BOL. SOC. BRAS. MAT., VOL 12 N° 1 (1981), 101-106 101

On moduli of stability of two-dimensional vector fields

P. Mendes*

Abstract.

In this paper the author proves that, on a compact connected and
orientable two-dimensional C” manifold M, the gradient of a C3-Morse Func-
tion has finite modulus of stability under conjugacy and modulus zero under
topological equivalence. It is also proved that generically the modulus of
stability under conjugacy of a graph of a C? vector field on the plane is at
least twice the number of its saddles. Some new conjugacy invariants arise in
the proofs of these results.

Let X' (M) be the Banach space of C” vector fields on M with the C*
topology, r = 2. We will consider the subspace Grad” (M) of the elements
of X'+ (M) which are gradients of C™*! real functions on M. Given X € x
(M) let X; be its flow.

We say that X,Y € X (M) are conjugate if there is a homemorphism
h:M - M such that h X; = Y;h,t € R. If there is a homeomorphism
h:M — M seding orbits of X onto orbits of Y, preserving the orientation of
the orbits, then we say that X and Y are topologically equivalent.

We say that a vector field is stable with respect to one of these
relations if its equivalence class is open.

These equivalence relations can also be considered in Grad” (M).

Consider now an element unstable with respect to one of the relations
above. If it is possible to describe all the equivalence classes in some
neighbourhood of such an element by a finite number of real parameters,
then we say that it has finite modulus of stability with respect to that
relation. In this case the minimum number of such parameters is called the
modulus of stability of the element given.

If in some neighbourhood of that element there are at most a
denumerable number of equivalence classes, then we say that its modulus of
stability is zero with respect to the relation considered.

If for that element none of the above conditions are satisfied then we
say that its modulus of stability is infinite with respect to the relation
considered.

(*) During the preparation of this paper the author was a visiting Professor at IMPA; and was
partially suported by Financiadora de Estudo e Projetos (FINEP).
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Let GM" (M) C Grad" (M) be the (open and dense) set of the gradients
of the C™! real Morse Functions on M.
Then we have:

Theorem A. IfVf € GM" (M), thenV f has modulus of stability finite under
conjugacy and modulus zero under topological equivalence.

This result remains true for GM” (M) considered as a subset of X~ (M)
instead of as a subset of Grad” (M), and the proof is the same.

Let M be a connected orientable tow-dimensional manifold, possibly
non-compact. Consider in X' (M) the C” Whitney Topology, r = 2.

petigoE &5 (M) be the set of the structurally stable vector fields (i.e.,
stable under topological equivalence). With the wusual concept of
dimensional graph, we have the following.

Remark. There is an open and dense set 8 C X’ (M) such that §-X is dense
in X' (M) - =, and if G is a graph of an element X € B, then the modulus
of stability of X near G is at least twice the number of the saddles of G.

The proofs of these results are based on ([3]) and ([4]), where a
linearization theorem for hyperbolic two-dimensional saddles ([1]) iz used.
This is the reason of the assumption r > 2 in X (M) and Grad" (M).
Theorem A and the Remark are steps in the way to solve the following
problems.

Problem 1. Describe as completely as possible the two-dimensional vector
fields which have finite modulus of stability under conjugacy.

Problem 2. Describe as completely as possible the two-dimensional vector
fields which have zero modulus of stability under topological equivalence.

Problem 3. Are Problems 1 and 2 equivalent?

This work is divided into three parts. In the first we state notations,
definitions and some useful theorems.
The second and the third parts are dedicated to the proofs of the

results. ,
Aknowledgements are due to W. Melo and J. Palis for helpful

conversations.
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1. Preliminares.

et X X’ (M) and p € M be a hyperbolic saddle of X. The connec-
ted components of Wi . (p) - {p} and W* (p) -{ } are indicated by

£iu EIS," and 7;,+ 7;,', respectively. The pairs (p,E M, (p, Sp') are called local
separatrices and the pairs (p,7p ),(p, 'yp) are called separatrices. Similar nota-
tions and definitions are used for the unstable manifold of p.

If p, ¢ € M are hyperbohc saddles of X such that y;" = ¥z9 (7p’“ =
= 7q, 'yp_ = 7q . 7p 7q) then the ordered triple (p,q, 7 BICXR ),
(p.og Nlpa.g )) is called a saddle connection.

Let (pq,7= ) be a saddle connection of X € X (M) r = 2. Consi-
der C! linearizatlons ¢ and ¥ in small neighbourhoods of p and ¢ ([1]), and
take points 4 € Wj,. (p)-{p}, B € Wi, (p) Ny, CE Wi . (g) N v,
D € WY, (q)- {q} such that 4 and D are in the same side of v. Set ¢(4)=
=(0,0), ¢(B)=(b,0), ¥(C)=(c,0) and Y(D)=(0,d). Let Z, and X, be
segments parallel to ¢(Wj,. (p)) and Yv(Wi,, (q)), through the points (b 0)
and (c,0) respectively. Now we define the Poincare’ Transformations of X,
from Z, to 2, as the orientation preserving diffeomorphism g: ZP»E
sending (b,y) to the first intersection of its X-orbit with Z, after (b,y).

The number k = 1m2)7 =g’ (0) > 0 is called vertical distortion. This
y—-)

number depends on X, on the linearizations and on the choices of B and C.
It is easy to prove the following

Lemma 1.1. a) If ¢ = (", ¢%), ¥ = (¥*, ¥*) and C=X7(B), T > 0, then
d ({
=3 W 2 X1 2 67Dl 0)

b) By suitable choices of B and C=XrB), T > 0, k can
be made any given positive real number.

o) If ¢ = (8“,6°), ¥ = (*.;¥*) are also linearizations as above,
and B; and ﬁi‘l are the derivatives at O of the local diffeomorphisms

y—)as o ¢_1(b,y) and Z"Eu o \//_I(C,Z)a

e 1
then k i ﬁ(; % k . —ﬁs—~
14
With the same notations, the number K = b is called horizontal distor-
tion. It depends on X, on the linearizations and on the choices of B and C=

Analogously we have the



104 P. Mendes

Lemma 12. a) If ¢=(¢%¢"), v=@°¢%) and C= X, (B), T > 0, then
K —_(lpsz °¢ )i(b 0)

b) By suitable choices of B and C = XT(B), T>0,K can be
made any given positive real number.

) If ¢ = (", 8%, ¢ = (3°, % ) are also linearizations as above,
and B,s, and B" are the derivatives at b and c of the local diffeomorphisms:

x>¢% o ¢! (x,0) and x> Y5 o y~! *,0)

respectively, then K = l—s . Bg.
bp

. O
We notice that in (1.2-b) we have K = ﬁ.K, by definition.

Remark 1.3. The number k can be defined using g~! instead of g, and K as
—g—instead of % The analogous of (1.1) and (1.2) are also true. In each situa-

tion we will use the more convenient of these definitions, which will be clear
from the context. Now we will recall a result from ([3]) to be used latter
on. .

Let (p q,7 = 'y ") be a saddle connection of X € X (M) = 2, such
that (p, *) and (qS ") are in the same side of v. Let 4 € E‘” B € MW
(» N9, C ol (q) Ny DE 5“* be such that ¢ (4) = (0 a) ¢ (B) =

= (b,0), ¥ () = (c,0), ¥ (D) = (0 d) where ¢ and ¢ are C! linearizations
in neighbourhoods of p and g, respectively. Let )\ be the negative eigenvalue
of DX (p) and Mg be the positive engenvalue of DX Q). Let (p)q’, 'y ") be a
saddle connection of X’ € X (M), r > 2. Using similar notations for X, we

get ([3]).

Theorem 1.4. X and X’ are conjugate in neighbourhoods of ¥ and 7 iff

K Ky’
)\i = )\L . (This relation will be called the eigenvalue condition).
ok -

Remark 1.5. It follows from the proof of (1.4) that if (p,q,v) and (p’q’Y')

satisfy the eigenvalue condition and if h."g’;" Uy - E';", U ¥ conjugates X

and X', then A can be extended as conjugacy to neighbourhoods of ¥ and 7.

Moreover, if ¢' o h o $7'(0,a) = (0,a’) and ¥’ o h o Y~1(0,d) = d’, then
’ ; Mgk ,

g —k—— 7 (i) ‘.I/ ; . The number —k——— depends only on the

a’ kMg Mg a k#q'/ﬂq
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. linearizations and on the definition of h:y — 7', but not on the choices of

B and C, with h(B) = B’ and h(C) = C"

Let Sy,...,S; be hyperbolic saddles, and v, ...,y,.; be regular orbits
of X € X'(M), r > 2, such that
a) a(yj) = §j and w(vj) = Sj+
or b) w(y;) = Sj and a(y;) = Sj.,
forj=1,..,1-1.

-1
LetT=U 7.
j=1

If for each j=2,..,I-1, S; is a source or a sink of X\ then T is
called a type I generalzzed separatrix of X.

Suppose now that I' is such that either a) holds for all j = 1,...,7/-1 or
b) holds for all j = 1,...,1-1. We consider each 7] as an oriented manifold
with boundary, with the orientation induced by X..Let u;j be the positive
unit tangent vector to %;_; at S; and v; be the positive unity tangent vector
to y; at Sy, j=2,...,1-1. Fix an orientation on M. We say that I" is a #ype
IT generalized separatrix of X, if the basis {uj,v]-} belongs to the orientation
of M, for each j=2,...,l1-1. If this does not occurs for each T2, sl
then we say that ' is a type III generalized separatrix of X.

Let T = 6 ;, where each T; is a generalized separatrix of type I, II
i=1

or I, i=1,...,m. If the last saddle of I} is the first saddle of Ii,g,i=1,
.,m-1, then I' is called a generalized separatrix of X. Moreover, if ' is a
generalized separatrix such that the last saddle of I, is the first saddle of
Iy, T is called a cycle of separatrices. A cycle of separatrices such that

each T is of type II (type III) is called a graph.
Let G=T be a graph of X € Xr(M), r 2 2, whose saddles are S, ...,
S§;. Let A; < 0 < y; be the eigenvalues of DX(S;), i=1,...,. Denote ri =

N\ :
ST 0, and a=ry ... 7;. Suppose a # 1. Then

i

Proposition 1.6. ([4]). The graph G is an atractor iff o > 1, and it is a
repellor iff a < 1.

From (1.6) it follows easily that
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Corollary 1.7. There is an open and dense set 3 C 'y (M) r = 2, such that:
i) if X € B, then the cntzcal elements of X are all hlperbolzc
ii) B - = is dense in X (M) -3; _
iii)if X € B and G is a graph of X, then G is either an attractor or a
repellor.

This result remains true if M is a two-dimensional manifold without
boundary and the topology of Xr(M), r = 2, is the Whitney C” topology.

2. Proof of Theorem A. We start with some notations, definitions, lemmas
and propositions.

In this section we are concerned with the case of the gradient vector
field Vf € GM'(M), r > 2, of a C™! Morse function f:M— R. Let its
sources be Fy,...,F, its saddles be Sy, ..., S;, and its sinks be B, cachPp.
Fix the signs + and — for the saddle separatrices.

We say that the saddle separatrix 7Y & (¥¥"), of S;, is a stabilized
separatrix if w@f")(w®)) is a sink, and that the saddle separatrix
YT (YY), of S; is a stabilized separatrix if a(ys M) (@(v{)) is a source.

It is well known that there is a sufficiently small neighbourhood NV C
C GM'(M), such that each Vg € M(Vf) has F,(g), .. ., Fp(g) as its sources
S1(8), ..., S;(g) as its saddles and P,(g), .., Pp(g) as its sinks, and the
following properties hold:

1) Fi(g) is arbitrarily near F;, i=1,...,1%

2) Si(g) is arbitrarily near S;, i=1, ...,1;

3) Pi(g) is arbitrarily near P;, i=1,... 1"

Moreover, if we choose the saddles separatrices signs for S;(g) compati-
bly with the choices made for S;, and if v; is a stabilized separatrix of S,
then 7;(g) is a stabilized separatrix of S;(g). In particular, the number of
saddle connections of Vg is less or equal than the number of saddle connec-
tions of Vf. ([2])

We say that Vg, Vg’ € N(Vf) have isomorphic phase diagrams when
the following conditions are satisfied:

i) (Si(®), Sj(e), 7)) is a saddle connection of Vg iff (S;(g’), Si(g"),
7ij(g") is a saddle connection of Vg’;

ii) 7i(g) is a stabilized separatrix of Vg iff v;(g’) is a stabilized separa-
trix of Vg’, and moreover a(yi(g)) U w(vi(g)) = {Si(g), Fi(g)} iff a(y;(g)) U
U o)) = 1Sig), FiEe)} or ami@) U wmi@) = {Sie).i(e) } iff
a(ri@)) YV wig)) = S;).Pie) .
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Given Vg € N(Vf), we define I(Vg) = <ng’ EN(VYSf) such that g
and g’ have isomorphic phase diagrams}

It is clear that the collection {I(Vg) Vg EN (Vf)} is a partition of
H(Vf) into a finite number of subsets.

From now on, we allways will consider Vg €N(Vf) and Vg’ € I (Vg).

Using that g is decreasing along the orbits of Vg, one can verify that
any type I generalized separatrix of Vg has only one point, and that any
cycle of separatrices of Vg has at least a positive even number of type I
generalized separatrices.

2m

Let I' = U T; be a cycle of separatrices of Vg, such that I} =S5;,
i=1

i=1,3,...,2m-1 are type I generalized separatrices and [j,j=2,4, ... ,2m are
type II (type III) generalized separatrices, each of them having an even
number of saddles. In this case I is called a distinguished cycle of Vg.

Indexing the saddles of I', according by to the positive orientation of
T, let I be the set of odd indexes, starting at S;, and J be the set of even
indexes, starting at the first saddle of I';. Let JUJ = { 1,2+ 2N}

We can assume that S, =§; =T, is a source of Vg“« Thus, S,; , =

= I';;j-, is a source of Vg, when i=1,3,..,m-1, and is a sink of VgIr,

when i=2,4, ... ,m. (Note that m is even). It is easy to see that the set of
indexes of l"] is {rGIUJ rai-1 <r<r2,,1} for j=2i,i= T M, Tam +1=
=r.

The number D(T') = (I k&) (II K;), where k; and K; are the verti-

iel jer

cal and horizontal distortions of saddle connections of T, related to its
positive orientation, is called the distortion of T.

Proposition 2.1. Let Vg’ € I(Vg), and T and T be corresponding distinguished
cycles of Vg and Vg', respectively. If D(Vg) (S;) and D(Vg’) (S;) have the

D) ;
same engenvalues for r= ., 2N, and D) =1, then Vg and Vg’ are
conjugated in neighbourhoods of T and T

Proof. First we choose linearizations in neighbourhoods of Sy and S}, r=
SRS

We will consider only the case where I',; and I'j; are type II generali-
zed separatrices, i=1, ..., m.

We can assume that S; =S81(g) and S =S,(g’) are sources of Ve and
Ve’|r, respectively.
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It is obvious that I' = an) [pjand I = Cl) | A

i=1 i=1

We define the conjugacy A:W{ U (W{ N I) - Wi U (W N T,
between Vg and Vg’, arbitrarily. Then, by the hypothesis, (1.4) induces a
unique definition of A:W§ - W3 . We complete the definition of 4 from
WS to W5, and repeat the argument. Using finite induction and the hypo-
thesis that the number of saddles of I', and I'; are even and the same, we
get h: W,3 - W umvocally defined.

The reitera’uon of this reasoning for Ty, T, ..., 2, could give us a
new definition for h:Wy - W’ .

We claim that this is not the case and, moreover, & can be extended to
neighbourhoods of I" and T'.

The first part of our claim obviously imply the second. Therefore, it is
enough to prove that the above procedure gives us the same h: Wi - w;* de-
fined before.

Let £4* T, and £* be a such that one can go from &f" to £, in
the posmve sense, without crossing any other local separatrix of S;. Similarly,
let E , I} and E‘” be such that one can go from £“+ to E“ in the posmve
sense, w1thout corssmg any other local separatrix of g‘, Let A, € &7 =
€ & and A; = h(4,), B; = h(By).

Thus, using the hypothesis, ('1 4), the definition of horizontal and verti-
cal distortions, and a finite induction, we get

b3 (kiKiKry )'b_'2

a’
1 kl 'K2""'kr3._1 a;

This argument.applyied to [';,[4, ..., 2, allows us to get the equality

D) _mn

—D(—I‘) ' = 1, which ends the proof of (2.1).

Now we are going to prove that the number %g‘%, in (2.1), is an

invariant of Vg’

Lemma 2.2. With the notations of (2.1) if D(Vg) (Sy) and D(Vg’) (Sy) have

the same eigenvalues, r= ,2N, then Q_((l"—; is a continuous positive real

function of Vg’, whose image contains 1.
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Proof. Assuming that g((l;)) is a function of Vg’, then (2.2) follows from

(1.1-a)), (1.2-a)), and the continuity of the linearizations and of the flow,
with respect to the vector field Vg’
By (1.1<c)) and (1.2<)), D(I'") and D(T') does not depend on the lineari-

D)
D(T)

zations. Thus, does not depend either. Then, from the hypothesis and

D) _ @mn
D() 4
right hand side of this equality depends on Vg’, and the numbers a; and
@+ are mot involved in the definition of its left hand side. This ends the
proof of (2.2).

the calculations made on the proof of (2.1), we have . The

Remark 2.3. The continuity of D((l;‘)) with respect to Vg’is with respect to

the C!-topology of Grad"@), r > 2.

Proof of Theorem A. The first part of Theorem A follows from:

Proposition 2.4. Let Vg’ € I(Vg). If for any two corresponding saddles S
and S’ D(Vg) (S) and D(Vg’) (S’) have the same eigenvailues, and any two
corresponding distinguished cycles have the same distortions, then Ve and Vg’
are conjugated.

Proof. Let Fig) = F;, i=1,...,I', be the sources, S;g) = 8, j=1,...,1, be
the saddles and Px(g) = Pi, k=1,...,1” be the sinks of Vg.

Let 71, 74 be the stable separatrices and 772, 773 be the unstable
separatrices of S, j=1,...,1
Similar and compatible notations will be used for Ve
We can suppose that i < j==> g(S;) > g(5)).
Now we are going to define the conjugacy %, between Vg and Vg.
Firstly we put h(F))=F;,i=1, .., h(Sj)) = 8y, j=1,..,1; h(Px) =Py
k=1,..,1”. We will define

1 4 1 4
Reat ot il gk + L) oo L) v'jr) by induction on j.

=1 r=1 i

Using that g is decreasing along the orbits of Vg, we see that a(yy) =
= F;,) and a(yi) = Fy,, iy,i; € {1, o, '} Thus, a(yh) = Ff, and a(rie) =
=F/,. Then, we can define

»

4
KGN0 B 50) 0 afbithantly.

r=1 r=1
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4
Suppose that h : U Yir > \U % is defined for j=1,..,n-1, and
r=1 r=1 .
4 4
letusdefine h : Y yup > U Ypr. If a('y,,l) and a(y'y,) are sources we
r=1 r=1

define & : U Ynr = U Ynr arbitrarily. If a(y,;) is a saddle, by using
r=1 r=1

again that g is decreasing along the orbits of Vg, we have a(Yn1) = S, for

some j < n. Thus, a(y,,) = Sf’. Then, by the induction hypothesis, (1.4)

3 3
induces the definition of 4 from | J Yar 0 U v, If @(¥ns) and a(yn4)
r=1 r=1

are sources we define h:y,; — vy, arbitrarily. If a(vn4) and a(yn4) are
corresponding saddles, then, by the above argument and by the induction
hypothesis, h:%,4 = v,4 is alreaddy defined.

We notice that, taking care in the definition of 4 where it was arbitrari-
ly defined, by (2.1) and by the hypothesis on the corresponding distinguished
cycles, we get a well defined conjugacy

l

el (U Yir) > U (U 7],) between Vg and Vg’
=1 r=1 j=1 F=i

To extend this conjugacy to the whole manifold M one can now use
the classical Tubular Family Theory ([2]). This ends the proof of (2.4).

To finish the proof of Theorem A, we will use the proof of (24) and
some lemmas.

Let (p,q,7) be a saddle connection of a vector field X € X" (M), r >
such that &* U £ C 7. Choose B € p» C € & and T > 0 such that
X7(B) = C, and fix linearizations in neighbourhoods of p and q. lLet K >0
and k > 0 be the corresponding horizontal and vertical distortions of X.

Lemma 2.5. For each K € (eT}\q K, o K) there exist a positive C~
function T:M ~ R and points B € &, C € &', such that the vector field
X = X has the followmg properties:

1) X7(6) = N

2) the horizontal distortion of X, relative to the fixed linearizations and
to B, C, is exactly K;

3) X = X outside an arbitrarily thiner long flow box of X along 7,
from B to C;
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4) the identity of M is a topological equivalence between X and X.

Proof. It is enough to consider the case K € (eT}\q K,K). There is a unique
to € (0,7), such that Xp, ¢ AB) = C and that the horlzontal distortion of X,
relatively to B = B, C and the fixed linearizations, is e qK K
Let ¢:(-€,T+€) X (-35,38) »> U be a long flow box of X, such that
#(0,0) = B, ¢(T,0) = C, Do(t,5)°Z(t,s) = X(¢(2,5)), where Z(¢,s) = (1,0).
There is a C”™ positive function
B:(-e,T+€) X (-35,38) > R, such that

B(,s)=1 if |s|=>26, for all r € (-¢,T+e);
B(ts)—l if t<00r if t=2T, for all s € (-36,38);

ﬁ(t s)dt = T-tofor all s € (-8,5).

Let Z(¢,5) = B(,5)*Z(t,5) = (B(t,s), 0). We define

X(x) = Dé(¢ ™1 () Z (@~ (x)), if x € U, and
X(x) = X(x), if x € U.

It is obvious that X has the desired properties.

Remark 2.6. Consider a saddle connection (p’,q’y') of a vector field X’ &
ex (M), r = 2. With similar notations to the ones used for (p,q,v) above, if

)xp = Apslp = MpAg = Ags Mg = , then the number% does not depend

on the choices of the point B, and of the time 7 > 0,
(nB) = B, Xp(B) = C, h(C) = C’, X7(B’) = C’). By (1.4) the same is true

’

for the numberkT.

Lemma 2.7. Suppose that in (2.6) we have \, = Apr = Ag = Agr = -1 and’

My = u;,,: =My = #;I' = 2. If K’ < K, then, there exist a conjugacy h: y=> 7,

points B, C € v, and a positive C* function n:M - R, with the following

properties:

1)n = 1 outside an arbitrarily thiner long flow box of X, along 7,
from B to C;

2) if k and K are the distortions of X = n-X, relatzvely to B and C=

= XT(B) and k’ and K’ are the ones of X, relatively to B’ = h(B) and C’ =

kY o VK

= h(C), then s Rl

= 1. (h will be a conjugacy between X and X ’,' from

v to 7).
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Proof. Let h: ¥~ Y be a conjugacy between X and X’ such that h(B) =
=B, A(C) = C, Xp(B) = C and Xp(B") = C’ -
We will choose a new point B € Y and will define a new conjugacy

h:y = 7', between X and X’ puting h(B) = B’

K-
k
-5, K k’.

e’y =y, e255 =2 Thus, k = 3 k. Thatlsllcc e Lets——log?

By (2.6) we can choose B € ¥ and T > 0, such that B = X« B) and
C = Xp(B) are in the linearized neighbourhoods of p and g. Then, we get
k’
— = 1.
k

Consider s > 0, ¢ > 0, and define X,(B) = B and X,(C) = C. If k
and K are the distortions of X with respect to B and C, then

% =ek and K = e*S7'K.
We want that % 2K 2 1. Thus, to get this equalities it is enough to

>q

solve the following system:
=5+ 28 =0

K’
2s -t = log () <
s og(K) 0

s >0t >0, st T
By (2.6), one can choose T very large, and the left hand sides of the
two first equalities does not change. Then, the system has unique solution
(S0,0)-
To end the proof of (2.7) we mod}fy the vector field X as in (2.5),

using a C~ function § such that B(t,s)dt = T-(sq +ty), for all s €
()

€ (-8,5).
End of the proof of Theorem A.

Let n1,m1:M - R be positive C” functions, such that n; = 1 and n;=
=1 outside small linearized neighbourhoods of S; and Sj, and the eigenvalues
of DXl(S]) and DX;(S;) are -1 and 2, for] =1, .., where X, =n,- Vg
and X{ =n;- Vg’

Following the proof of (2.4) and applying (2.7) to each pair of
corresponding saddle connections. We get from X, and X two conjugated
vector fields X = n+ Vg and X’ = o°Vg’, where n,n":M - R are positive C~
functions. This, of course 1mp11es that Vg and Vg’ are topologically equivalent,
as desired.
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3. Proof of the remark. Let G be a graph of X e Xr(M), r.= 2. We can
assume that G is a type II generalized separatrix, whose saddles are S, ... » S,
and whose regular orbits are v, ..., v} with a(y;) = Si, w(7;) = Siv, 151, ... ,1,
Ste1 = 8. i

We can also assume that £¢* C v; and &* C yii,i=1,...,1 y0 = 7.

Let ¢; be a linearization of X in a neighbourhood of §;, and A; < 0 <
< i be the eigenvalues of DX(S)), i=1,...,L :

Take A; € &*, B; € &" such that ¢; (4;) = (OZ})’ ¢; (By) = (1,0),
an horizontal segment Z; D (0,1) and a vertical segment %; O (1,0). Consider
the Poincare transformation g,-:f,- - Zj.1, and define the function g (,y;) =

=500 = 500 if ;> 0, and 0) = Dg(®), i=1,...,15, = T s
; v

clear that z; is a continuous. function, whose image is contained in closed
interval [a;,b;] C (0, + ).

We define the Poincaré Transformation of G, f:(0,6] C £, - (0,e] C
C Z,, relative to Z,, in the usual way.

Consider the numbers r; = - 3’; >0and a=r ... r.

The proof of (1.5) is done showing that f(x) = ¢(x)x*, where ¢:(0,6]~
- R is a continuous function such that 0 < m < ¢ (x) < M, for all x €
€ (0,8] and for some m,M € R.

We can assume that a > 1, (that is, f is a contraction).

Now we will make estimatives for the time 7,(x), spent by the orbit
of x from f*(x) tofm*'(x), n = 0,12, ... .

Let (x1)p, € % and () € Z;, be the points where the orbit of x
crosses Z; and 2; for the first time after f™(x).

Let (#;), be the time spent by this orbit from (x;); to (¥;)n, and (5;)n
be the time from (¥;), to (x,-+1)n, i= AL G = V().

’ 1

Then we have #,(x) = E i + 1? s = 1=1 5 - log i 4

¥ lél (il -.
One can easily verify that
Civdn = Biea ((i-0n)* Oidn = g; (W) + @)y,
Thus, by induction, we get
G = Bt G Dn)* B2 @i-)) e 00D 0T T2 e

But there are numbers 0 < a < b such that ¢ < g(y) < b, for all
i=1, ..,/ and for all small y = 0.
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Then, al+ri-l+...+ (riC 1 e LRI [(xl)n]rl otvesTid g < (xi)n which lmphes

l .
that 7,,(x) < I & [ 2 T (5] log—+ 2 [—_ r’“l]
=1 Hi i=1 Mi

log (1—) + >: En-

Using that f(x) = ¢(x)*x%, 0<m <¢(x) <M, and that (x,), = f"(x),

n- n 1
we obtain mite+-re" Tl el o (x1)n. The number 3 (s;), is bounded as a
i=1
real function of (n,x) € NX (0,6]. Then, for any (n,x) € NX (0,6], we
1l
SRy
have T, (x) < A-K+a" log(m*~'x) where A € R and K = E —1-—rt—1
i=1 t

Analogdulsy, we get

T,(x) = A-Kd" log(M"‘ * x), where A—G_R, for all (n,x) € N X (0,8].

Now, let G’ be a graph of X’ € x"(M), r > 2, such that X and X’ are
conjugated by a homeomorphism 4, in neighbourhoods of G and G’

We consider for G’ similar notations to the ones stated for G.

We can assume that % is an orientation preserving homeomorphism such
that h(S;) = S7,i =1, .. , . Let 4] = h(4;) and B/ = h(B)),i=1, .., L.
Changing the linearization ¢;, if necessary, we can suppose that ¢;(4;) =
=(0,1) and ¢;(B) = (10),i=1, ..., L

Given x € (0,6] C Z,, we consider the point x’ € !, nearest to
h(x) in the orbit of A(x) by X . Then, using that h is a conjugacy, we get
lim (T,(x)-T;(x")) = 0, independent of the choice of x and, a fortiori,
N>+

of x’. " u
By (1 4) we have J)\i = )i+l ’ l = 1’ g% l’ “14-1 = Ml’l“ll-l»l = “‘1'
The ’ !
Cier, a=o' and, by the same calculatlons we made before we get:
= 1
e (x) A“K’ o™og(m™~1x"), A’ € R, and T’ n(x) = A=K e log(M™*1x),

-— Z 1 * e ¢ -
A’€ R, where K’ = 3 —_rl i
i=1 M
We claim that K = K,
In fact, from our estimatives on T,,(x) and TH(x’) we obtain
L

Th(x)-Ty(x") < B+ [K’ log(M’a 'x")-K log (m )] "
Ta(x)-Tp(x’) = B + [K’log (m’*~1x")K log (M°‘ 1x)]
B,B €R.

(@
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Suppose, by contradiction, that K ' £ K.
It is enough to consider only the case K-K > 0.
It is obvious that (i) is equivalent to

Tn(x)-Tn(x") < B + (K-K) [log iy

o8] o

To()-Th () > B+ (KK) [1og( T +log (-)] o

1 : 5
Then, 0 < (ﬂ,""1 <§—< (mﬁ)"“l, because o > 1, K-K > 0, and
(T (x)-Tp(x")) > 0.

We can rewrite the first of the inequalities (i) in the following form:
i B

Tu()-Th(x) <B+ [K’logM™* 'K logm®! + K’ 10g(——)+(K—K)10gx] a”

(i)

Using that K-K > 0 and x—is bounded, we see that the left hand side

t is incqu
Hlu ﬂ'}r"} 3{1 ends to -, when x - 0. This contradicts the fact that,
Tn(x) T,(x’) > 0, which proves our claim.

Recalling that N = )\,i
Mi 1 Mi +1
1 -NiZ1 -\
= e and K’ = = 1|
P [121( Mi L Mi )] M1 [21 G (#5 )]

from K = K’ we get u; = u;.
Starting the above argument at each i = 1, ... , I, we obtain M= g

and then A; = Aj, for each i = 1, ... , I. This and (1.7) finish the proof of
the Remark.
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