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Some results on local growth of two-parameter Lévy processes

Maria E. Vares

\ Summary

In this article we consider some problems on local growth of 2-pa-
rameter Lévy processes, i.e., processes with independent and stationary
increments, indexed by [0, + oc) x [0, +oc ). The results are for the upper
growth of these processes, at a fixed “time” Zo!

0. Introduction. In this article we consider some problems on local growth
of two-parameter Lévy processes, i.e., processes with stationary and in-
dependent increments, and indexed by R34 {(s,1):5>0, > 0!. At this
stage we only attempt to study upper growth, and at a fixed “time” 255

Section 1 contains the basic definitions and a short summary of
preliminary results concerning the construction of such processes. More
details can be found in [5] or [6].

In Section 2, we present the two-parameter analogue of Khinchin’s
theorem. The behavior at the origin is different from that at a point z,
away from the axes. The basic idea for the proofs is to use twice the clas-
sical inequality of Skorohod; firstly for D[0, 1] — valued random vectors,
and then for usual real-valued random variables.

Section 3 contains and “integral test” for some quite general situations.

1. Preliminaries.

Here we consider processes that are indexed by Rii= {(s;1) 1520,
t >0}, and constitute a two-parameter analogue of processes with sta-
tionary and independent increments. More precisely, we work with
stochastic processes (X.:ze R2%), defined on some probability space
(Q, %,P), and such that:
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34 Maria E. Vares

(@) X;0=Xo,=0 for all s>0, t>0.

(b) If A=[(s,5] x (t, ]S RZ, set X(d)=X,.,— X, ,— X, ,+ X, ,. Then,
for A as above and z, € R%, we have law of X(4) = law of X(4 + z,).
(Here A+zo={u+2z,:ueA})

() If n>1 and 4,,..., A, are rectangles as above, and disjoint, then
X(Ay), ..., X(A,) are independent random variables.

Remark. If we were to take [0, s,) x [0, z,) as parameter set, the modifica-
tion would be completely obvious (so> 0,1, > 0).

The question of existence and characterization of such processes is
answered in an article by Straf [5]. For the sake of completeness we give
a brief summary of what it will be needed here from his results. But before
doing this, we introduce some notation.

Definition 1.1. The following orderings on R? are used:if z = (s, t), 2/ = (s, ')
in rectangular coordinates, we set

2 sy Zindfinishshin £ ¢
7 2 i A TSGR Sl
z=g2 If s>UsE =<l qnd
gy 2 feali, oS> ik b

Also, set Qfz) = SR R RV Y, i

Definition 1.2. Let &J # E < R2. Following the notation of Straf, a func-
tion f: E— R is called a lamp function on E (limit along monotone paths)
if, for any sequence (z,), in E, z,— z € E monotonically according to some
<, implies the existence of lim f(z,) in R. When E = R3 we simply say

n— o
that f is a lamp function. We say that / 1s continuous from above if,
for each z and z,—z with z,,, <, z, (all n> 1), we have f(z,)- f(2)
as n— oo.

\

Clearly, if f is a lamp function and continuous from above, then
for each zoe R such that Qz,)# &, we must have
L{zy)= lim f(z) exists and Lz Y= 9z)
z—>20

zeQi(zo)

(=1,..,4

~(d=1), and let ¢ denote its characteristic function.
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Definition 1.3. Set

D[0, 1)* = {functions that are lamp on [0, 1] and continuous
from above, restricted to [0, 1)?}

D = D(R%) = {f :R% > R| f is a lamp function and continuous
from above}

D,={feD|f is zero on the axes}.

If the functions take values in some other metric space V, instead of
R, we write D([0,1)%, V), D(R%, V) and Dy(R%, V), respectively.

Straf defines, on D[0, 1)%, an analogue of Skorohod topology on
D[0, 1]. With this topology D[0,1)? can be made into a complete and
separable metric space. Then, using the classical theory of convergence
in distribution, and starting by a result of Wichura [7] — multiparameter
analogue of Donsker’s theorem — Straf has shown:

Theorem 1.1 (Straf). Let F be an infinitely divisible distribution on R?

Then, it is possible to define a stochastic process X = (X, :zeR%)
verifying (a), (b) and (c) above, and continuous in probability, such that
¢s..= @", where @, , denotes the characteristic function of X, , (5, t > 0).

Moreover, X can be constructed with paths in Dy(R%, R%).D

Conversely, if (X :ze R3%) verifies (a), (b) and (c), and is continuous
in probability, we have that law of X, ,= law of X, ;. Thus, since (X Y50
is a l-parameter process with stationary and independent increments, the
characteristic function of X, , is of the above form. In particular X could
be assumed to have paths is D,.

Definition 1.4. By a 2-parameter Lévy process we mean a stochastic
process as described in Theorem 1.1.

For other characterizations of D[0, 1)?, as well as more details on
these preliminaries, the reader might consult Straf [5].

The Lévy system formula and Lévy decomposition can be found in
[6], where other problems related to these processes are studied.

1

The uniqueness in law is obvious.
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2. An analogue of Khinchin’s theorem on local growth.

Let X =(X, :zeR2%) be a two-parameter Lévy process, with values
in R. Without loss of generality we assume X to be defined on some com-
plete probability space (Q, #, P), and to have paths in D,. We may as well
assume Z = P — completion of o(X.:zeR%).

Notations.

(1) For ze R4, % denotes the P—completion of a(X, : 1 <, 2) relatively
to %, where o(X, : 1 <, z) denotes the ¢ — field generated by X, 1 <, =

R If z=(s,1), Z=(s,t) in R%, we write z<,z when s<s and r <.
In this case, (z,z'] denotes the set {t:z<;71<,z}.

(3) Let (Af)s.. = Li(s, 1) — Els, t) — D(s, 1) + L'ds, 1)
il () = [§—wt) Ff 8=l

for s>0, t>0 and feD.

Let’s first consider local growth at z, = 0. (Here 0 denotes the origin
(0,0).)

Let g : R3 — [0, +00) be such that g=0 on the axes, g > 0 other-
wise, and such that z <, z'=g(z) < g(Z), for all z, 2 € R%. We want to study
| X.|/g(z) as z—0 (0 <, z). Since the law of X, depends on (s, t) only
through st, it is natural to take g(s, t) = f (st), where f : [0, + 00) — [0, + o0)
is a nondecreasing function with f(0)=0 and f(x)> 0 for x> 0.

Remark 2.1. It is clear that, for each z,

O e B e e el B

2tyz< gzt s>0,t>0

In fact, more general 0-1 laws hold for the filtration (Z .).. Consequently,
there exist constants ¢, <c, in [0, +o0], such that

|- X
lim sup - 5l = ¢, as. and
el0 0<s,t<eg f(St)
; | Xl
lim sup = ¢, as.,

210 .oeB, J(s1)

where B;= {ls.1): 0 <5 t<1, st <&}
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Theorem 2.1. Let f be a function as above.

(A) @) 1f (*) Tim PIX, 1| > 2f()] < 1/2, and

3 aP[1 X, bt Spd e Se,

n<1
then ¢, < + oc.

W) If Y nP[1Xoop1|>f27")] = +oo,

n=1
then ¢, > 0.
(B) Writing in terms of an “integral test”, we have:

(Y If §¢7 [logt| P[IX, | > f(®)]dt < +o0,
then ¢, < + oo.

(11)" If the integral in (i) is equal to + oo, then ¢, > 0.

Proof. (i) Let’s assume condition (*) and that
Y nP[ Xp 1] > f@)] < +o0

n>1
fqr some ae[1/2,1). In what follows n, k,j will always be in R R
Smce. P X il Z(d ] = FIIX 2.0 | > f(@**9)], we have:

Z P[! Xu".uf! >f(ak+j)] = Z(n— I)P[,' Xa". 1 | >f(an)] < +o00.

k.j=1 n
By Borel-Cantelli, it follows that
P[| X .us| > f(d**7) for infinitely many pairs (k] = 0,

: 3 KXo ot |
ie, lim sup il <1 as. .
n-ow k+jzn f(a )

Let B(k,j)=[d",a""') x [@’,a’!). Next we show there exists some
finite constant A such that

@1) P[ sup !X.—Xu ,i|>Af(a*)) for infinitely many (k,j)]=0.

zeB(k, j)
But
P[ Sup !Xz — Xu"'.uf! o L2 f(ak+j)]
zeB(k, j)
=Pl sup | X(ahs] x (el al)| = 7 f(d ] +
(s, t) e B(k, j)

. P[ sup !Xs.af g Xal‘ﬂj! =43 f(ak+j):|

ak<s<gk+1



38 Maria E. Vares

(2.2) +P[ sup |Xa"'.r 5 Xu".all 2t 3f(ak+j)]

1
ai<t<qit!

<Pl spn | X 5 7vf(ak+j)]

z < (ak,a))

4 PLwp | Xo| > 3 @] + P Lsup | X | > 3 10
s<ak t<al

since ae[1/2,1) and X has stationary increments.

Let’s start by the first term of this sum, since the others are just as in
1-parameter situation.

The idea is to use Skorohod’s inequality, as mentioned in the intro-
duction.

Here D[0, 1] denotes, as usually, the Skorohod space of functions
on [0, 1] that are rigth-continuous on [0, 1) and with left limits on (0, 1].
B’ is the Borel o-field for the Skorohod topology, i.e., the o-field generated
by the coordinate maps.

We use the classical result (See, e.g., [3]):

Lemma 2.1. (Skorohod) Let Y,, ..., Y, be independent random vectors de-
fined on some (', %', P) and with values in (E, &), where E is a vector space
and & is a o-field on E. Let p : E — R be a function such that p(x + y) < p(x) +
+ p(y) for all x,y€ E. Assume that p(Y;+ ... + Yi), p(—(Y;+ ... + Yi)) are
o(Y, :j<u<k) — measurable, for all 1 <j<k<n. Let S;=Y,+ ...+ Y,
l<k<n. '

For each a>0, b>0

P[p(S,)> a]
b] <
P[liﬁn AR Y o min P [p(S,—S,) < b]
1<k<n
provided 0 < min P [p(S,—S,) < b].

1<k<n
Let Y, =(X,,:0<t=<1), for each s >0; then Y,:(Q, #,P)—
— (D[0, 1], B') is measurable. Moreover

@) 8= Yo v Mosiole: 7% fem X 7 Yoor . @Fe independent. if

0<s,<...<s,, and the distribution of Y,,,— Y, on B’ is that of Y,,
for each s,h=0.
(b) If 5,15, Y, (w)— Y(w) pointwise on [0,1] (each ).

So || Y,|| < lim || Y, ||, where ||- || is the sup norm in D[0,1].

Applying the lemma, with p(x) = || x]|, to

2n

YsO = Z (YkZ_"so e )/(i‘_l)Z"”so)’

k=1
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and using (b) we get that [sup || Y;|| > a+b]e # and

s<sqo
Pl Y, || > a]
P | Y,|| >a+b] < 2
Lol e o =

for each s, >0 (Convention: RHS = + oo if the denominator is zero).
Let k>1, j>1 be fixed. Arguing as above, with Y,= (X, , :t < a’),
and || - ||=sup norm on D[0,a’], we find that

Pl:supk] Xls 7f(a"+j)jl =P [sup | .|| > 7f(a"+f)]

t<al

PO Y| > 3 £ )
= T=sup P I[> /(@]

Using Skorohod’s lemma again (now, for R-valued random variables),
we get

PELX, sF82 P
— sup P [ X;..| > 2f(a**)]

PG> 47@ )] <~

and
Gkt P[] Xoai| > f(a**)]
P [” Ya"' H - 3f(a )] = T sup_ P [[ Xa’i_tl > 2f(ak+j)]
Thus, =

P[ sup |X.|>H(@)] < ;PO Xpcos| >F(d"*)], where

2 < (ak,al)
1 1
Y - sup P[| X, |> 2/ (@] i P[| X, | > 2f (@]
i «sae/ 1—=sup P[| X, .| > 2f(&**9)]

t<aj

provided we don’t have zero in the denominator; ¢, j= +co otherwise.
From (*), there exists ¢ > 0 and 0 < < 1/2 such that P[| X, ,| >
>2f(t)] <6 for all O<t<e.
If n is large enough so that a" <, it is easy to seethat k + j > n implies

] DT
Ck’jS(l—a) <1——1—jg> .

Consequently,

3 F o ; | X.|> 7 f(@*)] < + .
k, j 4

zsl(a N
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For the other two terms in (2.2) the estimates are immediate:

PLsup | Xo| > 3 f@* ] S 1o P K| > S]],

s<ak

if k+j > n, n large enough, and similarly for the third term in (2.2).
From this, (2.2), and Borel-Cantelli, (2.1) follows with 4 = 13. Since
f is nondecreasing we can indeed say that

(2.3) c; < 14. (Collecting above facts.)

If we assume (5t~ '|logt| P[| X, |> f(t)] dt < +o0, it is easily
seen that Z n P[|Xz ||> f(@")] < +oo for “a” in a dense subset of

O, 1). Also jot 'P[| X,.,|>f(®)]dt < +00, and since this implies

P[] X, 1 lmdif (t)] —0 as t |0, (*) also holds. So, (i) follows from the proof
of (i).
Next we prove (ii). We assume

2 nP[|X,., |>f@2™]= +wo or equivalently,

n>1
g_:i P[I ‘Xiz—kvz-j |> f(z_k-j)] = =100
Let

A= swp_ |X@*Ls]x @74 > 2 f@9)
2ekgl<s=2ok
ISt ]

The A, ; are independent; since P[| X, ,|>a]<16P I:] Xowinl > 16]
we find,

@)  PA=P[_ sp |X|> s

z<y(2-K-1,2-i-1)

e ol b FER TR %f(z—k_j)]

1 A
21—6P[|X2—k_2-j,>f(2 L ")],
implying that ) P(A4, j)=+oo. In view of their indépendence, Borel-
k,j :
-Cantelli implies: 1 = P(4, ; for infinitely many pairs (k, j)) =

=P(ﬂ UAkj\

n=1 k+j=n
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But, from (2.4)
Pz 3 RSk, L Y e e

= + oo, for each n > 1.

P (ﬂ Y A’“’) L

jZn
From this, and because f is nondecreasing, one can easily see that

(2.5) c; = lim sup IXs"l>_l_ (as.)
: 3 Lgl0" D<s.t5¢ f(St) T 64

For (ii) we can argue as follows: it is easy to see that for2 ¥ <s <2 7%+,
;i e b

P(A, ;) = 1—16P[[ Xg.l > f(st)]. Thus,

Pa g =ria) (| S ([ LRix>

t
R(k. j) R(k, j)

> f(st)] dsdt,

Whetey RIE D=2 52 % Y ula 22 i )
So, the assumption in (ii) implies ) P(4, ;)= +co. We conclude

k=2n
J2ms

the proof as above.

Corollary 2.1. Let X =(X. : z€ R%) be strictly stable with index o, 0 <o <2.
Suppose that X is not a deterministic drift, and let f be as in Theorem 2.1, Then:

follogt| [f(6)] *dt < + 00 (= + o0) implies
PR | X |

1 I

lim —— =1lim sup
510,110 f(St) el0 (s.t)e B, .f(St)

=0 (= + oo resp.),

with probability one.

Proof. Tt follows easily from (2.3) and (2.5), since law of X, =
=law of (st)'”* X, , and because there exists a apd AO<a< A< o)
such that

ax' 4 =Pl Xy, 1) 2 0] el Y for x 2.1
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Remark 2.2. (a) Let X be as in previous corollary. Thus,

fim (st)”'"|logst|™®| X, ,| = lim sup (st)" ' | log st |™®| X, , |
510.110 g0 | B :

is equal to 0 or +oo as., according as b is > or < 2/a.

Let’s recall that for 1-parameter processes the change (from 0 to + o0)
happens at b= 1/a. From the proof of Theorem 2.1, it is clear that the
difference is due to what happens “near the axes”. For “non tangential
lim sup” the situation would be just as in the 1-parameter case. More
precisely, in the situation of Theorem 2.1 we set

C(r) = {(s,)e(0,11*:r < t/s < 1/r}, for 0 < r < 1. Then

1
Jt_lP[lX“]>f(t)]dt(§)+oo=>lim sup J&Lﬁlé’f)a.s.

e=0 s.oecw  S(st)

0 St sis
(b) For strictly stable R-valued processes, one can prove the one-sided
version of Corollary 2.1 (as in the case of one parameter): assume X stric-
tly stable (index «) and v(0, + 00) > 0, where v = Lévy measure of X. Then

)(&t s, t

lim  sup = lim sup
el0ho=sase JIBD) . 510 s.nes, f(st)

according as

is 0 or +0 as,

> 27 fQ WV} <+w or = +ow.

n=1

For the proof we only consider the divergent part, since the other follows
from Corollary 2.1. By our assumption, 0 <b= P[X,>0] for all 0 <, z.
Also, as x— +o00, x*P[X, ; > x]—a, for some a>0. Let’s assume
Zn27"[f(27")] *= +oo. It is enough to consider the case of 20£@ Y
away from zero (n>1). Then if, k,j>1, n=k+j, ¢>0, and A =
=[X(27* 127" x 277,277 ) > cf(27")], we have

P(Ay ;) = P[X3-n-2,1 > cf 2] = A2 " 2[f2~")] 2
for some A(c)>0. So Z.P(Ak_ j)= +o00, and since they are independent
P(4, ;i0)=1. Y

If Coj=[X2-x2-5-1 4 Xp-k-12-5 = Xp-r-12-5-1 > 0],

for k,j > 1,
P(Cy,j)=P(Y, + Y, + Y; > 0) = b > 0, where

Y= X(0271] x 02771, ¥, = X(@7 1,274 x (027771])
and ¥ = X022 )R @ it 210 x
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Moreower, C, ;is independent of A4, ;. Letting B, ;= C; ;N A, ;, we get:

(i) Z P(By ;) = +0;
k.j

(i) P(By. N By ;) < P(Ay,j 0 Ay ;) = P(Ay ;) P(Aye ;)

1 . - Vi 2
< b_ZP(Bk,j) P(Bk',j'). if (k,j) # (K,J).

By the “refined version of Borel Cantelli”, P(By_;i.0.)> 0. Thus, Remark
2.1 implies P(B; ;i.0.)= 1. Moreover, as before we can indeed get
P(B, jio. for k>n, j>n)=1 for each n, and since B, ;S [X,-« -, >
>cf(27%7)] and c is arbitrary in (0, + o0), we conclude that

lim  sup 2 = + 00 a.s. when Z R @I " £ +0.
210 0%s 1< TU81) n=1 :

(c) In the example of (a), when considering lim ! 7 (:;)! as s/0, t|0, with
f(x)=x"log x |°, the “jump” from 0 to + oo occurs at different order
than in the 1-parameter case. But, the difference is not detected by f(x) =
= x*. This may suggest that the characterization of Blumenthal-Gettor
upper index in terms of local growth [1] continues to hold.

Indeed, if X = (X, :zeR?%) has no Gaussian component and S(v)
is the Blumenthal-Getoor upper of v(v=Lévy measure of X); and we
also assume no drift when f(| x |A1)v(dx) < + oo, then:

B(v) < y implies (st)"'" | X, ,|—0 as 50, t]0 (as.),

implies . lim x| = S.
p(v) > y implies sl{)z,ntalo(st) | X,..l=+w as

(divergent part is trivial from the 1-parameter case; for f(v) <y, one uses
the ideas of [4]).

But, for 1-parameter Lévy processes (X,), it is also well known that,
if X has no Gaussian component, no drift,y < 1,and (| x " A1) w(dx) < + o0,
then t~ 17| X,[— 0 as ¢]0.

This does not hold anymore for 2-parameter Lévy processes. Indeed, -
one can give examples of 2-parameter increasing Lévy processes such that
(2.6) lim (st)"'X,,= 4+ as..

510,110 i
(X is said to be incrgasing if X(z, z’] > 0 for z <, z. Then, X is increasing
iff it has no Gaussian component, the drift if any, is >0, and the Lévy
measure v is concentrated on (0, +o0), with f(| x| A1) Wdx) < +o0)
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(d) Examples mentioned in (c): For 0 <a < 1, let v be given by v(dx) =
=dx/x'** on (0, 4+ 0), and v(dx) = 0, otherwise. Let (X,) be the corres-
ponding strictly stable increasing Lévy process and hy(t)=t'* |logt |’
(b>0), for 0<r<l.

2.7 By part (a) lim b TR + o0 as.

sto.iyo  Me(st)
according b > or < 2/a. Also h,, is strictly increasing and convex on some
(0,a), a=a(b,a)>0. Let gy(t)=h; }(t) for 0 <t < hya), gy(t)=0 other-
wise. If b > 1/a, [gy(x) v(dx) < + oo; thus, we can consider Y.’ =
= Y gsAX,), ze R%, which is an increasing Lévy process with Lévy

<3z

measure u on (0, +oé), given by

[

(0, + ) (0, hp(a))

(g - g»)dv, g = 0 Borel.

Since g, is concave, strictly increasing on [0, hy(a)), g,(0)=0, and
(2.7) holds, we see that

1{?’?&0 (s1)"'Y, = + o0 as. when 1/a < b < 2/a.

Making proper choice of b, one can also see that for each 0 <¢ < 1,
there exists (Y, :ze R%) increasing process, such that
T Ak SE
sl{)”’{’w(“llo.‘]“’ )6 You= 00, a8,
[1/a <b<(2—¢)/a in previous construction].

() Another way of finding these examples is simply by observing the
following:

Let h:[0, +00)—>[0, +0) be convex, strictly increasing, h(0)=0
and let (X,) be an increasing Lévy process.

1 1
If J f W(h(uv), + 00) dudv = + oo, then N, (h)= +© as.
0 0

for each s,t>0, where N, (h)= ) I[AX, ,> h(uv)]. So,

w,v)< 1z

— X — '
lim  —2£ > ilim i
sio, 110 M8t} ,i0.c0° N5

But, the convexity of h allows us to substitute h by ch (any ¢ > 0) and so

> ddas.

im —>L= 4o as.
sto:tio h(st)

o—
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A question for which I don’t know the answer would be the validadity
or not of a certain “converse” of this.

Theorem 2.2. (Local growth at points z, away from the axes).

Let X = (X, 1ze R4 ) andf be as in Theorem 2.1. Take z, = (s, t,) € R
with sq > 0, ty > 0.
Then

1
f AR | > f()] dt < + 00 (= +0) implies that

0

. LarEe
lim  sup
10 AGzg.o J(St— Soto)

where A(zg,€)={z:20<,2,0<|z—z, | <eh (- I is euclidean norm.)

< 4000 (>0, resp.) as.

Proof. Remarks: (a) Recall that the above lim sup is indeed, with proba-
bility one, equal to some constant ce€ [0, +o0]. (Remark 2.1.).

(b) The normalization by f(st — s¢t,) is the natural one, since the law
of X,,— X depends on (s, t) only through st — sot,, for s > s¢, t > t,.

(c) It is enough to comnsider z, = (1, 1). Trivial modification will give the
general case.
Let’s assume (¢t 'P[| X, ,|>f(t)]dt < +oo. Then one knows:
() P[| X,.1| > 2/()] ~ 0 as 1| 0;
(ii) Y. P[| Xan 1| >f(a")] < + o0 for a dense set of d's is (0,1).

so., to

So, we take some a € [1/2, 1) such that (ii) holds. Let B, = [1,1 + a") x
x[1,1+a"), n>1 (B,l), and let A,=B,_,\B,, n>2.

For (s, t)e A, we have st — 1 > a". So, by Borel-Cantelli, it is enough
to show that \

Y P[ sup | X,,—X,,|=Af(@")]<+o0, for some constant

n>1 (s,t)e A,

A€ (0, +o00). But
P[ sup JXs,t_Xl,l | > 15 f(a")]

](s,t)eA"
@8) - ing P[sgp | X((1,5] x (L,£]) | > 7f(a")]
+ 2P 2 f'fli i | Xs1— X1.1] > 4f(a")]

<P[ sup [X.|>7f@)]+2P[ sup |X,.|>4f(@)]

s, t<an- an<s<an-
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As in the proof of Theorem 2.1,
P[ sup : Xl Tl = & Pl X i i) 7 1)

s, t<an-
< o Pl[ X a1 | > 1@ 75]

for n > 2, where

Cy = [(1 — sup P[| Xym-1.4]> 2f(a"))

t<agn-1

P[| Xipn=1 1 | > 2f(a")] -
terrinsip 12750 P[IXS‘,|>2f(a”)]>:|

SEghs

Since P[|X, , |> 2f(t)] >0 we can take some d¢(0, 1/2) and n, > 2 large
enough so that

: -1
G<(1-6)1 (1 - 16—5> for n > ny. Thus,
29 PSP sup XL > T % 4.
" n>1 s,t<gn-1

On the other side:
P[  sup 1]X"1 | > 4 f(a")]

anss<ah—

< P[| Xn s[> f@] + PL_sup | X, 1= Xon s | > 31(@"]

< P[| Xon 1| > fla™)] + P[S<UP | Xs.1| > 3f(@]
<[+0=06)7"] P[| Xpn 1| >f@)] if n=n,
(since ae[1/2,1), and so a" ! —a" <a"). Therefore,

(2.10) ”; P[  sup 1|XS_, |> 4£(a")] < +o0.

anss<gn-

From (2.8), (2.9) and (2.10) it follows that

P[ sup M =1y i.o.:|= 0, which entails ¢ < 15.
(s,)ed, f(St— 1)

The divergent ‘part-does not require proof. It is trivial from 1-pa-
rameter result.

Remark 2.3. For pomts away from the axes, the situation described by
Remark 2.2 ((d), (e)) does not happen.

Some results on local growth of two-parameter Lévy-processes 47

If X and h are as in Remark 2.2 () and s, > 0, t, > 0, from Theorem
2.2 and Fristed’s results for subordinators [2], it follows that

Tim L_—Xm‘—'0=0 orf +db as

slsg.tltg h(St_SOtO)
according as fot™'P[X, ;> h(1)]dt is finite or not, or equivalently,
according as [§ v(h(t), 0)dt < + oo or not.

3. An “integral test” for upper growt.

Obviously, the estimates obtained in the proof of Theorem 2.1 ((2.3)
and (2.5)) are very crude. The purpose there, loosely speaking, was only
to investigate the order of growth. For example, if (X. : ze R2) is a stan-
dard Wiener process and g(r) = (t log !log t )'/2, Theorem 2.1 will just
give us that

lim 1X,,!/g(st) = cfor some 0 < ¢ < + oo, but not that ¢ is indeed equal
s10.tl0 4

to 2 (cf. [8]), a well known result.

One question that I wanted to answer is the following: in some other
situations — e.g, if X is stable with only negative jumps, and index xe e
— where one has Ill'l—ngX,/f’(t) =c¢ for some f as before and some

0 < ¢ < + oo, which would be the constant “c” for the 2-parameter process?
(Is the order still the same?) To answer this, we need a theorem with a
kind of “integral test” (as in [3], where the above fact for 1-parameter pro-
cesses is proved), that will give: under certain conditions on X and f, the
convergence or divergence of

1

J t~'|logt P[X, > /{(t)] dt implies [im X,./f(st) < or > 1, respecti-
3 s10.1]0

vely.

These are the object of Theorems 3.1 and 3.2 below.

Theorem 3.1. (the “convergent” part) Let X = (X. : ze R%) be an R-valued
2-parameter Lévy process, and f:[0,1]-[0,4 o) a continuous and non-
decreasing function, with f(0)=0, f > 0 otherwise.

(A) Assume: (a) lim sup f.(ut) —1]=0, d.s in [16];
1 peper | LD

(b) ltil_ngP[! X1 >ef()] < 12, for each &> 0.
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Then, if -j(’)-t_1|logt|P‘[X,_l > f(t)] dt < + 00 we have

lim  sup Kup <1 as., where B, = {(s,t)e(0,1]* : st < &}.
el0 (s.neB, f( )
(B) Same conclusion follows if, instead, we assume:
(b) as above;
(c) for each ¢>0 there exists a=a(e)e(0,1) such that
Y nP[Xpy > (148) f@)] < +o.
n=1
The idea for the proof is, as in Theorem 2.1, to use Skorohod’s ine-
quality for the D[0, 1]-valued random vectors (X, ,:0<t<1). But now
we use a one-sided inequality.

Proof of (B). Let e >0and 0 <a < 1. Also, ]et k,j>1and n=k+j. Apply-
ing Skorohod’s inequality for Y,=(X,,:0<t<1), s>0 and pi(x)¥
=sup {x(1):0<t<d’} in D[0,1], we ﬁnd

P[sup pI(Y,) > (1 + 3¢) f(a"] <_P[pJ(Ya") > (1+2¢) f(a")]

s=<agk

provided 0 < o2 % P[ inf X, 1> —¢ f(a")]

u<an

But 10 '= Plsp' X, |.= sf(a")] <

P[[ X1 | = (¢/2) f(a")]
S 1= sup P X[ = (/) f(@)]

By (b), take ny = ng(e, a) such that
@By 5 T sup Pl X,.| = €/2) f(] < 1/2,

no
s<a

giving 1 —ag<¢, {1 —c,,o)‘1 Ll for n2>ne-
So, if n>ngy(e,a) and k+j=n(k,j>1),

1-—
P[sup X >3 e = i i Plsup X, > (14 2¢)f(a")]
s<ak ng t<al
t<ai

< 1+ cuo o Pl g (1 £2) fe")]
2c,lo inf P[X 1> —ef(a")]

t<a’l

It
=<
1-2c,,

_P[X,,.._l > (1+¢) f(a")],

(3.2) lim sup A i
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from (3.1) and because f is nondecreasing.
For the given ¢ > 0, we could have chosen a = a(e) € (0, 1) as in (). If

A= sup "X, > (14 3 f(a")], *k j=1)
s‘;‘l st

Borel-Cantelli implies P(A4, i.0.)=0. This entails

<1+ 3¢ as..

510 fS)_

Since the argument applles to any ¢ > 0, the verification of (B) is now
completed.

Proof of (A). Let ¢ > 0. We want to show that for a € (0, 1) sufficiently close
to 1 and large n,
Pl sup X.>(1+3¢) f(a")] <BP[X,., > f(uw)] for all ue[a" a" ),
R(k, j)|
where R(k,j)=[d**!,a"] x [@’*',a’], n=k+}j, k,ij=1 and B is some
positive constant.

Let k,j>1, n=k+j, and let a€(0, 1) be such that 1 —a < a?. Set-
ting I(r)=[a""'(1 —a),a"] (r = 1) and arguing as in the proof of (B), but
with p/(g) 2 sup {g(s) : se I(j)} for ge D[0, 1], we obtain: if ny = nole, a)
and ¢,  are as in that proof, if n > ng(¢,a) and a" < u < a"" !, since
I(k) = [d*"'(1 —a), ua™7] we have
P[sup pI(Y,) > (1+3¢) f(a")] <

seI(k)
P[p(Y,u-5) > (1 4 2¢) f(a")]
inf PlOnf (X5, =X, )= ef(a)]

ak-1(1—a)<s<ua~J [tel(j)

< (1-26,) " P[X,.1 >(1 +8) f(@)]

IA

Here we used
RS st X w00 X)) Sir af(@)] =
teI(j)
PO, Sy (=25 o N - len
e Sup_P[l X(ua‘f—s)t,l I 2'2—181[(‘1")] e e C”O

t<al

< ]

if @ Y1 —a)<s<ua=’(n=>nye a)), and

P[p!(Yua-1) > (1 + 2¢)f(a")] < o PlXu1> (1 +o)f (@]

e



50 Maria E. Vares

(since ua~Ja’—t)<a" for tel(j), and so
P[I Xua‘f(af—t),l | = elf(a")] = Cno (n = n0(8, a))

Using (a), we take a=a(e) sufficiently close to 1, so that (1 +e)f(a*) >
f(a"™") for all n>2, besides 1 —a<a® For n> nye, a(e)) = no(e) and
k+j=n, k,j=>1, we let

Ay j= [If(ilf,l;)xz > (1+3¢) f(a")];
A, = U Ak,j;

by (3.3) and because d**! > a*"!(1 —a) we find
P =(1-2¢,.) (1~ 1) PLX. 4 = f@)],

for any ue[a",a""'). Hence
RAI= (-2l 7 [gal N —a) * f %|logu| P[X, ;>f(u)]du,

and we get P(4;i.0.)=0, by Borel-Cantelli and the hypothesis. Clearly,
this implies (3.2) and the conclusion follows.

Theorem 3.2. (The “divergent part”)

Let X = (X, :ze R%) be an R-valued Lévy process and let f:[0,1]—
= [0, + ©) be a nondecreasing and continuous function with f 0)=0,f>0
otherwise.

Assume:

: 1 (ut) ' .
a) lim su -1 =0;
(@) ull o<,l<)1 f(
(b) lim P[X,, > 0] > 0.

tlo

Then if £ nP[ X, 1> f(a")] = + oo for all a€ A, where A is a set = (0,1)
with 0 € A, we have:

lim  sup Xs. 1) s,
el0 O0<s,t<g f(St)

In particular, the conclusion follows if (a) and (b) hold and

1
f t™! |logt| P[X,,> f()]dt = +

0
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Proof. Last statement follows easily from the first. Iset ae A4 fixed. For

. : e 4 ak aJ
k,j=1, and writing n=k + j, let z(k,j):(1 );

)

—a 1—a
Ry j= (zk+1, j+ 1), z(k,j)] and A j = [X(Ry ;) > f(a")]
Then A
(i) the A4, j, k>1, j>1 are independent:
(i) P(Ax j) = P(X,n y > f(a") if n =k +J
Thus, we have
Y. P = +w.

k,j=1

If By j=[Xzps1.) + Xk j+1)— Xz 1.j+1) = 0] we have:

(i) By ; is independent of Ay j, for each k,j>1

(i) P(By j)=P(X,, ;>0) where n=k+j and a,=a"[(1—a)~2-1],
again by independence and stationarity of increments of X, and
because X =0 on the axes.

By assumption (b) we can find 4 >0 and ny = ne(a) such that if
k+j=nz=nea), P(B; ;)= A.
Then, if C, ;= B, ;n A ; we have:

Cr.; S [Xoa. > f(@*9)] and if n> no(a), P(Cy ;) = A P(Ay ;).
So Z P(Ck,j) = +o0;if(k,j) # (kla.j/)’P(Ck,j ) Ck',j’) < P(Ak,j N Ak',j’) =

k.j
1T”P(A,‘_ IP(Ap )< %P(Ck_ JP(Cy ;). And 50, by “refined Borel-Cante-
i
P(X.4 j > f(a**/) for infinitely many (k,j)]> 0.

But above event has probability 0 or 1. So, its probability is 1, ie.,
- 1

34 lim sup ——— X,4h>1 as.
G4) ntow k+jl.>7n f(akﬂ) g

Now, given ¢>0 can take ae A sufficiently small s.t.
f@) =z (1-¢ f(a/(1-a)? (by (a)).
From (3.4) we get lim sup b -0 % s> s as

nt+ow k+j2n
and so
? X . i [
lim sup —=%L > as. (since ¢ > 0 is arbitrary).
510, s,1¢(0,11 f(st)

st<o
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Moreover, P(Ay_ ;) depends on (k, j) only through k + j. So we also have
Y P(A: ;) = +oo for each n.
o

Same argument will then give us

lim  sup AL

> 1 as. and we conclude the proof.
510 o<s.i<s [(st)

Example. Let (X, :ze R3) be a stable Lévy process with only negative
jumps and index a € [1,2). The exponent of X is of the form (taking X
strictly stable if ae(1,2)):

Y@d) = —clif* (1 —i ’i

=0,A=0

| ﬂ(l,a)), A#0

for some ¢ > 0, where

B(l,oc)=tg%aifl<a<2

2 !
L =1
log | A| if «

Gihman and Skorohod have shown that for the 1-parameter Lévy
process (X, :t>0) (X, =0) with this exponent,

g a.s., where

o ()

1i=a 1 (sl

fit)y=ale—1) % (c,t)*(log|logt]) = if1 <a<2,

and ¢, = ¢/| cos (m/2)a

£t = —2% |logt| for a =1
One obvious question is then: does f as above still give right order
for upper growth of the corresponding 2-parameter Lévy process? Equi-

valently, let A€ [0, +o0] be such that Tim o 4 as.; the ques-
: sto.t50 f(st)

tion is: does A€ (0, + 00)?
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x=1

Claim. 4 =2 *

In particular, for the Cauchy process without positive jumps, there
is no change at all.

Proof of “Claim”.

Having at hand the (crucial) estimates of Gihman and Skorohod
[3], it will be an easy application of Theorems 3.1 and 3.2. :

For the case 1 <a <2, one has the following [3]: there exists ¢, > 0
such that for w(t, a) sufficiently large (a > 0)

crfelt,a)] ™1 exp[ —wlt, a)] < P[X, ;> a] < exp[ —a(t, a)],

o—1 @ \eEal

cita
aClt
Moreover, f(t) was chosen to verify w(t- f (t)=log|logt | Since
o(t, ba) = b"*"1. w(t,a)(b> 0), we have

o(t, 271 (1 — g) f(1) = 2(1 — &)™~ ao(t, £ (1))

=2(1—¢f*"" log |logt| Py S

where w(t, a) =

So, for t sufficiently small and some ¢, >0,
PpX, > 2031~ f ()] =
> exp[—2(1—¢y*"'log|logt|]- [2(1 —e)* ' log|logt|]~ ' c, =
‘ > B|logt|=24=9"*"! for some B>0
So f§t~!logt| P[X, > 27151 —¢)f(1)]dt = + ocand since P(X, =0)=

=P(X, ;>0)>0, and f clearly verifies conditions (a) of Theorem 3.2,
it follows (by Theorem 3.2) (since ¢> 0 is arbitrary):

— X s
lim =5t >e1a 54

si0,ei0 T48t) -

On the other side, for ¢ small (t>0), ¢> 0
PIX, 1> 2 Y1+ &) f(5)] < |log ¢ |20 *9%* L g5 i 0 Lg 1 :
P[X . >2"""(1+¢)f(a")] < B(a)n ~*" T s large enough (B(a)

'some positive number).

ORI Y, R B +¢)f(a")] < + oo for all ae (0, 1). By Theo-
rem 3.1 (B) it follows (since ¢ >0 is arbitrary):

2 Xy &
lim sup =L <2271k 554
310 (s.neBy f(st)
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Could also use part (A4), since

P1X, | > ef (D] = B[IX oL et 25£()] >0 as t]0.
(B; is as in the theorem).

Now, let « =1. It is enough to show that for all ¢>0

lim  sup Ky =i cnash
s10 .ness f(st)
since converse is trivial from the 1-parameter case.
- Condition (b) of Theorem 3.1 is easily verified here. Also f clearly
verifies (a) of the same theorem.
Gihman and Skorohod have shown: if w(t, a) is sufficiently large (a > 0)

2
P[X, > a] <exp[ —w(t,a)], where w(t,a)= Ta exp [% - 1:|.

For f(t)=£ |logt|, 0<t<1, notice that
Y/

ot,(1 +e)f(t) = % exp[(1 +¢)|logt]|—1] =

= Ac)t™* i + oo(for some A(c) > 0).

So, for ¢t sufficiently small P[X, ;> (1+¢)f ()] < exp[ —Alc)t™*]:
hence
Jot ™ !|logt|P[X, > (1+&)f()]dt < +o0.

The conclusion is

, X y — X
ol bt G R 2L a8
310 (s.eBy f(st) sto.epo f(st)

for X and f as above.

Remark.

This factor 2*~!/# agrees with what happens in the case of Brownian
Motion (= 2) where the factor is \/T’Z ,.as it is well known, and
f(t)=./2tlog|logt | This well known result can obviously, be deduced
from the theorems above.

Note. It was very recently — sometime later than the completion of this
work — that I had a chance to see the work of N.M. Zinchenko [9]. In
his article similar results are presented, concerning upper growth in a
neighborhood of (0,0). Both are completely independent works. The
results of Zinchenko correspond to Theorems 3.1 and 3.2 of our paper,
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but the conditions are different. Moreover, Theorems 2.1 and 2.2 of this
present article are of a more general nature; they constitute the analogue
of the classical Khinchin’s theorem on local growth of Lévy processes.
These two do not have a counterpart in Zinchenko’s paper.
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