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Successive coefficients of univalent functions

Muauriso Alves

1. Introduction.

Let S be the class of functions
f@A=z+a+a® +... (zl<1)

analytic and univalent in the unit disc.
Let X denote the class of functions

gl ezt b+ b b flzla

that are univalent in A= {zeC, :|z!>1}. A problem which has attrac-
ted considerable attention is to estimate d, = [|a,,, | —|a, | R T
the difference of the moduli of successive coefficients of functions in S.
Goluzin [1] showed d, = 0(n'/*logn). Then in 1963 Hayman [2] settled
the order of growth problem by showing that d, < A, where A is an absolute
constant. Milin [3] found an alternate proof, simpler than Hayman’s
which led to the best bound known: d, < 4. 18. In 1966 M. S. Robertson
[5] has proved that the inequalities

8
n+1

~i6 e !an+1 l = !an-l ! E4-4/.  n=234..)
hold for all close-to-convex functions in |z | < 1. It is well known that
such a function is necessarily univalent in |z|<1.

In this paper we get an improvement of the Milin and M. S. Robertson
results.

2. Preliminary results.

We require the following inequality of Milin-Lebedev [3] and Grunsky
([4], p. 60).
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Lemma A. (Grunsky inequality). If ge X and 4, e C(k=1,2,...) then

© 2 00 ik 2
k = !
kgl k;l k

0

bkt’ A’l’
1

=

For an arbitrary sequénce of complex numbers {«,}¥, which gene-
rates a sequence {f,}5 by means of the expansion

1) i B, 2" = exp [i o z"]
n=0 k=1

we may obtain, for n=1,2,..., the following three inequalities.

Lemma B. (Milin-Lebedev). If we define
1 v 1 g kn—k4 1) g g 1B.|2
(1) 6H=n+1 exp[kz ﬂ Z |ak| Z,ﬁj|

for n=0,1, ... then

In particular,

; nt1 n+1 1
Z|ﬁi’25("+1)exp[ T ¥
e k=1

k=1

L il 1ol "szl [
1 §
n—+1 kgl % :l

Lemma C. If 0, (n=1,2,...) is defined by (1) then

| B Sexp[% AL l/k)].

k=1

Lemma D. If the right-hand side converges then

Linrsen|§ dar]
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3. Main result.

In this section we will prove the following theorem:

Theorem 1. Let feS. Then

12+3./2¢
—550+T_\/1)< !a"+1!_ Ila"_l! <660+

506 —3,/2¢
S il )

In particular,
— 550 < !a,,H l — !a,,_l ! <60, (n=234. " )

Proof.

The proof of theorem 1 will be given in four steps (a) — (d). In Step

(a) we apply Milin’s Method (cf. [3]) to obtain the power series about
oo for the functions

an P — 2z (z+1) g'(2)
il Ju e Blrm IS d I
iz gD—g0) " Z=t  g@—g)
where
1
g(z) = m,

(|z| > 1) belongs to T and f(&) (&]<1) is an arbitrary function in .
Step (b) derives a complicated representation for

(n—l) (an+l _tz an—l)

which leads to very economical estimates. Step (c) is devoted to deter-
mining an upper bound for the right-hand side of expression obtained
in Step (b). For this, we use the Grunsky inequality, Schwarz’s inequality,
Parseval’s formula and Milin’s Method. Finally, we obtain in Step (d)
the desired inequality using the well-known inequality | a,| <nforn=2,3
and the results obtained in Steps (a) — (c).

(a) Let us take an arbitrary function f (§)€ S, and let us form from it the
function g(z)e X:

(3.1) 92 =[fz"H]"4 lzl>1 (cf [4], . 12).
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Let by, (k, € =1,2,...) be the Grunsky coefficients of g(z), (cf. [4], p. 58).
If- we define

(32) GO Wb (| > h=12,..)
£=1
(3.3) ‘imb.s Y B0z (z]> 1, [t]> 1)

92— S
we obtain from ([4], (8), p. 58) that

o 4 i at)zk

34 99— a0 &

Thus oy = a,(t) and B, = B,(t) are related by the exponential relation (2.1).
Furthermore, by (3.4) and (3.3),

d 2 ait® D2 e ke
o ' g =1 "7 g0)-e0
and
g =0 2=t ey »
60 & v
i Bt)z7" + z( Y (-r) B,(t)z”'”)
r=0 r=1
t (i (—r)ﬂ,(t)zf'”)
f Bz — z rBz — Y r Bz
r=0 r=1
Also,
d 22 —¢? d d zZ—t
(37) d_z lOg m dz log(z st t) lOg w
= o gl kg ko (t)z™*
Thus we obtain from (3.5) and (3.7)
2z (z+0.g'(2) 0oy - By
3.8) g AdD 1—(z+1) k;1 k o, (t)z
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(b) Let us now select a value of ¢ on the circle |z|=r> 1, such that

(39) 90| = min |of2)| = —M_l(r_) lt|=r
where
(3.10) M(r) = max | F(s)],

Isl——

and let us form the function (1—¢*/z2) f'(1/z). According to the Cauchy
formula for the Taylor coefficients of this function, we shall have

G11) (14 Dy s — (1= Dy == (1 =22/ [/ L
28 Jizier Z

Noting that
f'(1/2) = 2% g'(2)/(9(2))*

we may rewrite Equation (3.11) thus:

(n+1)a,,+1—(n—1)a,, ltz_i [ g'(2) 22 _ 2 (1 g(t))
izl=r

2m 9(z) — g(t) g(z) —g(t) 9(2)
S 1 22—t dz
& Z—z.f (1/2) mg(t):'z ey
Noting still that
d SR kg - g'(2)

B YYD ) T A T g
and

4 2 i =ilog 22— 22 —t?

dz g(z) —g(t)  |dz 9(z) — g(t) | g(2) —g(1)’
we may transform the first terms of the integrand in Equation (3.12) in
the following way:

g'(2) 22—t (1 (t)> s by
g(2) — g(t) g(z) —g(t) g(2) dz g(z)—g(t)

_[ g'(2) (o 27 ] F2 Lt 2 @+_
g(2)—g(t) 22— | g(2)—g(t) g(z)  g(z)°

If we take this into account, and if we also use (3.6) and the Taylor series
expansions for |z|> 1 of the function 2z/g(z), namely
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3 ol ooy P
g(z) k;o s i

we may rewrite formula (3.12) as follows:

(n £ l)an+l 7 (" o l)an—ltz = (n i l)ﬂn an t(n = I)Bn—l
s < {[ gl | Ao 2z ] 22 . gl)
2mi f. 1= || 9@ —9g() 22— ] g(2) —g(t) 9(2)

,,{dz
T ("}

We shall write o, and B, instead a,(f) and B,(t). We obtain by (3.3) and
(3.8) that

= (n— 1)(an+l Wi tzan—l) e (n = l)ﬁ o t(n_ l)ﬁn—l

¢ % S ok ] B g0
TaEl [(”’) Z ) ] %ol il

=0

2 L s d

+ 90 (z+1) Z

0 B dz
i) "__
R Ji.1-, 2o

zk+l

Remark. We are allowed to replace the functions by suitable partial sums
of their power series expansions because the remainders do not give any
contribution to the values of the integrals.

And so we get

—(1=1) (@ys1—t2ay_) = — (n—1)B,—tln—1)B,_, +

. kak"zﬂg(t)dz
e by Y 2 s p 241 Ef )
_g@ S _J_ Z ak+l

2R Y\ jmr: 120 (Bt ¥l

00

+g(t) (z+1) "Zl T z _.L

lZm 1zl=r

= —(n—1)B,—tin—1)B,_, +
1

a'S ke 'SP B 90)
+*2? |z|=r(z+t)k§l zk+k1 jzo ;}i g(z)
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2mi Iz |=r

M i3 k kay _ Gy - B
a4 ; ( Z A+t i 2 K+ 2" j;o 2
Hence we obtain

—(n—1)(ay+1 — Fa_y) = — (n— 1), — tn — l)ﬂn—l
-1

1 o iy
(3.13) e jlz' '(Z+t) Z Zkfkl 3 B; 90)

jeoi 12! 9" 7

4(¢) " (k— l)ak_ﬁ e B adz
+ ( T ey z,.) 5 b

2mi o A R
(c) We now estimate (3.13).

The lemma A with A, =t"* and (3.2) show that

EEVI TR BEEE S7{15 R Tor NP L R SR S
k=1 k=1 |e=1 k=1 k Ells

because |t|=r> 1.
(I) It follows from (3.14), lemma C and the fact that

3 F g log(n + 1/2) 4+ ¢, where ¢ =0.57721.

k=1
is Euler’s constant, that

(3.15) (n=1)|Ba| < (n—De (1 —r2)"12n41/2)"12 <
<2 /a=1(-rin

because
e 2~ 0.7493083 < 0.75 = 3/4.

In the same ways we have
(B16) (n—=1)|t]| |Bu=y| <=1 (1 —r"2) V2 (n-1/2)"12
(II) Let

1 Ao ka1 By 9(0)
Ky =+— z+t K L
: 21[ lz1=r [( ) Z Zk+1] I:j;o ZJ] g(z)
ll.ét us determine a bound for K; by use of Schwa_rz’s inequality and
evaluate the resulting two integrals by Parseval’s formula, noting that,
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on the circle |z|=r, | g(t)/g(z) | < 1 (by virtue of Eq. (3.9)). Thus putting

z=re'%, we have
2 1 2n
d0 X 2— J‘
& 0

J 2n
1
K, |l<r|(=—
' i (27!J0.

| Rl | n=2 \1/2
=7 (2 Z elmpr g g )
k=1 Jj=0

ns il kak

n—2 ﬂ
T g o 4
k=1 Z

j=o 7

n—1 n—2 142
<r1 /7 (z PR |ﬂ,-|2)
k=1 j=0

Now, using lemma B, we obtain

AT SR b e e
[ K| /27 Y Ko |*(n—1)exp N 3 a1
Mt e = &
1 =
is k2 2
n—1 kgl |ak| })

If we apply the obvious inequality

n=1
xel ™ < 1, with x = ! Z k2| o lz,
e b g, ;

we find that
(3.17) | Ky | /2 P im=1)(1=r2)7 12 =¢2 (n_12)~ 112
= %\/?\/n—-l kil ) ot By 18

(IIT) Applying Schwarz’s inequality and then Parseval’s formula we see
that last term, call it K, g(t), in (3.13) is bounded by

| Kog(t)| < | g()| " [i | B;[2r2i (,.—2 &
i=o
A 1/2
+ 3 Rt ) |
‘ k=2

% @ 12
(3.18) S\//E‘J.g(f)\/n—lr" (Z |Bil* X klal? r‘”‘)
i=o k=1

Because f(s) is univalent in |s| <1 we have by the area theorem

2 172 f
d0>
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319 ¥ klaprz=t H L) P = . area {f(s): 5] si}
k=1 T T r
Islsé
< M(r)? =lg(r)|~?
by (3.9) and (3.10). From (3.19) we obtain

) 1/2

(3.20) (Z k| a; |? r‘“) lg()| < 1.
k=1

Furthermore, by lemma D and (3.14)

(3.21) Y |BiI* <exp [Zk|ak!2:|5(l—r"2)‘1.
=0 k=1

Hence, by (3.18) (3.20 and (3.21) we obtain

(3.22) e [ ESeM =02 = 1 P )1,

The estimates obtained in [(I), cf. (3.15) and (3.16)], [(II), cf. (3.17)] and
[(ITT) cf: 3.22] for the terms on the right-hand side of (3.13) show that

(323) (n—1)|ay,,—t*a,_, ! S‘i—\/ sl 1 2 IR ppe gl B A |
+ (%VE P V/Er") =1 (1= %) 1"

(d) Since the assertion follows from |a,|<2 and |a;|<3 in the cases
n=1 and n=2 respectively, we may assume that n>3 and choose

1 e [
r={1 — } . Since
n—1
02

PR : s gl
n—1

and (1-r7%)""2=_/n—1 it follows from (3.16) and (3.23) after mul-
tiplication by (n—1)~! r~2 that
< > r'2+%v/5r"‘3

1 2
(1 ‘n—_—1>an+1—(r ) >
3 1 »1%3 1
. 2n-—2<_ Tt il 21/2 il /51/2=
TVATH R 2( n—1)+4‘/_e ( 2(n—1)>JrV >

_6+7/2 12+3/2
- _

8n—1)

(3.24)




10 Mauriso Alves

Since |t|=r we deduce from (3.24)

(3.25) !an+l!_’an—l!><1 _ﬁ>lan+11_lan—l!

_(6+7/2¢) | (12+3./2¢) . (12 + 3,/ 2e)
e o oty Sn=1) > 5'50+_8(n—1)

In 'the opposite direction we use that
la,.y | < 1.066 (n+ 1)

and conclude from (3.24) that, for n >3,

(3.26) !an+1!—1an-1!s[l—(1—,111)]1%,,

to (6+7/2e)  (12+3,/2e)

4 8(n— 1)
2 (6+7/2¢) (12+3,/2¢)
< 1.066 (1 : n_1> + . 1)
506 —3,/2¢

Thus, from (3.25) and (3.26) we have proved theorem 1.
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