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Uniqueness in the Cauchy Problem for first order operator
with C* coefficients

Jorge Hounie* and Joaquim Tavares

1. Introduction.

The main purpose of this paper is to extend certain known results on
uniqueneness on the Cauchy problem for first order linear differential
operators with smooth coefficients to the case of C* coefficients. We shall
consider an operator

N

; 0
1.1 L= J(x) — e
(1.1) j;C()axijC(x)
whose coefficients ¢/(x), 0 <j < N, are complex valued C* functions in an
open subset Q of RY, N >2. We denote by

Wy
Ly = Ccl—
3 =y 0x;
the principal part of L and assume that
(12) Ly does not vanish in Q

Let X be a C? hypersurface in Q, pe X and consider a regular real
valued C? function ¢, such that in a neighborhood U of p, UN X = {¢(x) =
= ¢(p)}. We shall assume that ¥ is non-characteristic, i.e.

(1.3) L #0 in Enb

We recall that L has property (P) if: for all x, € Q and every complex
number z such that Re(zL,)(xo) # 0, there is a neighborhood U of Xq such
that Im(zL,) does not change direction along any characteristic curve
of Re(zL,) contained in U.

In this article we prove

(*) This author was partially supported by CNPq|
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Theorem 1.1. Assume that L is given by (1.1) and satisfies (1.2) and (P) and
that Z is given by (1.1) ¢(x) =0 and satisfies (1.3). Assume that k>7 and
consider a non-negative integer { such that k >2¢ + 5. Then every point
p of X has a neighborhood U such that for all ue DU) such that

supp u < {¢(x) =0} and Lu=0 in U

it follows that u=0 in U.

Here D,(U) denotes the space of distributions of order ¢, i.e. the
dual of C4(U) with its usual topology. When the coefficients of L are smooth
there is no restriction in the size of ¢. Since, locally, every distribution
has finite order, Theorem 1.1 generalizes the results of [2].

As in [2], the proof of Theorem 1.1 is divided into two parts described
as “outside” and “inside the critical set”. No new ideas are involved in the
proof of the former so we omit details. On the other hand, the second
part in [2] used the Weierstrass-Malgrange preparation theorem and an
analogous treatment in the C* case would yield a weaker result due to
the loss of regularity in the coefficients of the Weierstrass polynomials

([1], [5] and [6]).

Instead, we use a different method based on the existence of p-flat
solutions (see appendix for precise statements). It is used to prove uni-
queness in the same way as Cauchy-Kovalevska’s theorem is used to prove
Holgrem’s theorem. This unifies the techniques inside and outside the
critical set, randering p-flat solutions as the main tool to treat uniqueness
in the Cauchy problem once it is known for C! solutions.

In the C*® case, this approach simplifies the proof and sets it in a
more “classical” framework.

2. Inside the critical set.

In this section L is given by (1.1) and (1.2) but may not verify (P).

Let’s write X = ReL,, Y= ImL,. Denote by U* the subset of U

where X and Y are linearly dependent, whenever U < Q is open. For p, g
in U* we write
p~q in U*

if and only if there exists a curve y : [a, b] = U of class C* such that y(a) = p,
y(b) = q and X and Y are parallel to y'(s) along y(s). The equivalence classes
will be denoted [ p]/U. These equivalence classes are endowed with a natural
topology which makes the projection U — U/~ continuous. Each equiva-
lence class is homeomorphic to one of the following:
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i) R;

ii) R* = [0, o0);

iii) [0, 1];

iv) §' = {zeC, |z| = 1};
v) {0}.

This partition of U* determined by L, is invariant under multiplication
by non-vanishing complex factors of class C*. On this subject we refer to [4].

Let p belong to a non-characteristic surface £ = Q. Consider a connec-
ted neighborhood U of p which is divided by X into two components U+
and U~ and denote by I'*(U) the union of all the equivalence classes
[4]/U, g€ U, such that either

a) [q]/U is homeomorphic to R

or
b) [g)/U is homeomorphic to R* and whenever [q]JU n U* # ¢,
[¢1/U A T~ is compact.

Theorem 2.1. Let L be given by (1.1) and satisfying (1.2), let £ be a non-
-characteristic hypersurface of class C? and let ¢ be a non-negative integer.
If k>2¢ + 3 every point peX has a neighborhood U such that for every
u€Dy(U), supp ucT(UNU™ and Lu=0 implies u=0. ‘

Proof. Since we may replace X by another hypersurface of class C® which
passes through p and leaves supp u on one side, there is no restriction
in assuming that ¥ is smooth. By appropriate choice of the coordinates
and division by a non-vanishing factor of class C* we may assume that

a 7t 7 a %
bl ; Ji )
L at+lj=§1b(x,t) 3 ;+dxt) (xtel,

U={(x1 |x|<1 |t] <1}
Ut ={(x,)eU, t > 0}
2 ={x0), |x|<1)},

where the coefficients of L are of class C*, the functions bi(x, t) are real
and n+1=N. Set

r(x) = sup {t >0, i (b(x, 1))? > O}

=
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(if for a given x all the functions b’(x, ¢) vanish for all 0 < ¢ < 1, then r(x)=0).
The function r(x) is lower semicontinuous and

THUNU™ = {(x,)e U, t >rx)).

Let’s reason by contradiction and assume that there is a point g = (xo, t,)

g(xo) >ty and

(2.1 {(x,t)esupp u,g(x) > t} is compact

Consider the change of variables s=t—g(x),y=x. The expression of
L in the new variables is L = h(y)Q, with
2 iy 0 i
Q0= 7 + ih~1(y) g 5y + ¢,

where

Bons) = Bous+g0), ho) = 1= § 26 %0

and the expression of ¢ is irrelevant.
By theorem A.1, the backwards Cauchy problem

(22) Logp=y> s<0>
¢ ls=0 =0

has a ¢+ 1—p—flat solution of class C°*! where

9()')+s
p(y, )= J (be(y V2R 1(y) |ds| |h 10,)J (b, t))z)”zdt|

g(y)

Note that the transpose ‘Q of Q and —Q have the same principal part.

If we take y smooth and supp y < {s <0}, it follows recursively from -
(2.2) that all derivatives of ¢ up to order ¢ + 1 vanish for s =0. Thus we _

may extend ¢ by zero for s> 0. the extension is a C“*! function that
we keep calling ¢. It follows from (2.1) that supp u N {s < 0} is compact so

(23) u,"Q¢> = <Qu, > = <0,¢> =0

. On the other hand, p(y, s) vanishes on supp u N {s <0}. Since supp
u = T*(U), thus, 'Q¢p — ¥ vanishes of order £+ 1 on supp u and in par-
ticular we have

(2.4) u,'Q¢) = (u, ¥
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Combining (2.3) and (2.4) we conclude that u vanishes for s <0. This
contradicts the fact that g = (yo, 5o) = (xo, to — g(xo)), 5o <0, belongs to
supp u.

Remarks. Since Theorem 2.1 is valid for a general first order operator of
principal type, we believe that it may prove useful in other situations.
Heuristically, this theorem says that in the study of uniqueness in the
Cauchy problem for such an operator, one needs only care about the
orbits of L, of dimensions >2, for once it is known that the support
of the solution u is contained in the union of the one-dimensional orbits,
u must vanish.

It is natural to ask wether the condition k > 2¢ + 3 may be relaxed
to k> ¢ + 1. This is an open question. An analogous comment can be
made on Theorem 1.1.

3. Proof of Theorem 1.1.

As in the proof of theorem 2.1 we may assume that

n

0 : 0
— 1 b-l 2% 43
L % + i j=§ : (x, 1) o + c(x, t), (x,t)e U

U = {x thelx] <1, |2] < 13

and define
) = sup {t: 5 (bj(x, 0)? > 6}.
<t<1 e

Set V = {(x, 1) e U, t <r(x)}. If we show that suppu N V = & we will be able
to apply theorem 2.1 to conclude that u=0 in U. Assume by contradiction
that there is a point g=(x,, to) in supp u N V. Using condition (P) we may
find a local diffeomorphism y(x) in a neighborhood of x,, such that y(x,)=0
and the expression in the coordinates|(y, t) is

0 0 ’

=— —ib(y,t) =— + &y, 0, |t 1, 0
L= = 0,0 32+ St 1] < 13| <

and furthermore, b(y, ;
of g and the definition of V that there exist ¢, > t, such that b(0,t,)> 0

~ (the (y, t) — coordinates of g are (0, t,)). Since u vanishes for t < 0, we may

modify arbitrarily. the coefficients of L for, say, t < —1/2 and we may
assume that b(y, t) > 0 for t < —1/2. Consider a smooth function f( 7).
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Y'=(? ...,y"), with: compact support ‘contained in {|y'| <1} and set
v=<u, f>. Then ve D{(y',1), |y*|<1, [y| <1} and satisfies

v

i (1YL
at+lb(y,t)ay—1+c(y,t)v=0 [t| <1, |y|<é

where 2, ..., y" are kept fixed. By Proposition 3.1 v is C! in a neighbor-
hood of y' =0, —1 <t <t,. Then the results of [7] apply to prove that
v vanishes in a neighborhood of y! =0, t = to. Since f is arbitrary we con-
clude that u vanishes in a neighborhood of . This is a contradiciction.

In the next proposition we consider an operator in two variables

()]
Pl ; 0 1
(31) L—E'*'lb(yl,t)ﬁ“f‘(f(y,t)

defined in an open subset Q of R, with b real and b, c of class C*,

Proposition 3.1. Ler L be given by (3.1) and assume that it satisfies (P).
If for every x, each component of {t;(x,t)eQ, b(x,t) =0} is compact and
k>2¢+S5, then, if ue DAQ) and Lu = 0, it follows that ue C*(Q).

~ The proof is a straightforward modification of the methods of §3
of [3] and is left to the reader. The main step of the proof is the cons-
truction of a parametrix K so that KL = Identify + R and the kernel
distribution of R is given by a C¢ function. Essentialy, K is a Fourier in-
egral operator with complex phase. Both amplitude and phase functions
are taken to be ¢+ 1—p—flat solutions with £+ 1 continuous deriva-
tives of suitable equations.

A. Appendix.
We shall consider approximate solutions of the Cauchy problem

Ay ML LR t)g—;l + b, D + ¢, 8) = £(% t, )
¢ i=1 i
u(x, ') = ug(x)

Here the functions a;, 1 =1,...,n, b and ¢, are complex valued, with m
continuous derivatives. They are defined for (x,t) in Q x (=T, T) where
Q< R" is open and T> 0. We shall consider the function

plx, t,t) =

t
f (| adx, s) [})12ds
% :
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Definition A.1./4 function u(x, t, t’)rof class C?, p>1 is said to be a global
{-p-flat solution of (A.1) if

1) u(x,t,t') is defined for all x in Q, t,¢ in (—T; T);
i) u(x, t,t)=ug(x,t) for all x in Q, —T<t<T
iii) for all r+ s+ |o|<min(p— 1, ¢) the function

Lotx, &, O]+ 114D D3, Difu, — f(x,t,u))

is continuous.

Theorem A.1. If m>p+ ¢+ 1 there exist global {-p-flat solutions of
(A.1) of class CP.

The proof of Theorem A.1 follows from straightforward modifications
of the results of [3].
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