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On rigidity of isometric immersions with constant mean
curvature

J. A. Delgado

Except when explicitly stated M and N will denote connected smooth
Riemannian manifolds of dimensions n and n + 1, respectively. Further-
more we will suppose that N is a complete simply-connected manifold of
mnon-zero constant sectional curvature.

Let x:M— N be an isometric immersion. We will say that x is
rigid if given any other isometric immersion X : M —» N there exists an
isometry T: N— N such that x= T, x.

The goal of this paper is to give a simple proof of the following
result.

Theorem. — Let. x : M — N be an isometric immersion between connected
smooth Riemannian manifolds of dimensions n and n+ 1 respectively. As-
sume that N is a complete simply-connected manifold with constant curva-
ture C#0. If n>3 and x has non-zero constant mean curvature then x
is rigid.

Research partially supported by Conselho Nacional de Desenvolvi-
mento Cientifico e Tecnolégico (CNPq) — Brazil.

Remark 1. This theorem was first proved by Matsuyama in [5]. But
he does not corretly apply Lemma 2.9 of [4]. However when this paper
was ready he informed me how it is possible to correct his paper. On the
other hand, the approach here is independent and simpler then Matusya-
ma’s.

Relilal'k 2. This paper is also a correction of the proof that we presented
in [2].

We will now describe some examples to show that the conditions
of the theorem are actually necessary.
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Remark 3. Let §"={(x;,...,X,+,)eR""!: x}+ ...+ x2,, =1 be the
Euclidean sphere of dimension n. Let oy, f;: R— S3 be curves given by

ay(t) = (bycosayt, by sen at, b, cos a,t, b, sen a,t),
and

Bu(t) = (—b, sen ayt, by cos a;t, —b, sen ayt, b, cos a,t),

where a it a ot i b? s db g ol and
P g5 e~ RN G T V. T TN W B SR i =—ﬁ/ é
; 2 2 Y 2 /B
/H?Y4+H
b2 =%, Then xy: R2— S* defined by
g
v

Xg(u, t) = cos u ay(t) + sen u By(t)

is an isometric immersion from R? to S with constant mean curvature H.
By varing H we obtain a family of isometric immersion from R? to S3
which shows that the theorem is not true when M has dimension two
and the ambient space is the Euclidean sphere.

In what follows we consider §* = S* as the set {(x;, x5, X3, X4, X5) € $*;
xs=0}. Let yg: R? x (v¢,¢)—> S* ¢ <n/2, be an immersion given by

Yu(u, t,v) = exp,, (u,t)v e = cos v xy(u, t) + senve,

where exp is the exponential map of $* and e =(0,0,0,0, 1). By taking
R? x (—¢,¢) with the induced metric we obtain an isometric immersion

yg With mean curvature H =

. Since the induced metric does not
cosv :

depend on H, we have a counter-example for the theorem when the mean
curvature is not constant or zero and the ambient space is the Euclidean
sphere. :

Remark 4. Let H"={(x;, ..., X,+;)e R"™"!; —x}+ ... +x2,,=—1} be
the Hyperbolic space. Let R? be the plane with the metrics I = du? + dv?
and I, = du? + (cosh?v + senh?v)dv?, respectively. Then .

x: (R2, 1) —» H?

TR Radsirod¥ o1 o loffug72 geaitpe_atilinonl, g Biip gane?:
(u,v)n—»(V +r Vm,\/ Sk \/1_+—r2, 0 r,rse o -

and
y: (RZ, 11)_>H3

(u, v) — (coshu coshv, senhu, coshv, cosu senhv, senu senhv)
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and zero respectively. From R. Tribuzzi [8] we have that there exist non
trivial deformations of x and y respectively. And so the theorem is not
true when M has dimension two and the ambient manifold is the hyper-
bolic space. If the ambient manifold N is the hyperbolic space and has
dimension 4, we can use the above non trivial deformations of x and y,
respectively, and an analogous construction to the one we have made
in Remark 3, to obtain a counter-example of the theorem, in the case that
the mean curvature is not constant or zero.

I am grateful to M. P. do Carmo and B. Lawson for helpful conver-
sations and suggestions.

are isometric immersions with constant mean curvature H =

1. Notation and a sketch of the proof of the theorem.

We will denote V and V the covariant derivatives of M and N, res-
pectively. Let x: M — N be an isometric immersion. We will identify, for
each pe M, T,M with dx,(T,M) and we will write

V¥ 2705 Yig JIEG Y&
where X, Y are tangent fields to M and ¢ is a normal field to M. It is well
known that, for every pe M, II induces a symmetric bilinear form II, on

T,M. This form is called the second fundamental form of x and its trace
is known as the mean curvature H of the isometric immersion x.

Sketch of the proof of the theorem: Let n, be the kernel of the second funda-
mental form II,, that is, ’

n,= {ve T,M; II(v,w) =0 for all we .M}

Assume that v=dim m, 1s constant and greater than zero on an opgn
set U = M. It is well known that through every p e U there passes a totally
geodesic submanifold M, = M such that x(M ) 1s also a totally geodesic
submanifold of N. Let y:(—¢, &)= M, be a geodesic with 20)=geM,.
Let N,M, be the normal bundle of M, along y defined by

NM, = {ve T,yM, te(—¢¢), and (v,w) =0, for all we T, ,M,}.

Let L denote the orthogonal projection on N,M,; define

A: NM, > NM,
X - (VxY)h it
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and
S: N,M, > N.M,
X o (Vyd), (22)

where Yis an extension of y’ and ¢ is a normal field to M. It can be shown
(see Lemma 1) that

i(trA’)= —tr 42 — (n—v)C (1.3)
dt
d
E(detA)z —tr A(det 4 + C), (1.4)
dH
— = —trS A, il
i S (.35)
and that
2
%=CH+2WSA2, (1.6)

where C is the constant sectional curvature of N.

Now we assume that there is an open set U < M where v = dim i,
is constant and greater than n—3. We then have three possibilities:
))n=v,ii)) n=v+1, and (iii) n=v + 2. i) is not possible because H # 0
and from (1.3), (1.5), H#0 and C # 0, it follows that ii) is not possible
either. From a linear algebra argument and (1.3) we can show that

det A = % and thus tr A=0. In the case C # 0, the computation of the eigen-

values of 4 leads us to a contradiction of (iii) with both (1.3) and tr A = 0.
Then from the classical Beez's theorem [1] we can conclude that x is
rigid.

2. Auxiliary lemmas

We begin by mentioning some facts on the index of the relative
nullity which we will need in the proof of the auxiliary lemmas. Let
x: M — N be an isometric immersion. A vector ve T,M is called a relative
nullity vector for x at p if I (v, w)=0 for all we T,M, and the space ",
of the nullity relative vectors is known as the nullity relative space at p.
The dimension of the nullity relative space m, is called the index of the

relative nullity of x at p. The proof of the following proposition can be
found in [3].
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Proposition. Let U = M be an open subset on which the index of the relative
nullity of x is constant. Then the distribution 7t of the relative nullity spaces
is integrable and its integral submanifolds are totally geodesic. Furthermore,
if 7: (—¢,6)> M is a geodesic on the integral submanifold M., then  is
parallel along 7.

In what follows U = M is an open set of M, where the index of the
relative nullity of x is a constant v > 0. Let M, be an integral submanifold
of the distribution 7 that passes through pe U. Let y: (—¢,8)—> M 3 be a
geodesic with y(0)=pe M,. Let N .M, be defined by

NM,={ve T, M: te(—¢ge), (v,wy=0 for all we T,(,M,)}.

Then we can define 4 and S by (1.1) and (1.2) respectively. It is easy to
see that A and S are operators on N.M,, and if H denotes the mean cur-
vature along y then H =rS.

Lemma 1. Let x: M — N be an isometric immersion. Let y, A, S, H be as
defined above. Then we have

i)%n‘A= —tr A> — (n—v)C,
LolaH

— = —trS A,
11) o r

2

iii) ‘;t'f = CH +2ir S 4%,

iv) %(dﬂ/“) = —trA(det A+ C), if n—v =2;

Proof. 1) Let X be a vector field in N.M » and Y an extension of y” which is
tangent to the integral submanifolds of n. Then

(VyA)X = VyAX — A(VyX)) = (VyVyY — Vo, xY)'
where | means the orthogonal projection on N,.M »- By using the cur-
vature tensor R of M, we have

(VyA)X = (R(Y, X)Y+ VxVy Y + Viy Y — Vv, xY)h
Since the integral submanifold M, is a totally geodesic submanifold of

N, we have
R(Y,X)Y= —-CX,

where C is the sectional curvature of N. On the other hand if Z is a vector
field in N M, we have

VAV Y. Z) = XKV Y. Z) — (VY. ViZ).

p°
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Since Yis-a extension which is tangent to the 'inxegrail submanifolds of ©
and Y(y(t))=y'(t) for all te(—¢,¢), we get

Vel 'Z) =0
along 7. And so
(2.1) (VyA)X = — A%X — CX.

Therefore, by taking the trace of VyA4, we obtain i).

ii) Let ¢ be a normal field to M. Let X and Y be as in the proof of i).
Then we have

(V¥S)X = VySX — S(Vy X)) = (VyVx¢ — Vi 4O

where L means the orthogonal projection on N,M,. By using the cur-

vature tensor R of N, it follows that
(VyS)X = (R(Y, X)¢ + VxVyé + V[Y X — Vvyxf)

Since R(Y, X)é=0 and Y is tangent to the integral submanifolds of =,
we get

(ViS)X = —(Vg,v&)* = —(SA)X.

Then, by taking the trace of VS, we obtain ii).
iii) From ii) we have

2
X R P o (d—SA+sdA>

dr? dt d de
Then we use (2.1) to get
d*H

7 =218 A7) + CtrS = 2tr(S A%) + C H.

iv) Let {e;, e,} be an orthonormal basis of N M, at y(t,). From (2.1)
we obtain

J Y (A%ey, ), {Aey, e,
L det A, = — det iy s i
dt € " o v <<A el N e2> <Ae2’ e2> t=tg

i 4 <<Ae11e1>’ <A26’2,6’1>
(Aey,ez), <A292,32>

At t=t, we can write
A%e; = (Aey, e, )Ae; + (Aey,e;)Ae,,
A%e, = (Aey,e,)Ae; + {Aey, ;) Ae, .

) = tnAlEs )
t=tg

and
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Therefore

LS A |~ det A

7 et A=y = —<Adey, ez |- det Alto) — (Ae;, e,) It=t0 det A(to)

—ctr A(to) = —tr Alt,) (det Alt,) + Q).

Since t, is arbitrary we have that

%detA = —tr A(det A + C).

The proof of the following lemma is a simple computation with
matrices.

Lemma 2. Let B and C be 2 x 2 matrices over R. If B is symmetric and
tr BC =0, then,

tr BC2 = —tr Bdet C.

3. Proof of the theorem.

We will first show that the subset U = M where dim g =2 n=2 has
no interior points. In fact if U has an interior point then there is an open
set V= U where one of three prossibilities takes place:

1) x(V) is totally geodesic
ii) dimn, = n—1 for all pe ¥,
iii) dim n, = n—2 for all peV.

The first case i) does not occur because H 5 0. Suppose that ii) occurs.
From Lemma 1-ii) and the fact that H is a non-zero constant we obtain
that tr A = 0. We then use the Lemma 1-i) to show that tr 4 = 0 contradicts
the hypothesis on sectional curvature of the ambient space. In what fo-
llows we will show that iii) is not possible. In fact, from Lemma 1-iii) and
the fact that H is a constant, we have

tr SA? =%H.

By using Lemma 2, we obtain

H det A = trS-detA=%H.



18 J. A. Delgado

Since H #0, it follows that
(3.1) det A = % ;

But from Lemma 1-iv) we have that
(3.2) tr4 =0

Now we use (3.1) and (3.2) to conclude that the eigenvalues of 4 at pe V

are + /—%ifC<Oand = /% if C>0. But from Lemma 1-i) and

(3.2) we obtain that tr A2 = —2C at pe V. Therefore iii) cannot occur,
that is, U has no interior points.

Now we use the following result (cf. [6] vol V, pg. 244) and an argu-
ment of continuity to conclude the proof of the theorem.

Let x: M — N be an isometric immersion. If the dimension of the comple-
ment of n, in T,M is greater then two for every pe M, then x is rigid.
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