorem has some deep applications to the theory of group
actions on three dimensional manifolds. Combining an observation of Jordan
and Litherland, the above equivariant loop theorem and a theorem of W.
Thurston on the existence of an incompressible surface (which depends on a
theorem of H. Bass), one can then settle in the affirmative the conjecture of
P.A. Smith on the unknottedness of the fixed point set of a finite cyclic
group action on S° (see [118]). The solution of the Smith conjecture implies
that finite cyclic groups actions on S$* with a fixed point must be conjugate
to a linear action on S%.

The least area spheres in theorem 33 enjoy the same disjointness
equivariance properties that solutions to the free boundary valued problem
satisfy. The associated equivariant sphere theorem implies that for a finite
group acting smoothly on the connected sum of a nonsimply connected prime
manifolds with fundamental group non-isomorphic to the integers, the action
must split equivariantly up to the permutations of the factors. Hence, basic-
ally when we study finite group actions on a three dimensional manifold,
we can assume that the manifold is prime.
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The geometric shpere theorem also enables us to deal with finite group
actions on noncompact manifolds. For example, combining the affirmative
answer to the Smith conjecture with the geometric sphere theorem, one
proves the following classification theorem [68].

Theorem 35. If G is a compact group of orientation preserving diffeomor-
phisms of R®, then G is isomorphic to a compact subgroup of SO(3). If G
is not isomorphic to the icosahedral group As, then there is a diffeomor-
phism [:R>~>R> such that fGf™' is a subgroup of SO(3). In particular, any
periodic diffeomorphism of R® is conjugate to a rotation.

Section 17. The existence of peﬁodic minimal surfaces in R° and a magical
application of Abel’s theorem.

There is a large class of known embedded proper complete minimal
surfaces in R3. These minimal surfaces are periodic which means that they
are invariant under a group of translations. For example, the helicoid and the
superman surface § in figure 1 are part of global periodic minimal surfaces.
Periodic minimal surfaces naturally arise when a complete minimal surface
contains two parallel lines. Reflection in these lines leaves the surface
invariant. Composed reflections in two parallel lines is a translation which
leaves the surface invariant.

A specially interesting class of embedded periodic minimal surfaces are
the surfaces M which are invariant under a lattice Ly, of translations. After
taking the quotient M = M/IL;,;, we have a compact embedded minimal surfa-
ce M in the flat torus 7° = R®/L,,. It is straight forward to verify that a
compact embedded minimal surface M of genus greater than one in a flat
torus T° always yields a triply periodic minimal surface M in T2 by taking
the “lift” of M to the universal covering space R> of 73.

There is an interesting six dimensional family of triply periodic
embedded minimal surfaces in R® which arise from consideration of cer-
tain elementary facts about the canonical curve of a hyperelliptic Riemann
surface M3 of genus 3 ([33] and [56]). First, the canonical curve of a
hyperelliptic Riemann surface M5 can be choosen so that its image is the
quadric Q : X*> + Y? + Z® = 0 in CP?. In this case C:M3~>Q is a two
sheeted cover of Q which is diffeomorphic to §? and conversely every
two sheeted cover of (Q branched over eight points corresponds to the
canonical curve of a hyperelliptic Riemann surface of genus 3. This means
that if g:M;—>Q is a two sheeted branch cover of Q of genus 3, then g can



58 W. H. Meeks III

be identified (up to a multiplication by a fixed complex number) with three
holomorphic 1-forms on M;
{w;@) =fiz)dz 1i=1,2,3}

such that f}(z) +f3(z) +f3(z) = 0. From the discussion of the generalized
Weierstrass representation for minimal surfaces in section 22 (see also section
18), it follows that such a g:M3—>Q corresponds on the universal cover of M,
to the Gauss map of a periodic minimal suface in R*. For these examples
the local coordinate functions can be expressed in terms of elliptic integrals.
The next theorem [56] shows that certain of these surfaces have embedded
images.

For the construction of other interesting triply periodic minimal
surfaces we refer the reader to [63], [76], [77] and [98].

Theorem 36. Let M be a compact Riemann surface of genus three which can
be represented conformally as a two sheeted covering of S* branched over
eight antipodal points. Then there exist flat tori Ty and T, and two confor-
mal minimal embeddings [y:M—T, and f,:M—~T, which give rise to distinct
triply periodic minimal surfaces in R>.

Further analysis of the examples in theorem 36 show that for every
lattice L in R® there exists an embedded triply periodic minimal surface
invariant under translation by elements in L. Using a somewhat delicate
analysis, the author believes he has a proof that every flat 73 contains an
infinite number of embedded minimal surfaces of genus three.

While compact minimal surfaces in the family described above are not
always rigid in their tori, the following rigidity theorem [56] holds in R3.

Theorem 37. Suppose fg:M—>R*® are two proper triply periodic isometric
minimal immersions of a Riemannian surface M. Then f = Rog where R is
a rigid motion of R3.

The next beautiful theorem follows from a simple application of Abel’s
theorem [56].

Theorem 38. Suppose f:M~R? is a proper immersed triply periodic minimal
surface with lattice L. Let R be any fixed fundamental region of the lattice
and let G:M~S* denote the Gauss map. For v € S, define {pl(v), B4
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pk(v)} =G ') N R where pj(v) is listed with multiplicity. Then after a
fixed translation of M, we have for all v & S? that

p1(v) + p2(») + ... + pp(v) E L.

The idea of the proof is the following. First note that the above
theorem will hold if for the associated compact immersed surface M in 7° =
= R3/Lyy the sum of the points

)+ .. +p () =0€ B
Since G:M>S? is conformal we can apply Abel’s theorem to M. A simple
application of Abel’s theorem [33] implies that after a translation of M in
its Jacobian variety J(M) that the sum of points p,(v) + ... + pr(») = 0in
J(M). Since the minimal immersion f:M—->T3 is given by the integration of
harmonic oneforms on A, we have the diagram

JM)

where K is a “linear” homomorphism. Since K is linear, it follows that the
sum

B() + .. +Pp () =0in T3,

The above theorem implies that the examples in theorem 36 are all
invariant under an inversion through any zero of Gauss curvature. In particu-
lar, it follows that an embedded compact minimal surface of genus three in
a flat torus has, after a translation, its zeroes of Gaussian curvature at preci-
sely the points of 7 which have order two in the group structure of T3.
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Section 18. The Gauss map, the Weierstrass representation, the associate surfaces
for a minimal surface and the example of Jorge-Xavier.

The Gauss map in the theory of minimal surfaces plays a very important
role and has special properties. First of all it is easy to check that the Gauss map
of the surface is conformal with respect to the orientation on the sphere induced
from the inward unit normal. Thus, G:M— S? =C U {w} can be considered
as a meromorphic function on M.

The Gauss map considered as meromorphic function on M enters into a -

formula due to Weierstrass for representing minimal surfaces is terms of holo-
morphic functions on M.

Theorem 39. (the Weierstrass representation). Suppose that ¥: M— R3 is a mini-
mal surface with ¥V (zo) =(0,0,0). Then coordinate functions of ¥ are given by

Z
Re f T (1g%yaz
& 2

o}

/4 "
‘1/2(2) =Re / l]_r(l +g2)d2
Zg 2

¥;(z) =Re fz fgdz
Zo

for some meromorphic 1-form f(z)dz. Here g:M — S? is the Gauss map for M.
Conversely, if the above integrals Vi are well defined on a Riemann surface
M for some meromorphic function g and meromorphic 1-form f(z)dz, then
s W, W ) M R3 is a conformal minimal immersion with branch
points.

v, (z)
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An interesting collection of complete examples are found by letting
M =S? - {01, s ) Hn} where 0, is an n-th root of unity, g(z) = 2" and

flz) = (z"——l)-z— In the case n =2, we have the catenoid. For all n, the exam-

ples are invariant under rotation by an angle of 2m/n around the z-axis. For
n=3 we have the following compact part of this surface, the existence of
these examples appears in [47].

Compact part
of 3-end catenoid

Fig. 11
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If ¥:M>R> is a minimal immersion of a simply connected minimal
surface, then there exists an isometric family of minimal surfaces Yy M>R3
where one uses the form e® f(z)dz in place of f(z)dz in the Weierstrass
representation. These surfaces Vg, when they exist, are isometric- to the
original surface and are called associate surfaces to W. The associate surface
\If"/2 is called the conjugate surface to V.

If the minimal surface is simply connected, then the associate surfaces
always exist. By taking the universal covering space of the minimal surface,
we may always suppose that the associate surface exists. The helicoid and the
catenoid are conjugate surfaces in this sense. The following sequence of figu-
res shows how to deform a connected part of the catenoid to a part of the
helicoid through associate surfaces.

Core])

Quite recently the Weierstrass representation has been used to prove a
number of interesting existence theorems (see [32], [47] and [48]). It was
conjectured by Calabi that a complete minimal surface M in R*® could not
be contained in a ball and more strongly, M could not be contained in a half
space. By proving the existence of certain holomomorphic functions f,g: D~>C
with growth conditions at infinity, L. Jorge and F. Xavier have applied the
Weierstrass representation to show that the strong version of Calabi’s conjec-
ture is not true. They prove the following.

Theorem 40. There exists a complete immersed minimal surface M in R®
Which is contained between two parallel planes.
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Section 19. The theorems of R. Osserman and of F. Xavier concerning the
image of the Gauss map for a complete minimal surface.

R. Osserman proved some deep properties concerning the Gauss map
G for a complete minimal surface. For example [88]:

Theorem 41. Let M be a complete orientable minimal surface in R>. If the
total Gaussian curvature C(M) = fM‘KdA is infinite, then for almost every
v € 82, G () is an infinite set. If C(M) is finite, then M is conformally
equivalent to a compact Riemann surface M punctured in a finite number
of points and the Gauss map extends conformally to M. In particular, C(M)
is either infinite or an integer multiple of -4m.

Applying theorem 41 and the Weierstrass representation for minimal
surfaces, Osserman proved:

Theorem 42. If M is a complete orientable minimal surface with C(M) = -4,
then M is the catenoid or Enneper’s surface.

Enneper’s surface is defined on € with g(z) = z and f(z) = I in the
Weierstrass representation. While Enneper’s surface is immersed, it is not
embedded. The reader can find an excellent drawing of Enneper’s surface on
page 127 in [21].

Very recently F. Xavier [117] gave a surprising generalization to a
corollary to Osserman’s work. This corollary of Osserman’s theorem 41 is: if
M is a complete non-flat minimal surface, then the complement of the image
of the Gauss map has measure zero. He also proved [86] that the Gauss map
of a complete minimal surface of finite total curvature can miss at most
three points. Here it is important to keep in mind that Scherk’s minimal
surface defined implicitly by cos(y) <e’ =cos(x) is a complete minimal surface
whose Gauss map misses four points on S2. It has been conjectured that four
points is the maximum number of points possible. Recently, F. Xavier proved
the following.

Theorem 43. The Gauss map of a non-flat complete minimal surface in R>
can omit at most 6 points.
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Section 20. The topology of complete minimal surfaces of finite total curva-
ture.

Let M be a complete minimally immersed surface in R> with fi-
nite total curvature C(M). By theorem 41 M is conformally equivalent to
M- {pl, ,pk} where M is a compact Riemann surface and the Gauss map
extends conformally to A7 to give G:i1~>S?.

The following theorems arise from a topological-geometric study of
these surfaces. The intersection of a small disk centered at a point p; on M
with M will be called an end £; of M (see [47]).

Theorem 44. Let M = 1 - {pl, A pk} be as above. Then
1) The immersion of M is proper.

2) For each end Ej of M the curves (lr E]-) N S? converge smothly to a
geodesic on S* with multiplicity I j as r goes to infinity.
k
3 CON =m0 - T .
1=

4) C(M) = 2n(x(M) - k) if and only if for each j there is an embedded
end E;.

5) For every k> 1, there exists an example M which is diffeomorphic
% 55 {pl, SEey pk§ and such that C(M) = 2n(x(M)) -k).

The above theorem describes the important topological properties of M.
The proofs of part (1) and (2) are carried out by analyzing the intersection
of the ends of M with planes. Part (2) shows that all such examples viewed
from infinity look like a finite collection of planes with multiplicity that pass
through the origin. For example, the catenoid viewed from infinity looks like
a single plane with multiplicity two. The formulas in parts (3) and (4) give a
geometric interpretation for C(M) in terms of the behavior of M at infinity

in R>. Part (5) follows by letting g(z) = zF~! and f@) = m in the

Weierstrass representation.

Theorem 45. Let M be as in theorem 44 and suppose that M is embedded.
Then

1) If M has one topological end, then M is a flat plane.

2) After a rotation of M in R3, the Gauss map has zeroes and poles at
the ends of M.

3) If M is diffeomorphic to an annulus, then M is a catenoid.

4) M cannot be diffeomorphic to the complement of 3, 4 or 5 points
on §2.
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5)Let Ry and R, be the two components of R>*-M. Then for B, =

Vol (Ry NB,) _

Vol R, NB,)
only if M has an odd number of ends.

6) Let R, and R, be the two components of R>-M such that L in

(5) equals O or 1. Suppose that M has k ends and that the genus of M is

g If L=1, then R, and R, are diffeomorphic to the interior of a solid

= {xER?IIxII < r}, Lo= lim 0,1,%0 where 1 occurs if and

(g +% (k—l))-hbled torus. If L =0, then R, is diffeomorphic to the interior
of a solid (g + g)—holed torus and R, is diffeomorphic to the interior of a

solid (g -1 +§)-holed torus.

7)If M’ is another embedded example which is diffeomorphic to M
and if M has two ends, then M and M’ are isotopic in R>.

The proof of theorem 45 is largely based on interpreting theorem 44.
In reference to (1), the reader should keep in mind that there exist immersed
examples with one end such as Enneper’s surface. Part (2) of theorem 45

- and part (4) of theorem 43 combine to show that the holomorphic functions

in the Weierstrass representation of the minimal surface are very special. Parts
(3) and (4) of the theorem 45 follow easily from an analysis of this repre-
sentation. Further calculations with the Weierstrass representation will proba-
bly show that the plane and the catenoid are the unique embedded minimal
planar domains which have finite total Gaussian curvature. The proof of
parts (6) and (7) are based on the uniqueness theorems in [57] and [60] .

Section 21. Geometric examples of minimal surfaces of finite total curvature.

In 1975 Gackstatter and Kunert [31] proved the following very nice
existence theorem for complete minimal surfaces of finite total curvature.

Theorem 46. Let M be a compact Riemann surface. Then there exists a finite
number of points B ={p1, Dy, oo, pk}on M and a conformal minimal
immersion f:M-B—=R > such that in the induced metric the surface is com-
plete and the total curvature is finite.
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The proof of the above theorem is by way of the Weierstrass represen-
tation. Gackstatter and Kunert apply the Riemann-Roch theorem to prove
the existence of the required functions. Unfortunately their examples have
relatively large total curvature. Recently new examples of low genus and low
total curvature were given ([32] and [47]) by using the Weierstrass represen-
tations.

The difficulty in finding these and other new examples by using the
Weierstrass is two fold. First one must guess the holomorphic function g(z)
and the holomorphic 1-form f(z)dz in the Weierstrass on a fixed compact
Riemann surface. Second one must prove that the associated 1-forms in the
Weierstrass representation have imaginary periods and real residues. This
method requires a lot of good guessmg and calculation even in the simplest
explicit examples.

In [63] the author has developed a geometric method of finding new
examples of minimal surfaces of low finite total curvature. This new method
uses a conjugate minimal surface construction. More precisely, consider a
geometrically appealing possibility such as one of the examples in the figure
given below. These ‘‘topological examples” X have such a large group of
plane symmetries that there exists a simply connected fundamental region
R that generates X after a finite number of plane reflections. Here the
boundary of R consists of plane curves.

Fig. 13
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On the would-be conjugate surface R* of R, the boundary 0R* would
consist of straight lines perpendicular to the planes containing the correspon-
ding boundary curves of R. Our method produces an appropriate R * which
then proves the existence of R.

All examples X given so for by this conjugate minimal surface construc-
tion have catenoid type ends. This implies by theorem 45 that these surfaces
have total curvature C(X) = 2m(x(X)-k) where % is the number of ends of
M. To create an approximate finite portion of 3R * in Figure 11, we use the
following Jordan curve 7, whereay is part of a helix.

Z

1

0-2)

X Fig. 14

The curve 7y; bounds a unique minimal disk D; whose interior is a
graph over the plane orthogonal to the vector (04/2,1). Letting L go to infi-
nity the disks D; converge to the required surface R*. Since R=-R** we
have a method for producing R and hence by plane reflections the example
in Figure 11. By changing the angle 6 between a, and the vector (0.-1,0) to
0, =m/n one acquires an n-ended catenoid with symmetry group isomorphic
to the Z, extension D, C 0(3) of the dyhedral group D,,.

The method outlined above using plastic “soap film” models of a
compact part of R* can be used to produce plastic models of surfaces by the
conjugate surface construction without ever explicitly knowing the coordinate
functions for the surfaces. This method yields the next existence theorems
which appear in [63].
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Definition. If M is a surface in R>, then the space group S(M) is the group
of isometries of R> which leave M invariant. Let g(M) denote the genus of
M and let E(M) denote the number of ends of M. If G is a subgroup of
S0(3), then let G denote the Z,-extension in O(3).

Theorem 47. Let G be a finite subgroup of SO(3) and P = {pl, AYR] pk},
Q= {ql, iy qm}, R = *{rl, W r,,} be distinct singular orbits of G on

S%. Then there exists a unique geometric minimal surface X with finite total
curvature, g(X) = 0, E(X) = k and SX) = {f€0(3)|f(P)=P}. There exist
one and two parameter families of examples Y(t), Z(t,s) respectively, with
genus 0, E(Y(2)) = k+m, E(Z(t,5)) = k+m+n and S(Y(?)) = S(Z(¢,s)) = G.
Furthermore, all examples that occur are conformally equivalent respectively,
to S*-P, S*-(PU Q) or S*-(PU QU R).

Theorem 48. For each integer n greater than two there exists a geometric
minimal surface X with finite total curvature, g(X) = 1, E(X) = n and
SX) =D,.

Theorem 49. For each positive integer n there exists a one parameter family
X, (t) of geometric minimal surfaces of finite total curvature with g(X, (1)) = n,
E(Z,(1) = 4, S(X,,(¢t)) = D,,,, and the normal vectors at the planes at infi-
nity are parallel.

Theorem 50. Let A be a regular polyhedron and I be the natural 1-skelton
on the boundary of A and suppose T has n 1-<simplices and m vertices. Then
there exists an example X of a geometric minimal surface of finite total
curvature with E(X) = genus of T', E(X) = m, S(X) = S(0A). There also
exists a one parameter family Y (t) of examples with g(Y (¢)) = genus of T,
EY@®) = m+n and S(Y(2)) = S(Q).

Remark. It is clear from the construction of X in theorems 48 and 50 that
X must be unique. The examples in theorem 50 may be embedded. In the
case ‘of genus equal to one in theorem 50 the examples correspond to
compact surfaces which are rectangular elliptic curves. The coordinate
functions of these minimal surface examples can be explicitly written down
in terms of classical functions. The author plans to check by computer
whether or not these examples of genus one are embedded.
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Section 22. The topological uniqueness theorems for minimal surfaces in R>.

The first topological uniqueness theorem for minimal surfaces was given
by B. Lawson [51] who proved that two embedded diffeomorphic minimal
surfaces M in the three dimensional sphere S* in R* are isotopic in S3. The
first part of his proof is to show by a variational argument due to Synge
that the fundamental group of the closures of the complements S®-M are
generated by curves on oM. Then a theorem of Papakyriakopoulous shows
that the complements S3-M are diffeomorphic to solid g-holed tori. Then
Lawson applies the deep result of Waldhausen conceming the topological
uniqueness up to isotopy of such decompositions of S Rs

In R® the author has analyzed the question of the topological
uniqueness of compact minimal surfaces with boundary being a collection of
Jordan curves on certain geometric subsets of R> and for certain noncompact
properly embedded minimal surfaces. The following theorems are corollaries
of a topological uniqueness theory developed in [60] which is independent
of Waldhausen’s theorem.

Theorem 51. Suppose M, and M, are embedded compact diffeomorphic
minimal surfaces in IR® whose boundary is a fixed Jordan curve y on the
boundary of a convex set C. Then My and M, are ambiently isotopic in C
relative to the boundary of C.

Theorem 52. If M, and M, are embedded complete proper minimal surfaces
in R® which are diffeomorphic to a compact surface punctured in one point
or are diffeomorphic to an open annulus, then M, and M , are isotopic.

Theorem 53. Let T = {71, Woigs.. Al 'yk} be a pairwise disjoint collection of
Jordan curves with v, in a plane P and v, ... , v in a parallel plane. If
M, and M, are connected embedded diffeomorphic compact minimal surfaces
in R® with boundary T, then M, and M, are ambiently isotopic relative to
the parallel planes.

Theorem 54. If M is a proper embedded complete minimal surface in R3,
then the complements R>-M are diffeomorphic to one-dimensional CW-sub-
complex of R3.

Below are two simple examples of stable diffeomorphic minimal surfa-
ces which bound the same Jordan curve on an ellipsoid. These examples arise
from joining parts of stable ‘“‘catenoids” by thin bridges. We challenge the
reader to prove directly that the two minimal surfaces are isotopic.



70 W. H. Meeks III

BT

The following two examples are isotopic by theorem S51. They are
made of stable catenoids and planar minimal disks connected by thin bridges
(see the bridge principle in section 15). For fun we also challenge the reader
to construct the required isotopy in this case.

Fig. 16
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Section 23. Generalizations to Riemannian manifolds and applications of
minimal surface theory to geometry, topology and the theory of relativity.

The theory of minimal surfaces in R*® extends naturally to the study
of minimal surfaces in an n-dimensional manifold. For example, the Douglas
solution to Plateau’s problem discussed in section 9 continues to exist for a
Jordan curve in R". More generally, as discussed in section 16, Morrey,
solved Plateau’s problem in the larger class of homogeneously regular
manifolds. The regularity theorems for minimal surfaces given in section 3
continue to hold in the case the ambient space is a manifold. However, the
least area surfaces that arise in variational problems in higher dimensions may -
be forced to have branch point singularities. The existence of a branch point
for a least area surface occurs in the following example. Define f:C~C? by
f(z) = (z%,z%). Then the restriction flD to the unit disk is the unique
Douglas solution to Plateau’s problem for f(dD) up to conformal reparametri-
zation. The proof that flD has least area follows from the area minimizing
properties of complex subvarieties of a Kihler manifold which will be discus-
sed shortly. In general, F. Morgan [70] proved the following related proper-
ty for singular points of a two dimensional area minimizing surface.

Theorem 55. The tangent cone to an oriented two dimensional area minimi-
zing surface in R" consists entirely of complex planes for some orthogonal
linear complex structure on its span.

Examples of minimal surfaces in R” depend to a large extent on the
Weierstrass representation of these surfaces. Every simply connected minimal
surface f:M~ R" arises from the real projection Re (v/2f)where F:M- C" is
a holomorphic curve isometric to f and f is defined by the integration of
n-holomorphic one-forms { Wi, Wy, ..., Wn} such that if w; = g;(z)dz in local

n
coordinates, then z 87(z)=0. The generalized Gauss map G:M—-CP*"!
Esig
is then defined by G(p) = the complex line passing throught the point
1), ... . g,(p)). The image of the Gauss map is contained in the quadric
On-1:Z} + ..+ Z% = 0. In the case n = 3, Q is naturally isometric to S? and
by composing with this isometry, the generalized Gauss map can be identified
with the usual Gauss map for a minimal surface in R® (see [49]).

The rigidity theorems for minimal surfaces in R® (see [49] and [56])

depend on the following rigidity theorem of Calabi for holomorphic curves.
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Theorem 56. Two isometric holomorphic curves in C" differ by a rigid
motion.

By studing the generalized Gauss map for a complete minimal surfaces
M in R" with finite total curvature R. Ossermann and S.S. Chern proved
that the Gauss map on M extends conformally to a compact Riemann surface
M where M is M punctured in a finite number of points. This easily implies
that the total curvature of M is an integer multiple of -2m. Recently a
number of new results have been obtained concerning these surfaces and we
refer the interested reader to [16] and [43] for a thorough discussion.

The existence of a bounded complete minimal surfaces has recently
been found by P. Jones [45]. He proves the stronger theorem that there
exists a complete bounded immersed holomorphic embedding of the disk in
&,

Calabi earlier noted the existence of a holomorphic curve properly
contained in a ball in C® by considering the ball to be the universal covering
space of a compact algebraic surface and then lifting an algebraic curve into
the universal cover.

In the classical geometric setting of compact constant curvature three
manifolds there are some special deep results. In [50] B. Lawson proved a
number of beautiful theorems on the geometry of minimal surfaces in the
three sphere. In particular he proved.

Theorem 57. Every compact minimal surface except the projective plane can
be minimally immersed in S>.

2. Every compact orientable surface embeds minimally in S and if the
genus is not prime there are at least two non-isometric examples.

3. Two diffeomorphic embedded compact minimal surfaces in S3 are
isotopic.

The deeper results on the minimal surfaces in flat tori are usually
involved with the conformal structure. For example Abel’s theorem in section
17 gives an important instance of this relationship between the conformal
structure and the geometry of these surfaces. In higher dimensions every
Riemann surfaces embeds conformally and minimally in a flat torus. In fact
it embeds holomorphically in its Jacobian variety. Minimal surfaces in flat
tori are interesting because their lifts to R" give rise to n-periodic minimal
surfaces. Applying the generalized Weierstrass representation for minimal sur-
faces in R" , the following can be proved [56].
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Theorem 58. (1) A compact Riemann surface of genus three admits a full
conformal minimal immersion into a flat torus T° if and only if the surface
is hyperelliptic.

(2) If the genus g of a compact Riemann surface is greater than three,
then the surface immerses conformally, minimally and fully in a flat torus

gl

One of the most beautiful existence theorems for minimal surfaces in
compact manifolds is the following recent theorem of Sachs-Uhlenbeck [97].

Theorem 59. If M is a compact Riemannian manifold whose universal cover-
ing space is not contractible, then there exists a branched minimal sphere in
M. Furthermore, there is a collection of branched minimal spheres of least
area in their homotopy classes which generate m,(M) under the action of
m (M).

The method of proof of the above theorem is to first consider the
following perturbed energy functions for an immersion f:S?->M

E () = J5: A+E(f)**da

where E(f) is the usual energy of f and « is a nonnegative number. The E,
energy satisfies condition (C) of Palais-Smale for a positive. Their existence
theorem follows from a delicate analysis of what happens to the critical
points of E, as a goes to zero.

According to the result of Sachs-Uhlenbeck and its slightly improved
version by Meeks-Yau, the infimum of the energies of a map of S* to M
representing an element of m,(M) can be achieved by a sum of stable
harmonic maps f; from S? into M. For Kihler manifolds of positive holo-
morphic curvature such stable harmonic maps can be shown to be holomor-
phic or antiholomorphic (see [108]). Y.T. Siu and S.T. Yau recently proved
this result and combined it together with some geometrical arguments and
theorem in algebraic geometry to prove an old conjecture of Frankel. Their
theorem is:

Theorem 60. Every compact Kahler manifold of positive bisectional curvature
is biholomorphic to a complex projective space.

To prove the existence of minimal surfaces of other topological types it
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is usually necessary to assume something about the fundamental group of the
surface. A map f:X—>M of a surface is called incompressible if the induced
map

fem (X)) > my (M)

is injective on the fundamental groups.

Theorem 61. Suppose M is a compact manifold and f:X—>M is a closed
incompressible surface in M. Then there exists a branched minimal immersion
g:X—>M of least area which has the same image on the fundamental groups
(up to conjugacy) as f.

A proof of the above theorem was given independently by Schoen-Yau
and Sachs-Uhlenbeck. The idea in the proof is to minimize the energy in the
homotopy class of f as map for all conformal structures on X. The injectivity
on the fundamental group is used to show that the energy gets large near the
boundary of the appropriate Teichmiiller space (after composing f with all
diffeomorphisms on the surface). Thus the least energy occurs for some
conformal structure on X. For this conformal structure the least energy map
also has least area.

Freedman, Hass and Scot [119] have recently been able to show that
in dimension three certain of the least maps given in the above theorem are
actually embeddings. Their technique is similar to that developed by Meeks-
Yau as discussed in Sections 16 and 24.

Theorem 62. Suppose M is a compact irreducible three dimensional manifold
and g X—>M is a closed embedded incompressible surface. Then there is a
least area immersion f:X > M in the homotopy class of g and any such fis
one-to-one or two-to-one. In particular f(X) is an embedded surface.

The above theorem has some important applications to finite group
actions in three manifolds. These applications and some related embedding
theorems were found independently by Meeks, Simon and Yau [69]. One of
the results in [69] shows that the universal covering space of an irreducible
three manifold is irreducible.

R. Schoen and S.T. Yau [102] later applied their existence of least
area incompressible surfaces to get some interesting results for three dimen-
sional manifolds of nonnegative scalar curvature. For example, they prove
that a nonnegative scalar curvature metric on T is actually flat. With some
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deep generalizations of this technique they were able to prove that an
asymptotically flat scalar curvature metric on R is actually flat. The basic
construction in the proof of this theorem is to show that there exists a
stable complete minimal surface in this metric which is a plane. They then
use the Gauss-Bonnet theorem to get a contradiction to the stability of this
plane unless the metric on R*® is actually flat. This type of theorem by
Schoen-Yau [101] led them to a proof of the famous positive mass conjectu-
re in the theory of general relativity which can be simply stated as follows.

Theorem 63. Let M be a space-time whose local mass density is nonnegative
everywhere. Then the total mass of M as viewed from spacial infinity must
be positive unless M is the flat Minkowski space-time.

Later R. Schoen and D. Fischer-Colbrie proved a related theorem whose
important corollary is that every complete stable orientable minimal surface

in R® is a plane. This corollary is not known in the case M is nonorientable
[277%

Theorem 64. Let N be a complete oriented three manifold of nonnegative
scalar curvature. Let M be an oriented complete stable minimal surface in N.
Then there are two possibilities:

1. If M is compact, then M is a sphere or a totally geodesic flat torus.
If the scalar curvature is positive, then M is a sphere.

2.If M is not compact, then M is conformally equivalent to the
complex plane C or C-{O}.

Recently Yau and Schoen [120] have made another beautyful applica-
tion of minimal surface theory to three dimensional geometry. Their theorem
given below makes use of the existence of a complete stable minimal surface
and some estimates in [27].

Theorem 65. 4 complete non-compact three dimensional manifold with posi-
tive Ricci curvature is diffeomorphic to R®.

An important class of minimal submanifolds are complex submanifolds
of Kéihler manifolds. An easy application of Wirtinger’s inequality and the
fact that the Kahler form is closed implies the following (see [49]).

Theorem 66. Let M be any Kihler manifold and let f-M -~ M be a complex
submanifold where M is compact with boundary which is possibly empty.
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Then the volume of M in the induced metric is less than or equal to the
volume of any other compact submanifold which is homologous to M in M.

Another way of proving the existence of minimal surfaces in a three
dimensional manifold M is to apply the regularity and existence theorems
for minimal currents in geometric measure theory [25]. The theorem of
Hardt-Simon in section 9 is a beautifui application of this theory to the
classical Plateau problem of minimal surfaces in R*®. The earlier interior
regularity theorem (see [52] for references) shows that every two dimensio-
nal homology class in an orientable three dimensional manifold can be reali-
zed by an embedded least area closed surface with multiplicity on its compo-
nents. In particular, there exists a stable embedded minimal surface when the
second homology group is nonzero.

Recently J. Pitts showed, using geometric measure theory, that every
closed three manifold contains an embedded closed minimal surface. He has
generalized his theorem to prove [90].

Theorem 67. A closed manifold of dimension less than or equal to six
contains a closed embedded codimension-one minimal submanifold.

R. Schoen and L. Simon have improved this theorem up to dimension
of the ambient manifold equalling eight.

Much of the theory of minimal currents was developed to solve the
generalized Bernstein problem. In 1920 Bernstein [9] proved that a graph of
a smooth function f*R? — R is a minimal surface if and only if the function
f is linear. The stability theorem 8, Osserman’s theorem 41 and Xavier’s
theorem 43 give strong géneralizations of this Bernstein theorem in R®. For
example, it follows from the Carmo-Barbosa stability theorem that a minimal
graph is stable and hence by theorem 8 it must be a plane. Fleming gave a
proof of the Bernstein theorem using his theorems concerning minimal
currents. The pioneering work of Fleming eventually led to the following
theorem of J. Simons (see [52] for a discussion and history).

Theorem 68. Let f-:R"> R be a smooth function whose graph is a minimal
submanifold in R™*'. If n<7, then f is linear.

This theorem is closely related to the interior regularity of minimal
currents [107]. The work in [12] shows that the theorem of Simons is not
true for n>7.
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Section 24. Appendix: The proof of the embedding of the analytic case of
the geometric Dehn’s lemma. !

In this section we give a somewhat simplified proof of the basic
topological construction in the proof of the geometric Dehn’s lemma in
section 16. For further details see [64].

Theorem 69. Suppose M is a compact analytic three dimensional Riemannian
manifold. Suppose that vy is an analytic curve on OM and that f:D—>M is a
least area (energy) map with f(0D) = f(D) N N = v. Then f is one-to-one.

Proof of the theorem. The proof of the theorem will depend on the following
sequence of lemmas.

Lemma 1. f:D > M is an analytic immersion.

Proof of lemma 1. By the regularoity theorems of Gul(;iver and Osserman in
section 9, f is an immersion on D. f is analytic on D by Morrey’s interior
regularity theorem [73]. f is analytic on D by the boundary regularity
theorems discussed in section 3. By the theorem 15 of Gulliver-Lesley f is an
immersion on D.

Lemma 2. f:D — M is simplicial with respect to fixed triangulations of D and
M.

Proof of lemma 2. By lemma 1 f is analytic and it follows that f(D) is a
semi-analytic subset of M. Also it follows from the triangulation theorems in
[55] that the semi-analytic subset f(D) of M is a two dimensional subcomplex
of some triangulation of M. Since f is an immersion, the triangulation of f(D)
induces a triangulation of D such that f:D — M is simplicial.

Lemma 3. Suppose D, and D, are distinct analytic embedded disks in an
open three dimensional Riemannian manifold N and that D, and (l))z h%ve
least area with respect to their boundary curves. Then if Dy "D, ,C D, N D,,
then D; "D, = ¢.

Proof of lemma 3. Suppose first that D, and D, are in general position which
is the generic case. If D, ﬂDoz is non-empty, then D; N D, is one-dimensional
submanifold of D; and of D,. By the classification of one-dimensional sub-
manifolds Dy N D, is a finite collection of Jordan curves. Let y be a Jordan
curve in Dy ND,. Then the Jordan curve theorem implies that 7y is the
boundary of a subdisk D{ of D; and a subdisk D; of D,.

Suppose that the area of D{ is less than or equal to the area of D;.
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Then consider the new piecewise smooth disk.
D3 = (D,-D3;) U D;
The area of D; is less than or equal to the area D,. The area of D; can
now be decreased along y which contradicts the hypothesis that D, has least
area with respect to its boundary curve.
If D; and D, are not in general position, then there are two ways to

reduce to the general position case. The first way is by approximation. The
second is by way of the following:

o o
Assertion. 1f Dy ND, CD; ND, is nonempty, then D, N D, contains a
closed Jordan curve.

Proof. Since D, and D, are analytig, I' =D, ND, is a compact triangulable
analytic subset analytic subset of D;. We first note that I' has no isolated
vertices. If ' has an isolated vertex p, then p corresponds to a point on
D, where D; is locally on one side of D,. By the maximum principal for
minimal surfaces, D; and D, intersect in an open set near p so the vertex p
is not isolated. Also I' cannot contain a 2-simplex, for by the uniqueness of
analytic continuation, D; and D, must agree on an open set that goes to
the boundary of D; or D,. However, this is impossible since the intersection
of D, and D, does not by hypothesis include points on the boundaries.

The argument used above shows that I' is a one-dimensional subcomplex
of some triangulation of D; and I' contains no isolated vertices. Analytic
one-dimensional subsets of a disk have an even number of edges at every
vertex. This implies that T' represents a one-cycle in the simplicial one-chains
of Dy using Z,-coefficients. Since the first homology group with Z, coeffi-
cients of D; is zero, geometric intersection theory implies that I' must
disconnect D;. A boundary curve of a component of D,-I" which is different
from 9D, is the required Jordan curve in the assertion.

The existence of the Jordan curve in D, N D, together with the disk
replacement argument used in the general position case gives a contradiction.
Hence, D; N D, must be empty which proves the lemma.

Lemma 4. Suppose N is a triangulated three dimensional manifold and ff-D—~>N
is a simplicial immersion of a disk with respect to some triangulation T of D.
Then there exists a subdivision of the triangulation of N so that f:D— N is
still simplicial with respect to T and such that the simplicial neighborhood of
f(D) is a simplicial regular neighborhood of f(D).

Proof of lemma 4. This elementary result follows after subdividing two times
the triangulation of N. Each time the subdivision includes the baricenters of
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the simplices which are not contained in f(D). This proves lemma 4.

We now carry out the construction of a tower for f:D - M in order to
simplify the self-intersection or singular set for f:D — M which by lemma 2 is
simplicial. First, let NV; be a regular neighborhood of f(D). After restricting
the range space of f to N,, there is a new map f;:D—>N,. If N; is not
simply connected, then let P;:N,=>N; be the universal covering space of N,
and let f;:D— N, be a lift of f; to this covering space. Then restricting the
range space of ' f; to a regular neighborhood N, of f;(D), we get another
map fo,:D—>N,.

If N, is not simply connected, then we can repeat the construction in
the previous paragraph to get a lift f,:D - N, to the universal covering space
P,:N, >N, of N,. After restricting the lift f, to a regular neighborhood N,
of f(D), we get f3:D > Nj.

Repeating k-times, the construction outlined above yields a tower

Bige 1]

where P;:Nj., = N; is the restriction of P;:N; > N; to Nj,,.

Each N; in the above tower is a Riemannian manifold with respect to
the pulled back metric. Each of the lifts f;:D - N; is a solution to Plateau’s
problem for the Jordan curve f;(dD) with respect to this metric. Otherwise
there is an immersion g:D - N; with g(3D) = f;(dD) and with respect to the
pulled back metric on D, Area(g) < Area (f;). We would then have Area
(Py0P;0 ...0P;_;0g) = Area (g) < Area (f;) = Area (f) which is impossible.

By lemmas 2 and 4 we may assume that each map f;-D - N; in the
tower is simplicial with respect to a fixed triangulation 7 for which f,:.D - N,
is simplicial. Note that the triangulation on A; is induced from the triangula-
tion on NV;_; pulled back to N; by P;:N; > N;. We now use this fact to prove
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that the tower construction terminates after a finite number k of steps with
Nk being simply connected.

Lemma 5. If S(f)) ={(0,7) € TxTl0 # 7 and f(0)= (1)}, then S(fi.y) <
< S(f;). Hence, the tower construction terminates at some k with Nk simply
connected.

Proof of lemma 5. Since f;=P; o fi,; where P;,; is simplicial, S(f;.,) <
< SU). If SHig) = SU), then h = Pilf;.1(D) induces a homeomorphism
between f;.,(D) and fi(D). Using h we can define a lift of the inclusion map
LfiD)>N; to N; by T:f(D)>N; where 7 = h~'oi. Since N, is a regular
neighborhood of fi(D), iw:m(fi(D))—>n,(NV;) is an isomorphism. Since N; is
simply connected, the lifting criterion for maps in covering space theory
implies that N; is simply connected. Thus, we may assume that S(f;,,) < S(f;)
which proves the lemma.

Lemma 6. The lift fi:D-Ni at the top of the tower in figure 17 is one-to-
one.

Proof of lemma 6. We first show:
Assertion 1. The boundary of Ny consists of spheres.

Proof of Assertion 1. Since Ni is simply connected, H,;(Ny,Z,)=0. Since the
pairing between homology and cohomology with coefficients in a field is non-
degenerate, H'(Ng,Z,)=0. Poincaré duality then shows that H,(Nk,dNk,Z,)=
=0. From the following part of the long exact sequence in homology for the
pair (NVg,0Ng).

~ Hy(Nk, 8Nk, Z3) > Hy (3N, Z,) > H, (N, Z,) >

one computes that H,(0Ng,Z,) = 0. This shows that the first homology
group with Z; coefficients is zerp for each boundary component of Nj. By
the classification . theorem for compact surfaces, each component of the
boundary of N is a sphere which proves the assertion.

We shall now use the fact that the boundary of NV consists entirely of
spheres to show that fx:D-Nj is an embedding. First note that since Ny
is a simplicial regular neighborhood, there is, after a subdivision, a simplicial
retraction S:Ng=>f(D) whose restriction R =S|dNy—f;(D) has the property:
R covers each open two-simplex of fz(D) exactly two times and RI(ONy -
- /x(3D)) is locally one-to-one. The existence of such a retraction follows
directly from the - definition of a simplicial regular neighborhood and the
collapsing properties of 'such a neighborhood onto an immersed codimension-
-one simplicial submanifold whose boundary is the intersection of the
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submanifold with the boundary of the ambient manifold. For a proof of the
existence we refer the reader to [65]. The existence of such a retraction is
easy to see in the one lower dimensional picture below.

I -|4— OM=S

Fig. 18

By assertion 1 the curve y = fx(dD) is contained in a sphere S in
ONf. The Jordan curve theorem implies that the Jordan curve v disconnects
the sphere § into two disks D; and D,. Now consider the following
inequalities

Area(R1D;) + Area(RID,) < Area(RidNg) < 2 Area(fy)

The last part of this inequality follows from the fact that area is carried by
two-simplices and R |dNj covers each two-simplex of f3(D) two times.

Since fx is a solution to Plateau’s problem for v, the above area
inequality implies that RID; and RID, are also disks of least area with vy for
boundary. However, if f; is not an embedding, then the area of RID; and
RID, can be decreased along a self-intersection curve of fx(D). This is true
since RID; cannot be analytic at a self-intersection point of fi(D) as is clear
in the one lower dimensional figure 18. Since this contradicts the least area
property of f, the map f; must be an embedding which proves the lemma.

We now complete the proof of the theorem. If f:D—M is not an
embedding, then we may assume by the previous lemma that k is greater
than one with fx_;:D-Njg_, not one-to-one. Lét E be the embedded disk
iofy(D) C Ny, where i:Ny—>Ni_, is the inclusion map. Since fx_; is not
one-to-one and Nk, = Nk_;/G where G is the group of covering transforma-
tions, there exists a nontrivial covering transformation 7:Nj_,>Nj_, such that
7(E) N E is nonempty. Since the covering transformation 7 is an isometry on
Ng_1, the disk 7(E) has least area with respect to its boundary curve. The
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hypothesis in the gheorem that f(0D) = (D) N oM = vy implies that £ N
N 7(E) C E N 7(E). Lemma 3 shows this containment is impossible which
implies that f>D—M must in fact be an embedding. This completes the proof
of the theorem.

Remark. Suppose that vy is an analytic curve in an analytic three dimensional
Riemannian manifold M such as R>. Let f-D-M be a least area branched
minimal disk with boundary <y such that y N fiD) is empty. Then it is
always possible to construct a submanifold M of M such that fiD) C M and
AD) N oM = f(oD). The proof of theorem 69 then shows f is a one-to-one
immersion. This fact coupled with the next theorem easily implies that every
Douglas solution to Plateau’s problem for a C*-Jordan curve on the boundary
of a strictly convex surface in R3 is embedded (see for example [66]).

Theorem 70. Suppose f:M—R3> is a branched minimal surface whose bounda-
ry curves f(OM) are C*. Suppose that f(M) is contained in a region R of R®
with nonnegative mean curvature with respect to the inward normal and
M) N 3R = f(OM). Then flOM is an immersion.

A continuous version of the following very important compact smooth
convergence theorem enters in an essential way in the proof that every
Douglas solution to Plateau’s problem for a continuous extremal Jordan curve
is embedded. An easy ‘application of a continuous version of the next
theorem, the embedding of the Douglas solution for an extremal analytic
curve and theorem 69 imply that an extremal Jordan curve bounds at least
one embedded Douglas solution.

Theorem 71. Let i be a sequence of smooth Jordan curves that converge
smoothly in the smooth topology to a smooth Jordan curve v. Let fi:D~>R>
be branched minimal disks with boundary curves vy; which are normalized so
that for three distinct points py,p,,ps € 0D the triples of points (fi(py),
Jk(P2), fx(p3)) converges to three distinct points on vy. Then a subsequence
of the fx converge smoothly on D to a branched minimal immersion with
boundary 1.
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