Order of cyclicity of the singular point of Lineard's polynomial vector fields

Carlos Zuppa

In this article, we give an estimate of the maximum number of limit cycles which appear from the singular point of

Theorem. Fix ce R*+1. Then No. = n. If Be K 1 is not zero, then

(1)
$$X_a = (f(x) - y)\frac{\partial}{\partial x} + x\frac{\partial}{\partial y}$$

where $a = (a_1, ..., a_d) \in \mathbb{R}^d$ and $f(x) = \sum_{i=1}^d a_i x^i$, under variations of the coefficients a_i . If d = 2n + 1 or d = 2n + 2, this number turns out to be equal do n.

We remark that it was conjectured in [2] that this is precisely the maximum number of limit cycles that X_a can have in the plane.

- 1. The origin is the only singularity of X_a . This singularity is an attractor if $a_1 < 0$ and a repellor if $a_1 > 0$. Therefore, if $a_1 \neq 0$, cycles can not appear from the origin under slight variation of a.
- 1.1 **Definition.** Let $a^* \in \mathbb{R}^d$. We shall say that the singularity of X_{a^*} has cyclicity of order N_{a^*} (N_{a^*} integer ≥ 0) if:
- a) it is possible to find numbers $\varepsilon_0 > 0$ and $\delta_0 > 0$, such that every X_a with a in the ε_0 -neighborhood of a^* cannot have more than N_{a*} limit cycles within the δ_0 -neighborhood of $0 \in \mathbb{R}^2$;
- b) for any choice of positive numbers $\varepsilon > \varepsilon_0$ and $\delta < \delta_0$, there exists a in the ε -neighborhood of a^* such that X_a has N_{a*} limit cycles within the δ -neighborhood of $0 \in \mathbb{R}^2$.

We shall see that, for $a \in \mathbb{R}^d$, the number N_a only depends on the coefficients a_i with i odd. Therefore we shall split polynomials into their odd and even parts. Let $\mathbb{R}^d = \mathbb{R}^{n+1} \oplus \mathbb{R}^{s+1}$ with coordinates $(b_0, \dots, b_n, c_0, \dots, c_s)$, where s = n - 1 if d = 2n + 1 and s = n if d = 2n + 2.

For $(b, c) \in \mathbb{R}^{n+1} \oplus \mathbb{R}^{s+1}$, we set

$$X_{(b,c)} = (g_b(x) + h_c(x) - y) \frac{\partial}{\partial x} + x \frac{\partial}{\partial y}$$

where $g_b(x) = \sum_{i=0}^n b_i x^{2i+1}$ and $h_c(x) = \sum_{j=0}^s c_j x^{2j+2}$.

1.2 **Theorem.** Fix $c \in \mathbb{R}^{s+1}$. Then $N_{(0,c)} = n$. If $b \in \mathbb{R}^{n+1}$ is not zero, then $N_{(b,c)} = m$, where b_m is the first nonzero coordinate of b.

2. Consider a C^{ω} singularity of vector field $(R^2, 0, X)$ where

$$X = X_1 \frac{\partial}{\partial x} + X_2 \frac{\partial}{\partial y}.$$

Going over to polar coordinates $\psi: S^1 \times \mathbb{R} \to \mathbb{R}^2$, $\psi(\alpha, r) = (r \cos \alpha, r \sin \alpha)$, the blowing-up of X is the C^{ω} vector field

$$\overline{X} = \varphi_1 \frac{\partial}{\partial \alpha} + r \varphi_2 \frac{\partial}{\partial r}$$

where

$$\varphi_1(\alpha, r) = \frac{1}{r^2} \left[-r \operatorname{sen} \alpha X_1 + r \cos \alpha X_2 \right]$$

$$\varphi_2(\alpha, r) = \frac{1}{r^2} \left[r \cos \alpha X_1 + r \operatorname{sen} \alpha X_2 \right].$$

Suppose that $\varphi_1(\alpha, 0) = 1 - a_1 \sec \alpha \cos \alpha \neq 0$ everywhere on $S^1 \times \{0\}$. Then $S^1 \times \{0\}$ is a cycle of \overline{X} and we can consider the associated Poincaré mapping $P_{\overline{X}} : \Sigma \to \{0\} \times \mathbb{R}$, where Σ is a neighborhood of r = 0 in $\{0\} \times \mathbb{R}$.

In order to calculate the coefficients of the Taylor expansion of $P_{\overline{X}}$, we use the Poincaré's method explained in [3]. We associate to \overline{X} the equation

$$\frac{dr}{d\alpha} = \frac{r\,\varphi_2}{\varphi_1}$$

which is defined in a neighborhood of $S^1 \times \{0\}$. The right hand side of (2) can be expanded in a series, arranged according to powers of r, $R_1 r + R_2 r^2 + ...$, where the R_k are periodic functions of α .

The solution $r' = r'(\alpha, r)$ of (2) satisfying the initial contidion r'(0, r) = r can be represented as a series

(3)
$$r' = v_1(\alpha)r + v_2(\alpha)r^2 + ...$$

and the associated Poincaré mapping of \overline{X} is

$$P_{\overline{X}}(r) = v_1(2\pi)r + v_2(2\pi)r^2 + \dots$$

By the initial condition imposed, we have $v_1(0) = 1$ and $v_k(0) = 0$ if $k \ge 2$. The coefficients v_k are determinated by the recursive system of differential equations:

(4)
$$\begin{cases} \frac{dv_1}{d\alpha} = v_1 R_1 \\ \frac{dv_2}{d\alpha} = v_2 R_1 + v_1^2 R_2 \\ \frac{dv_3}{d\alpha} = v_3 R_1 + 2v_1 v_2 R_2 + v_1^3 R^3. \end{cases}$$

So, in neighborhood of $S^1 \times \{0\}$, the cycles of \overline{X} correspond with the zeros of the function

$$F(r) = \sum_{n=1}^{\infty} w_n r^n$$

where $w_1 = v_1(2\pi) - 1$ and $w_n = v_n(2\pi)$ for $n \ge 2$. If \overline{X} depends analytically of a external parameter λ , then the coefficients w_n are also C^{ω} functions of λ .

Remark. Let $f: U \to S^1 \times \mathbb{R}$ be a C^{ω} diffeomorphism in a neighborhood of $S^1 \times \{0\}$ such that $f \mid S^1 \times \{0\} = id$, $f \mid (\{0\} \times \mathbb{R}) \cap U = id$ and set $\widetilde{X} = f_*(\overline{X})$. It is clear that the associated Poincaré's mappings $P_{\overline{X}}$ and $P_{\widetilde{X}}$ are equal. Therefore, in calculating the coefficients of the Taylor expansion of P, we can admit this type of coordinate change.

- 3. As in Bautin's work [1], the proof of the theorem depends essentially on the knowledge of all centers of the system (1).
- 3.1 **Proposition** [2]. For every $c \in \mathbb{R}^{s+1}$, the singularity of $X_{(0,c)}$ is of center type.

We shall see that the converse also holds.

3.2 **Proposition.** For $1 \le m \le n$, let $H_m \subset \mathbb{R}^{n+1}$ be the subspace defined by $b_0 = 0, \dots, b_{m-1} = 0$.

$$w_{2m+1} \mid H_m \oplus \mathbb{R}^{s+1} = b_m \int_0^{2\pi} \cos^{2m+2} \alpha \cdot d\alpha.$$

Proof. Fix $(b,c) \in H_m \oplus \mathbb{R}^{s+1}$, and write

(6)
$$X_{(b,c)} = X_{(0,c)} + Y_b$$

where $Y_b = g_b \cdot \frac{\partial}{\partial x}$. After blowing up, (6) becomes

$$\overline{X}_{(b,c)} = \overline{X}_{(0,c)} + \overline{Y}_b.$$

Since the singularity of $X_{(0,c)}$ is of center type, there exists a neighborhood U of $S^1 \times \{0\}$ and a C^{ω} diffeomorphism onto the image

$$\phi: U \to S^1 \times \mathbb{R}, \quad (\alpha, s) \mapsto (\alpha, s + s^2 \cdot \psi(\alpha, s))$$

with $\psi(0, s) \equiv 0$, such that

$$(\phi^{-1})_* \overline{X}_{(0,c)}(\alpha,s) = f(\alpha,s) \frac{\partial}{\partial \alpha}$$

with $f(\alpha, 0) \equiv 1$. Therefore

$$(\phi^{-1})_* \overline{X}_{(b,c)} = f \frac{\partial}{\partial \alpha} + (\phi^{-1})_* \overline{Y}_b.$$

Now, we shall investigate the form of $(\phi^{-1})_* \overline{Y}_b$. First we write

$$\overline{Y}_b(\alpha, r) = Q_1(\alpha, r) \frac{\partial}{\partial \alpha} + r \cdot Q_2(\alpha, r) \frac{\partial}{\partial r}$$

where

$$Q_1(\alpha, r) = -b_m r^{2m} \operatorname{sen} \alpha \cos^{2m+1} \alpha + r^{2m+1} \beta_1(\alpha, r)$$

$$Q_2(\alpha, r) = b_m r^{2m} \cos^{2(m+1)} \alpha + r^{2m+1} \beta_2(\alpha, r).$$

The diffeomorphism ϕ^{-1} must be of the form $\phi^{-1}(\alpha,r) = (\alpha,r+r^2\tilde{\psi}(\alpha,r))$, then

$$D\phi^{-1} = \begin{pmatrix} 1 & 0 \\ r^2 \widetilde{\psi}_{\alpha} & 1 + r \widetilde{\psi}_{r} \end{pmatrix}$$

where $\tilde{\psi}_{\alpha} = \frac{\partial \tilde{\psi}}{\partial \alpha}$ and $\tilde{\psi}_{r} = 2\tilde{\psi} + r \frac{\partial \tilde{\psi}}{\partial r}$. It follows that

$$(\phi^{-1})_* \overline{Y}_b = (Q_1 \circ \phi) \frac{\partial}{\partial \alpha} + \left[r^2 \tilde{\psi}_{\alpha} \cdot Q_1 + r(1 + r\tilde{\psi}_r) Q_2 \right] \circ \phi \frac{\partial}{\partial s}$$

with

$$(Q_1 \circ \phi)(\alpha, s) = -b_m s^{2m} \operatorname{sen} \alpha \cdot \cos^{2m+1} \alpha + s^{2m+1} \tilde{\beta}_1(\alpha, s)$$

and

$$[r^{2}\widetilde{\psi}_{\alpha}Q_{1} + r(1+r\widetilde{\psi}_{r})Q_{2}] \circ \phi(\alpha, s) = b_{m}s^{2m+1}\cos^{2m+2}\alpha + s^{2m+2}\widetilde{\beta}_{2}(\alpha, s).$$

Finally, we can write

$$(\phi^{-1})_* \overline{X}_{(b,c)}(\alpha,s) = \tilde{f}(\alpha,s) \frac{\partial}{\partial \alpha} + (b_m s^{2m+1} \cos^{2m+2} \alpha + s^{2m+2} \tilde{\beta}_2(\alpha,s)) \frac{\partial}{\partial s}$$

with $\tilde{f}(\alpha, 0) \equiv 1$. The associated equation (§2) of this vector field is

$$\frac{ds}{d\alpha} = b_m \cdot \cos^{2m+2} \alpha \cdot s^{2m+1} + R_{2m+2} \cdot s^{2m+2} + \dots$$

Since $v_1 \equiv 1$ and $R_1 = R_2 = ... = R_{2m} \equiv 0$, we have

$$\frac{dv_{2m+1}}{d\alpha} = b_m \cdot \cos^{2m+2} \alpha$$

and

$$w_{2m+1}(b,c) = b_m \int_0^{2\pi} \cos^{2m+2} \alpha \, d\alpha.$$

This finishes the proof of the proposition.

3.3 Corollary. The singularity of $X_{(b,c)}$ is of center type iff b=0.

Further, we know that $w_1((b,c)) = 0$ iff $b_0 = 0$ and $\frac{\partial w_1}{\partial b_0} \neq 0$ over $H_1 \oplus \mathbb{R}^{s+1}$. So we have

3.4 **Corollary.** Let $(b,c) \in H_m \oplus \mathbb{R}^{s+1}$, $1 \le m \le n$, and $I^m_{(b,c)}$ be the ideal of germs at (b,c) of C^ω functions generated by the coordinates b_i , $i=0,\ldots,m$. Then $I^m_{(b,c)}$ is also generated by the functions w_{2k+1} , $k=0,\ldots,m$.

§4. The proof of the theorem.

Let $(b, c) \in \mathbb{R}^{n+1} \oplus \mathbb{R}^{s+1}$. Choose $\delta > 0$ and a convex neighborhood V of $(\overline{b}, \overline{c})$ in $\mathbb{R}^{n+1} \oplus \mathbb{R}^{s+1}$ such that

(7)
$$F(r,(b,c)) = \sum_{k=1}^{\infty} w_k((b,c)) r^k$$

is convergent in $(-\delta, \delta) \times V$. We suppose first that $\overline{b} = 0$. Then, the set

$$h(r, (b, c)) = \sum_{k=2n+2}^{\infty} w_k((b, c)) r^k$$

is identically zero over $\{0\} \oplus \mathbb{R}^{s+1}$. By Corollary 3.4 we can write

$$h = r^{2n+2} \left(\sum_{k=0}^{n} h_k w_{2k+1} \right)$$

with the h_k , k = 0, ..., n, C^{ω} functions over $(-\delta, \delta) \times V$. Further, as $w_{2m} \equiv 0$ over $H_m \oplus R^{s+1}$ $(1 \le m \le n)$, we have

$$w_{2m} = \sum_{k=0}^{m-1} g_{mk} w_{2k+1}$$

with the $g_{m^k} \dot{C}^{\omega}$ functions over V. Now, (7) becomes

$$F(r, (b, c)) = r \left[\sum_{k=0}^{n} w_{2k+1} \psi_k r^{2k} \right]$$

where $\psi_k = 1 + r\tilde{\psi}_k$ and the $\tilde{\psi}_k$ are C^{ω} functions over $(-\delta, \delta) \times V$. Reducing perhaps δ and V, we can suppose that

$$\psi_k \ge 1/2$$
 on $(-\delta, \delta) \times V$ $(k = 0, ..., n)$

and we represent F in the form

$$F = r \left[\sum_{k=0}^{n} w_{2k+1} \, \xi_k \, r^{2k} \right]$$

where $\xi_k = \psi_k/\psi_1$.

We must look for positive zeros of the function

$$F_0 = \sum_{k=0}^n w_{2k+1} \, \xi_k \, r^{2k}.$$

Without loss we can suppose that

$$\xi_k \ge 1/2$$
 on $(-\delta, \delta) \times V$ $(k = 1, ..., n)$.

We have

$$\frac{\partial F_0}{\partial r} = \sum_{k=1}^n w_{2k+1} \left(2k \, \xi_k \, r^{2k-1} + r^{2k} \frac{\partial \xi_k}{\partial r} \right) =$$

$$= r \left(\sum_{k=1}^n w_{2k+1} \, \eta_k r^{2(k-1)} \right)$$

where $\eta_k = 2k \, \xi_k + r \frac{\partial \xi_k}{\partial r}$, k = 1, ..., n.

Now, on $(-\delta, \delta)$, the number of positive zeros of F_0 cannot exceed the number of positive zeros of the function

$$F_1 = \sum_{k=1}^n w_k \, \eta_k \, r^{2(k-1)}$$

by more than unity. Continuing this process a further step we obtain a function F_2 such that the number of positive zeros of F_1 cannot exceed the number of positive zeros of F_2 by more than unity. So, the number

of positive zeros of F_0 cannot exceed the number of positive zeros of F_2 by more than two.

This process stops at the n^{th} step when we obtain a function F_n which has no positive zeros. Therefore, for δ and V sufficiently small, F cannot have more than n positive zeros whitin $(0, \delta)$.

Now, we suppose $\overline{b} \neq 0$ and let m $(1 \le m \le n)$ be such that \overline{b}_m is the first non zero coordinate. Perhaps reducing δ and V, (7) becomes

$$F = r \left(\sum_{k=0}^{m-1} w_{2k+1} \psi_k r^{2k} + \alpha r^{2m} \right)$$

where $\psi_k = 1 + r\tilde{\psi}_k$ and αC° functions over $(-\delta, \delta) \times V$ and such that

$$\alpha(r,(b,c)) \neq 0$$
 if $(r,(b,c)) \in (-\delta,\delta) \times V$

and it follows easily that the process stops at the m^{th} step. This proves that our estimate satisfies (a) of (1.1). The rest of the proof follows easily from properties of the functions w_{2k+1} , by playing adequately with the coefficients b_i .

References

- [1] N. N. Bautin, On the number of limit cycles arising upon variation of coefficients from a position of equilibrium of the type of a focus or a center, Mat. Sb. N. S. 30 (72) (1952), 181-196.
- [2] A. Lins, W. de Melo and C. C. Pugh, On Lienard's Equation, Springer Lecture Notes 597 (1977), 335-347.
- [3] A. M. Lyapunov, *Stability of Motion*, Mathematics in Science And Engineering, vol. 30, Academic Press, New York/London, 1966.

IMPA
Estrada Dona Castorina 110
Jardim Botânico
Cep 22460 – Rio de Janeiro – RJ
Brasil