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Order of cyclicity of the singular point of Lineard’s polynomial
vector fields

Carlos Zuppa

In this article, we give an estimate of the maximum number of limit
cycles which appear from the singular point of

5, 0
1 = Py T bl 4
(1) Xa =NII—N ox + X o
d
where a=(a,,...,a;)e R and f(x)= Y ax, under variations of the

i=1
coefficients a;. If d=2n+ 1 or d=2n+ 2, this number turns out to be
equal do n. ‘ 3
We remark that it was conjectured in [2] that this is precisely the
maximum number of limit cycles that X, can have in the plane.

1. The origin is the only singularity of X,. This singularity is an
attractor if a; <0 and a repellor if a, > 0. Therefore, if a, # 0, cycles can
not appear from the origin under slight variation of a.

1.1 Definition. Let a* € R‘. We shall say that the singularity of X,, has
cyclicity of order N,, (N,, integer >0) if:

a) it is possible to find numbers ¢, >0 and J, > 0, such that every
X, with a in the g;-neighborhood of a* cannot have more than N, limit
cycles within the d,-neighborhood of 0e R?:;

b) for any choice of positive numbers ¢ > ¢, and 6 < §,, there exists
a in the e-neighborhood of a* such that X, has N,, limit cycles within
the d-neighborhood of 0e R2.

We shall see that, for a e R?, the number N, only depends on the
coefficients a; with i odd. Therefore we shall split polynomials into their
odd and even parts. Let R?=R"*! @ R**! with coordinates (b, ...,b,,
Cos...,Cs), where s=n—1 ifd=2n+1 ands=n if d=2n+2.
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For (b,c)e R""'@R**!, we set

0 0
Xp.o=@s(x) + h(x) — y)— + x —
: ox 70y
where gy(x) = Y b;x**! and h(x) = i ¢;x2*2,

© =0 j=0

1.2 Theorem. Fix ce R**'. Then N ,=n. If be R"*" is not zero, then
N.oy=m, where b,, is the first nonzero coordinate of b.

2. Consider a C® singularity of vector field (R?, 0, X) where

0 ¢
X = — + X, —.
4 Ox 6 2 ay
Going over to polar coordinates i : S* x R—R2, (o, )= (r cos a, r sen o),
the blowing-up of X is the C® vector field

A

- 0 )
X=<P16—a+"(025

where

(o, 7) =—12 [—rseno X, + rcosa X,]
r

Q,(a,r) = —]2 [rcoso X, + rsena X,].
I

Suppose that ¢,(x,0) =1 — a, sen o cos a # 0 everywhere on S* x {0}.
Then S! x {0} is a cycle of X and we can consider the associated Poincaré
mapping Pyz:Z — {0} x R, where X is a neighborhood of r =0 in {0} x R.

In order to calculate the coefficients of the Taylor expansion of Py,
we use the Poincaré’s method explained in [3]. We associate to X the
equation :

) dr _ro,

do o

which is defined in a neighborhood of S* x {0}. The right hand side of
(2) can be expanded in a series, arranged according to powers of
r, Ryr+ R,r* + ..., where the R, are periodic functions of a.

The solution r = r'(a, r) of-(2) satisfying the initial contidion
r'(0,r)=r can be represented as a series

(3) ¥ =glor 4 vlyr® + ...

o
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and the associated Poincaré mapping of X is
Pz(r) = v,2m)r + v,Q2m)r? + ...

By the initial condition imposed, we have v,(0)=1 and 1(0)=0
if k>2. The coefficients v, are determinated by the recursive system of
differential equations:

[ dv
2 oMl
4) q a0y =v,R; + 2R,
do
“‘1;;_3 = USRI + 2U1U2 R2 + U? R3.

-

So, in neighborhood of S' x {0}, the cycles of X correspond with the
zeros of the function

where w; = v,(2n)—1 and w, = v,(2n) for n>2. If X depends analytically
of a external parameter 4, then the coefficients w, are also C* functions of A.

Remark. Let f:U—S' x R be a C* diffeomorphism in a neighborhood
of S'x {0} such that f18'x {0} =id, f]({0} x R)nU=id and set
X = f«(X). It is clear that the associated Poincaré’s mappings Py and
P3 are equal. Therefore, in calculating the coefficients of the Taylor expan-
sion of P, we can admit this type of coordinate change.

3. As in Bautin’s work [1], the proof of the theorem depends essen-
tially on the knowledge of all centers of the system (1).

3.1 Proposition [2]. For every c € R**!, the singularity of X q_., is of center
type.

We shall see that the converse also holds.

3.2 Proposition. For 1 <m<n, let H,<R"*' be the subspace defined
by by=0,....b,,_,=0.

Then

2n
Wons1 | Hp@® RTL = b,,,f cos™*2 o - do.

0.
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Proof. Fix (b,c)e H,,® R°**!, and write
(6) X(b.c) &= X(O.c) o ¥y

where Y, =g, - % After blowing up, (6) becomes

Y(b.c) = X(O,r) 1 7b

Since the singularity of X, is of center type, there exists a neighbor-
hood U of S' x {0} and a C diffeomorphism onto the image

d:U->S'"' xR, (o5s)—(as+s% Y(a,s)
with (0, s) =0, such that

(6 X000, 5) = (%, 3)%

with f(a,0)= 1. Therefore

0

@ XKoo= f 5+ (6 T

Now, we shall investigate the form of (¢ '), Y,. First we write

) = Qi) =+ 7 Qalor) o

where

Qi(,r) = —b,, r*senacos*™ o + r2™*1 B (a,r)
Q.(a9) = by oot e rAT Lol r);

The diffeomorphism ¢~ ! must be of the form ¢~ (o, )= (o, r + r2P(a,, 1)),

then
Da _<r2|//a 1+ry,
where l/L = e and |/7, — 2|/; + r%. It follows that
Jda or
P 0 = ~ 0
@ D Yo=(Q10 d))&_a vl v 0 bl o )0, 1o ¢ e
with
Q1 0B)(at,s) = —bp,s*™sena - cos?™ Lo + s2"+1 B (a, 5)
and

[rzl./‘;aQI a5 r(] +“/7r)Q2] o ¢(a’ S) e bm32m+1 gy " g + . i ﬁZ(a’ S)'

e
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Finally, we can write

(6™ Xl 8) = flo, S)é% + (i e Th s Al S))Q

0s

with f(oc, 0)= 1. The associated equation (§2) of this vector field is

é _ bm' C052m+2(1 g 52m+1 o R2m+2 /i 52m+2 S

do
Since v;=1 and R, =R,=...=R,,,=0, we have

dv2m+l e bm p COS2m+2 o
do

and

2n
Woms 1(b, €) = bmJ cos®™*2 o do.
0

This finishes the proof of the proposition.

3.3 Corollary. The singularity of X .., is of center type iff b=0.

ow,

Further, we know that w,((b,c))=0 iff b,=0 and b
0

H, ® R°*'. So we have

# 0 over

3.4 Corollary. Let (b,c)eH,®R°*', 1<m<n, and I}, , be the ideal
of germs at (b, ¢) of C® functions generated by the coordinates b;, i=0, ..., m.
Then I, ., is also generated by the functions wyy,,, k=0,...,m.

§4. The proof of the theorem.

Let (b,c)e R"*'@® R**!. Choose >0 and a convex neighborhood
V of (b,c) in R**!' @ R**! such that

o0

(7) : F(r’ (b’ C)) = Z wk((b, C)) rk

k=1
is convergent in (—J,08) x V. We suppose first that b= 0. Then, the set

o0

h(r’ (b’ C)) T Z Wk((b’ C)) rk

k=2n+2
is identically zero over {0} @ R**!. By Corollary 3.4 we can write

h = "2"”(2 th2k+l)
k

=0
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with the hy, k=0,...,n, C° functions over (—9d, 8) x V. Further, as
wm=0 over H,®R**! (1 <m<n), we have
m=1
Womi= Z Imk Wak+1
k=0

with the g, C® functions over V. Now, (7) becomes

F(r,(b,c)) =r l: Z Wak+1 'pk"“]
k=0
where =1 +rt;k and the l/;,\. are C® functions over (—4,9) x V.,
Reducing perhaps 6 and V, we can suppose that
Yp>1/2 on (=6,0)xV (k=0,...,n)

and we represent F in the form

F= V[i W2k+lékr2k:|
k=0
where & = Y /y,.

We must look for positive zeros of the function
Ko = i Waky g &1k,
k=0
Without loss we can suppose that
&=1/2 on (=8,8)xV (k=1,...,n).
We have

Lo _ 2 W2k+l<2k Erikil +i‘2kai> =
k=1

k
or or
n
51 r(Z W2k+1’7k"2(k_“>
k=1

where nk=2kék+r%, k=21 .
r

Now, on (—9,d), the number of positive zeros of F, cannot exceed
the number of positive zeros of the function

e Z Wy 1, r2% D)
k=1
by more than unity. Continuing this process a further step we obtain
a function F, such that the number of positive zeros of F, cannot exceed
the number of positive zeros of F, by more than unity. So, the number

=

s g
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of positive zeros of F, cannot exceed the number of positive zeros of
F, by more than two.

This process stops at the n step when we obtain a function F, which
has no positive zeros. Therefore, for ¢ and V' sufficiently small, F cannot
have more than n positive zeros whitin (0, ).

Now, we suppose b+#0 and let m (1 <m <n) be such that b, is the
first non zero coordinate. Perhaps reducing ¢ and V, (7) becomes

m—1
E = ].( 2 Wy l//l\ ’,21\ Dy I.Zm)

k=0
where , = 1 + I'KZIA and 2 C° functions over (—0,0) x V' and such that
ar, (b, e)) 0% if (7, (b, e (=0.0) XV

and it follows easily that the process stops at the m™ step. This proves
that our estimate satisfies (a) of (1.1). The rest of the proof follows easily
from properties of the functions w,,,,, by playing adequately with the
coefficients b;.
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