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Second order elliptic operators with non smooth characteristics
and the uniqueness of the Cauchy Problem

C. Zuily (*)

The uniqueness of the Cauchy problem for elliptic operators has been
very much investigated. See [3], [5], [9], [11] ... In all these works the
complex characteristics afe supposed to be of constant multiplicity or
smooth functions. On the other hand A. PIis [6] has constructed an elliptic
fourth-order operator P in three variables with analytic coefficients (and
non smooth characteristic roots) and a function ae C *(R3) such that
P + a fails to have the uniqueness property (see [1] for more general non
uniqueness theorems). Howewer very few works are devoted to the case
of non smooth roots (see [4], [10]). We consider here second order elliptic
equations in two variables and we prove a result which implies that every
such operator with analytic principal part has the uniqueness property
for every bounded lower order terms. Our result improves those of [10]
by a different proof based on Carleman estimates.

More precisely let us consider in a neighborhood V of the origin in
R?, the elliptic differential operator

(1) P =D} + 2bD.D, 4+ cD?> 4+ aD, + BD, + y

and let us put

2) Ax, t) = (b* — ¢) (x, t).

We can state the

Theorem 1. I:et P be defined by (1) where b,ce C° (V) and o, B,y€ [*(V).
Let us suppose that the function t — A(0, t) has, for t = 0, a zero of finite order.

Then there exists a neighborhood W of the origin in which every ue C*(V),
such that Pu=0 in V and u,., =0, vanishes.

Corollary 2. Let P be a second order elliptic differential operator, in a neigh-
borhood V_of a point x,€ R? with analytic principal part and bounded

(*) Partially supported by the CNPq (Brasil) while visiting the Universidade Federal de
Pernambuco.
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lower order terms. Let S= {xe V:d(x)= d(x,)! a C* hypersurface near
Xo- Then there exists a neighborhood W of the origin such that every ue C*
satisfying

Pu=0inV

{u =0 in {xeV:p(x) < P(x,)!

vanishes in W.

Let us note that this result cannot be extended to fourth order elliptic
operator in R? according with the following example of PIi§
Peid 20 .+ 70 1L
for which there exists a € C* (R?) such that P + a fails to have the uniqueness
property.

Proof of Theorem 1.
Step 1. It is sufficient to prove theorem 1 assuming that
3) A(x,t) = t°A(x,1), £€ N, A(0,0) # 0.

We use an argument of [8] (see also [7]) slightly modified to take account
of the fact that A may take complex values. Let us suppose Theorem 1
true under (3). By the Malgrange — Weierstrass theorem we can write
for |[x|<rand0<t<T

A(x, t) = a(x, t) {t" - zk: ayx) t"_’}
i=1

with a(0,0) # 0, af0)=0.

We know (see [8]) that there exists k open sets o, ..., 0, inicluded
in ]—r,r[, whose union is dense, such that in each o ;» Ala has exactly j
distinct roots which can be represented by j C* functions p,(x), ..., p;(x).
Let u be a solution of Pu= 0 such that u,,., = 0. Suppose suppu N] —r,
r[ x ] 0,T[+# <;then there exist j and a connected component V of one

o; such that suppu n V x 0, T'[ # . Shrinking V we can assume that
(4) For every open set Wc V, suppu n Wx 0, T[ # &.
Let us write in V

A - % T ap

— 0= [[t—pAx)* [I @—pdx)

a =1 F=p+1

where p;, ..., p, are the non real roots and p,.,, ..., p; the real roots.
Let xo € V be such that Im p,(x,) # 0. There exists x,€ V; = V such that

§
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Im p,(x)#0for xe V,:nowin V; x J0, T[, t— p,(x)#0. We look at the
second root p, in V;. If Im p, =0 then p, is real in V1, if not we shrink
Vi to V; where Im p, # 0 so that t — p,(x) # 0 in ¥, etc... until p,. We are
now in the following situation: there exists an open set V< Vsuch that
for (x,)e V'x ]0, T[
A(x’ t) o b(x9 t) i n (t S pl’(x))a(
el

where J < {1,2, ...,j}, the roots p, are real and b does not vanish. For
simplicity we will take J = {1,2, ..., q} and will suppose that in ¥ we have

P1(X) <... < p,x). Note that by (4), supp unV x 10, T[ # ¢. For xe V
we define

Po(x) = 0, pAx) = sup (0, inf(T, pAx)), 1 < ¢ <gq, Pg+1(x) =T
and

A, = lUx eV x 0T [ Bx) = = figs Db 5o q.
Let {o = Min {{ :supp u n A, # ¢}
a) Suppose there exists (xo,t,)€ A, Nsupp u with to = pe(xo).
We perform the following change of coordinates: X' = x — xo, ' =t — Peo(X).
In these coordinates, near origin A = t*A with A(0,0)# 0, and the new

function i vanishes for t' < 0. By hypothesis u = 0 near (xo, ty) which is a
contradiction.

b) Suppose suppu N Apy N {t= Peo(x)} = . We perform the same
change of coordinates as before with x, the mid point of V. The
sete {(x,1) V' x 0, T[ t=p,(x)} is transformed in {(x, 1), ¢ =0, x| <7},
Let &, = Min {¢ : {Graphe of t' — ¢ = (—¢/r?) x'2} N A, nsuppii # 0}. By
hypothesis &, > 0. We take (x, 1) € A, M suppii such that 1, = (—¢o/r?)
xo® + & Near this point the operator P has simple roots since A is diffe-
rent from zero and the support of u is from one side of the parabola
t'=(—¢/r?) x> + &,. We conclude that i vanishes near (x,, ty) which is a
contradiction.

Step 2. Theorem 1 is true under the assumption (3).

Since the result is well known for ¢ =0, let us suppose that £ > 1. Let
P=07+2b0,0,+c0%+ad,+pd, +y. Following [2] we make near the
origin the singular change of coordinates

X=x,t=(0—X>T, 6>0 small.
It is easy to see that P transforms to an elliptic operator P such that

(6—X2P=A 024200~ X*)Boy 07+ C0— X222+ f 8rtald— XDWv+h
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where f,g,he [* and A,B,C are C* functions of (X, T) such that

(‘5) A is real, A(0,0) =1, Im B(0,0) # 0
g (B> — AC)(X, T) = (6 — X?f *2 T* D(X, T), D(0,0) 0.

Writing for simplicity (x, ) instead of (X, T), it follows that we have
S 2\p (7 2 ¢i2 =1 0
(6) (O0—x)P=A-PPy+o0—+(6—x*)(B+yt )J—+ 4
ot Ox
where a, f,7, A€ [* and

Pi= g+ 6= 2+ (-1 G—xtyreine Ly

1/2
Here b= g so that Im b(0,0)#0 and c= g . We prove now a Car-

leman estimate for P;.

Proposition 3. There exist positive constants C, v,, Ty, r such that for
Y = Yo and every u€ C* near the origin such that supp u < {(x, ) :0<t<T,,
| x| <r} we have

) y”t"y_‘uﬂz+%Ht‘y(5—x2)6xuﬂz+% e~ eu|P? < C||t~Pulf?
where || ||> is the I? norm.

Proof. Let us put u= t'v. It follows that
t7’Piu=Piv+yt lo=Xv+ W
where

®) X =0,+(0-x%b,0,; by=Reb+(—1Y(6—x>f">Rec
Y=p" ' +i(6—x*)b,0,; b, =Imb+(—1Y (6 — x> 2 Im .

Now

9) |t Piu|? = || Xo|? + || Yo|[2 + 2Re (X, Yo)
It is easy to see that

(10) 2Re (@, yt™10) = 7 ||t~ o|?

(11) |2Re((6—x?) b0, yt~1v)| < cy|lt= 0|2

(i12), 2Re((6—x?)b,0,0, i(6—x*)b,0,0) = 0
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On the other hand
~ 2Re(0w, i(6—x?)by0,v) =

13
( ) = — <U’ 1(5 —x2) %5,‘1)) =+ (U, i ax[(é_xz) bZ:IatU)

Since b,(0,0) # 0 we can write: .

1/= — (2220 45— x)by0) = = (9024, 1) 4 y (PB4, 1,
b2 b2 b2

It follows that for every ¢> 0
14 Y[ =el| B + e[l ol> + ey (e~ 0> + ||~ 0] )
By (8) we have
2/ = (v, i 0:[(6—x*)b,]Xv) — (v, i 0.[(6 — x*)b,] (6 — x?)b;00) = 3/ + 4/
Since a=0,[(6—x*)b,]€L" it is easy to see that

|3/ = &| Xol|* + c.lo]?

Now
ab,

4/ = — <b—2 v, i(5—x2)bzaxv>

and by the same argument which we used for 1/ we get
14/ <o W+ c[| 7202
It follows that

(15) |2/ < el Xo[* + || Yo|[?) + cif| 20|

Using (9) ... (15) it is easy to see that for k and T; ! big enough
(16) Aol + | Xo |2 + | Yo > < e 77Psul?

Now by (8)

a7 [lool* +[|G=x)a0| < || Xo|* + || o|[* + y*]| 1o ?

From (16) and (17) we deduce (7).

Proposition 4. | There exist positive constants C, Yo, To, r such that y >y,
and every u C* near the origin such that

suppu {(x,t) :0<t<T,,

x|=r}
we have

g Pl < C||6—x2 Pul?
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Before we give the proof of Proposition 4, let us remark that (18) implies
by a classical argument uniqueness of the Cauchy Problem for (§ —x?)P
and then for the original operator P.

Proof of Proposition 4. If u is flat on ¢t =0 it follows that P,u is C* and
flat on t=0. By Proposition 3, applied twice, we can write

(19) LRl &l M@)o + || 07 0w P
< oy || 7 Pau||® < || £77P Pou|®
By (6)
(20) | £77P1Pou||2 < C{||t~"(6—x*)Pu|* + | t7700]]* +
+ |@=x*"70w | + ||t 26— XD |2 + || 0|7

The inequality (18) then follows from (19) and (20) taking y and T; !
big enough.
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