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On equivariant homotopy equivalences

Italo José Dejter*.

Let G be a compact Lie group. Ted Petrie set the following conjec-
ture related to [7, pg. 20].

Conjecture 0. Let X and Y be closed smooth G-manifolds without boundary
and let f : X — Ybe a smooth G-map which represents a homotopy equicalence’
not necessarily having an equivariant homotopy inverse. Then there exist
product G-fibre bundles Y x N and Y x M such that X is smoothly G-embedded
in Y x N via an embedding j such that the composition © o j with the pro-
Jection m Y x N — Yis G-homotopic to f and such that the G-normal bun-
dle v of X in Y x N is G-isomorphic to the induced fibre bundle f *(Y x M).

~ A description of the situation in the conjecture is given in the follo-
wing diagram.

incl.

v ———Y x N YARPNT
proj. /\ %;j.
X 1 Y

A G-homotopy equivalence f:X — Y with no G-homotopy inverse
is called exotic and so X is called G-exotic homotopy Y. The quasi-equi-
valences of [7, pg. 21], whose classification for actions of a torus T, given
in'[9], we remark in our section 2, give exotic G-homotopic equivalences
by Alexandroff compactification. In section 3 we contradict the possi-
bility given by W. Y. Hsiang [6, pg. 108] of the inexistence of effective
éxotic actions of T2 of“T™ in CP™ ;

A G-homotopy equivalence is said to be atypical if it does not satisfy
conjecture 0, in which case is necessarily exotic. In section 5 we show the
existence of atypical G-homotopy equivalences constituted by the cases
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described in theorem 9 as indicated in remark 13. In fact theorem 9 shows
the diversity of coordinates of the invariant i§ f, (1) in equivariant K-theory
[7, pg. 108], in contrast to their indifference in Petrie’s exotic examples
[7, pg. 125] and the effective ones of our section 3. We recall that [12,
pg. 142] shows that these Petrie’s examples f: X — Y preserve the classes
A(.) of Hirzebruch, [5], (Compare [4]), which suggests the preservation
of the Pontrjagin classes. In section 6, proposition 14, we see that if
f:X—-Y is as in theorem 9, then f preserves the classes 2(.).

1. Cyclotomic toral representations.

The ring R(T) of complex representations of the n-dimensional torus
T"=S"'x...xS' (n times), is obtained over the ring Z of integers by
adjunction of n indeterminates ¢, ...,t, and their inverses, [1, pg. 77].
An irreducible element of this ring Z[t,, ..., 1, '], say t4! ... tin, represents
the classe of T-isomorphism of the complex vector space C endowed with
the linear action of T given by tz= (¢, ..., t,) z=1* =41 % . z where
t=(ty,....t,)€ T,ze C and a= (ay, ...,a,) € Z". The sum and the product
of elements in R( T) correspond respectively to the direct sum and to the
tensor product of elements of the T-isomorphism classes so represented.
We represent by the same symbol a classe in R(7) or a representative of
this class.

To each integer pe Z it corresponds an Adams operation y” on R(T)
given by Y”(y) = x”, where y is an irreducible element in R(T), [14]. We
represent by R indistinctively the ring R(T) or its tensor product with
the field Q of rationals, R(T)® Q. Let R’ < R be the subsemiring consisting
of the elements of R expressible in the form

r

e =@~y

ji=1
where o= (2j1;..., %)y B;=(Bj1,..., Bjn) € Z" satisfy
-| 115

r
[T o
i=1

To each collection P= {p,,...,p,} of integers >1 relatively prime
in pairs and irreducible y € R(T) we associate the unique pair of complex
T-modules of dimension 2"~ ! or 2"~ !-dimensional complex representation
spaces of T,

_ Mp(x) = Mpl.....p,.(X) and Np(y) = Npl.--'.p,(X)
determined by the relation, [9], Y"(x)= (" — 1) (x) = Mp (x) — Np (x).

: for =l
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For example, if r =2 then

VG =P = D" = 1)(0)=(P172 —YP1 — P2 +1) ()= Mp(x)— Np(3),

where Mp(t)=tP1P2 +t and Np(t) = tP1 + tP2.
Next we give an equivalent characterization of the pair (Mp, N,).
Recall that the class 1, of a complex T-module, [14], is defined by
-1(x)=1— x, where y is irreducible in R(T), and by A_ (@ y,)= A_ (1),
if x; runs through a finite family of complex T-modules. Then M, and
Np satisfy
’ p(x) = - (Mp(x))/A_, (Np(x) € R'.

In fact @p(y) constitutes an integer polynomial. Furthermore, M,
and Np are the unique complex T-modules of dimension 2"~ ! such that
¢p=A_(Mp)/A_{(Np). If p,,...,p, are prime integers then ¢P—- ¢
is the cyclotomic polynomial of order p, ...p,.

Note that the multiplicative subgroup U of units of R satisfies
UcR.

Py " 'Py

Lemma 1. A basis for R'/U is constituted by the cyclotomic polynomials
of composite numbers applied to effective irreducible complex T-modules.
(Recall that a T-space X is said to be effective if and only if X7 # X#
for every subgroup H # T, where X" is the fixed point set of X under
the action of H). :

Proof. We identify R'/U with the set of elements of R’ such that the o
and f; are positive. If ae Z" denote (a) =1 — t“. To each element
I(ej)/(B;) € R’ it corresponds the element I1(|«;|)/(| B;) under the indicated
identification, where |o;|=(|a},|,...,|a;,]). In this way R’/U is seen as a
multiplicative subsemiring of the polynomial ring Z[t]. On the other
hand the cyclotomic polynomial of the number a = p{1 ... p/¢, where £ > 1,
Pi,---,De are prime numbers > 1 and Fisie SaFonare pos1t1ve integers, is
) =,p,..... s "), Where o = p{1~'. plr- v by Moebius formula, [8,
pag. 207]. Smce the irreducible polynomlals in t constitute a basis for
Z[t] and the only irreducible polynomials in R’/U are the cyclotomic
polynomials of composite numbers, the lemma is proved.

2. Quasi-equivalences.
A proper map f: N— M between vector spaces of the same di-

mension is said to have degree one if the map induced by f between
the Alexandroff compactifications N* and M* of N and M respectively.
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which is a map between spheres of the same dimension, is a homotopy
equivalence. This makes sense since f is proper.

A smooth T'map of degree one between complex T-modules of the
same dimension is said to be a quasi-equivalence of complex T-modules.
In [9] nontrivial quasi-equivalences of complex S!-modules T3y, =
= fp: Np— Mp are constructed.

Forexampleif n = 2, let a, b be natural numbers such that —ap+bg=1.
Then we can take f, [(z;,2,)=(z{z}, 2] + 23).

Corollary 2, [9]. If T = S* for each ¢ € R’ there exists a quasi-equivalence
of complex S*-modulesf : N — M, where N and M satisfy A_ (M)/4_ ,(N)= .
Furthermore, the common dimension of N and M may be taken to be ar-
bitrarily large with NS' = MS' = {0}.

‘Remark 3. Consider the set I" of ordered pairs (M, N) of nontrivial complex
T-modules such that dim M = dim N and such that A_,(M)/A_,(N)e R(T)
takes value +1 when r =1, ie. it converges in absolute value to 1 when
t—1. Let M, N)= A_,;(M)/A_,(N). Q may be interpreted as a semiring
homomorphism. In fact Q is an epimorphism. Then for each (M, N)eT
we apply corollary 2 and lemma 1 to obtain a pair (M’, N)eT and a
T-quasi-equivalence f:N'— M’ such that ¢ =Q(M’, N'). Furthermore
M =M@ Py and N'= N @ Py, where (Py, Py)eT and Q(P,,, Py) is a
unit in R’, ie. Pyy= Py up to units. This is the sufficiency of the main
theorem of [9].
For example let T=S', M=t'@®t'2, N=t3®t*. Then

L it A S 0 A ¢ om0 At N S £ 0D o B
S A-A)1-ty  (1-0-H (-1 -1)
= ¢2.3(52) P (3]

In this case Py = Py = t* @ (°. Then we can take f =(f,30¢)® f,.3,
where q(zy,z;) = (21, z3).

QM, N)

3. Effective nonlinear T-actions on CP’

Let A be a complex T x S'-module on which {1} x S! acts freely,
ie. for example A is C"*! with (t,n)e T x S! acting on (zo, ...,z,)e C"*!
by (t,n) 0 (20, -.-,2,) = (zo pIItfi0, ... zyIItfir), that is A= 60-®#n for some
complex T-module 6. Note that the unitary sphere S(A)is T x S!-invariant.
Define P(A)= P(0) = S(A)/{1} x S*, the T-linear CP" associated to A or
space of complex lines of 6. This is a smooth T-manifold.
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‘Question 4. For positive integers s and r, are there effective nonlinear actions
of T" on CP"?

‘Remark 5. It is easy to see that there are not effective actions of T* on
CP" for k>r. If T" acts effectively on CP" for r > 1 then the T-action is
T-quasi-linear in the sense that T-actions induced on the tangent bun-
dle and the Hopf bundle are essentially the same, as in the linear case,

'[4]. Kai Wang announced similar result for T7"~' acting on CP”, [16].

Remark 6. Known affirmative answer to the question above happened
for s=1 and r=4k—1, [7, pg. 125], [12, pg. 148].

W.Y. Hsiang in [6, pg. 108], cites the S'-nonlinear CP" of [12] but
expresses that quasi-linearity seems to be possible for s>2 ou 3.

Theorem 7. There exist effective nonlinear T-actions on CP*~!  for
s B

This solves partially the problem of existence of question 4 with
the restrictions imposed in remarks 5 and 6.

In fact, let y be an irreducible complex 7"module. Let M = y @ y™,
where pg is a composite number. Then the equivariant exterior power
of M, AM)="@ "' @' ® y™ has their levels A%M) = y°
A'(M)=y' @™ and A* (M)= yP*! Let ¢ be any T-complex module
of dimension ¢ and let 6 = $/® A. Then a T*-nonlinear CP* !, say X,
is obtained together with an equivariant homotopy equivalence f : X — P(0)
without equivariant homotopy inverse, being the construction of f for
F =8} -duer toi {7, pg. 125)

We will remark at the end of this section a construction method for
this fact.

Now, if P(0) has effective T-action, also X has effective T-action.
Assume 0 = (ITtfi1) ... @ (I1ti.4¢). We will see in lemma 8 that for P(0)
to be T-effective, the associated matrix

I:all 01.4(’]

sy --- Qs ar

must contain a maximal square matrix whose determinant is + 1.
For convenience denote Z,=S'. Let G=Z, x...x Z,, where

0 <o;<oo0. We represent elements in G by s-tuples t=(ty,...,t,), where

ti€e Z,,. Let Z¥(G) be the additive group of s x v-matrices of integers

modulo «; in the j™rowforj=1,...,s. Let R"(G) be the set of v-dimensional
complex G-modules and let My : Z'(G)— RY(G) given by



88 Italo José Dejter

A Gl

Mg({ya)) = ) (6%).
k=0

Then Mg is a bijection and RY(G) gets a group Structure by means
of Mg in such a way that My; is a group isomorphism. Let ;= !+ ) €2(G)
and let W be a G-invariant subset of the projective spdce P(M( ()0l
complex lines of the G-module M(y). Denote the k-column of - by A
forsk = (0F° =]l

Lemma 8. [f there exists a point [z,:...:z,] € W (in homogeneous coordi-
nates) with s+ 1 nonzero coordinates Zoy Shasrendu g WREE U <k <0 <k <
<v—1, such that |det(,,\ Tl Qate- 1 Tk T "0)‘ — l then the action ot G on

W is effective.

Proof. We may assume y, = 0. Suppose that the action is not effective.

Then there exists e G — {1} such that tw = w for every we W and such

that, if we denote by [r] = G the subgroup topologically generated by

then [¢] is the image of an injective homomorphism ¢: G’ — G, where

=11 Z;, and 0 < B; <oc. This determines a matrix é = {4,,! € Z%G')
i=1

such that ¢(r, ..., <]_[ (k1 n t"h) If W' is the G'-space obtai-

ned from W by means of ¢, then W' = P(Mg, (5 - y)), where 6 - ye Z°(G')
is obtained by multiplying two integer matrices representing respectively
0 and y and taking the reduction of the result in Z%(G'), contradicting
that |det(y,,,....7 )| =1, absurd.

Example. Let € =2, y=1t,t2 pg=6,p=1+1, 2. Then the matrix asso-
ciated to 0 is

0 i 1 6 1 8 2 J

0 14 2 12 1 15 3 13
in which we find for example the maximal square matrix formed by the
third and seventh columns having determinant — 1.

The end of this section was suggested by conversations mantained
with W. Iberkleid.

The construction used in theorem 7 may be obtained elegantly as
an application of the homotopy covering theorem of Palais, [3, pg. 93]
and the generallzed Poincaré conjecture, [10, pg. 109]. In fact let 6, =
= ¢ @ A*(M), where A*(M), (resp. A7(M)) is the equivariant exterior
power of M in event, (resp. odd) dimensions, ie. A~ (M) = y' @ y",
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AT(M)= y° @ x™*'. Then there exists a structure of quaternionic vector
space H" on 0* so that p : S(0)— D(R x M) (with image in the equivariant
unit disk of R x M), given by p(u,,u_)=(uil* —|u_|*2<us,u_d),
where u, e H"0, , is a T-map. p may be considered as the orbit map of
S(H" x H") with the diagonal action of Sp(n). There are exactly two types
of orbits for this action, namely Sp(n)/Sp(n—2) over S(R x M) < D(R x M),
and Sp(n)/Sp(n—1) over the interior of D(R x M). Let ¢: x POy ->M
be given by ¢ = f, .- | f,,|7'. Then ¢ is a T-map, D, = ¢~ (D(R x M))
is a 5-disk [7, pg. 122],.and ¢ restricted to the boundary oD, of D, is
homotopic to the identity map id | dD® of the boundary S* of D° by a
homotopy that extends radially over D°, starting at ¢.

Let Y be the pullback space of p and ¢ | D,. Then the lifting of o,
¢ : Y —S(0) is a Sp(n)-map homotopic to the identity map of Y by the
Palais theorem mentioned above. By the generalized Poincaré conjecture,
Y is diffeomorphic to $8¢ 1. Let b : S* —Sp(n) be given by b(t)=diag(t, ..., t).
The image of S! through b acts freely on both sides of ¢, so that by taking
the orbit spaces by the resulting S*-actions we obtain a homotopy equi-
valence f:X — P(0) with Y diffeomorphic to P(C*). Note that f is a
T-map. However f does not have equivariant homotopy inverse, as was
established in [7, pg. 128], technic that we describe subsequently in rela-
tion to questions and facts suggested in the beginning of this paper.

4. Equivariant homotopy irreversibility.

Given a closed boundaryless smooth T-manifold Y, let S;(Y) be, as in
[7, pg. 102], the family of classes [ X, f ] of T-homotopy equivalences of
smooth T-maps f : (X, X7)—(Y, Y7).In addition we assume that H(Y; Z)=0
and that H3(Y: Z,)=0. Under these circunstances [ 10, pg. 116] establishes
the existence of a Thom isomorphism in equivariant K-theory,
YUy : K¥Y)> K¥zY), where 7Y is the tangent bundle of Y. Let h*(.)=
= K#(.)® Q. Then [7, pg. 116] establishes the existence of a homomor-
phism f, : h*(X)— h*(Y) adjoint to the usual induced homomorphism
f* :h*(Y)— h*(X) with respect to nondegenerate bilinear forms (7, pg.
98]), Id¥(x - x') and Id%(y - y'), where Id} is the composition (Indy - Yy)® 1,
with Indy : K¥tY) > R(T), the Atiyah-Singer index homomorphism,
x,x' € h*(X), y,y'€ h*(Y) and 1, being the identity map of the rational
numbers.

This way f,(1) becomes an invariant of the setting [X, f]e Sy(Y)
satisfying (if X, are the connected components of X Tand iy: Y'Y

is the usual inclusion) that the element if(f,(1)e h*(YT)= [] h*(X,)

a=1
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has its coordinate in h*(X,) equal to A_ (v Yy)/A_1(vX,)- 1 up to units
in R(T), where f(X,) <Y, Y, is a connected component of YT and vX,
(resp. vYj) is the equivariant normal bundle of X, (resp. Y;) in X (resp. Y).

According to [2] we know that i} is a monomorphism of R(T)-mo-
dules (Atiyah-Segal localization lemma) and since f restricted to the
fixed point sets is a T-homotopy equivalence, we conclude that the R-alge-
bra h*(Y)is an R-submodule via f* of h*(X) with coordinates taken in the
larger R-module h*(X™)=h*(YT). See [7, pg. 116] and [4, Thm. 1.1].
. Observe that in section 3 we obtained a homotopy equivalence
f: X —P(0) given by a smooth Tmap. The restriction of f to X7 is a
bijection f7:XT— P(O)" so that i#(f,(1)= ¢,.4x) - 1 € h¥(XT) = direct
sum of 4¢ copies of the ring R. Thus f fails to be a T-homotopy equiva-
lence, as we claimed in section 3 to warrant nonlinearity of the T-action
obtained over X, since ¢p.4 is nOt a unit in R(T).

5. Diversity of coordinates of f,(1) for X connected.

The examples of nontrivial settings [X, f] in the work of T. Petrie
are characteristic in that all the coordinates of i¥( f+(1)) coincide up to
units. Yet in our effective generalization in section 3 this fact always
happens, as in the Alexandroff compactifications of the T-quasi-equiva-
lences of our first two sections. When does it fail to happen?

Theorem 9. Given Py, ..., P, in R'(S"), pairwise different, given an irre-
ducible complex T-module y and positive integers a,, ..., a,, there exists a
closed boundaryless smooth T-manifold Y such that H(Y: Z) = 0,
H(Y; Z,) =0 and such that Y is isolated and amap f : X — Y representing
and element [ X, f]e€ S{Y) such that 2a; coordinates of i§(f,(1)e K¥YT)=
= IIR(T) are of the form P(x) up to units, for j=1,...,m, being the num-

ber of nonunit coordinates of i¥(fx(1)) equal to 2 Z a;.
i=1

The proof of theorem 9 depends on the following.

Lemma 10. Let N and M be nontrivial complex S*-modules of real dimen-
sionn+1andletf:N* —M™ be a smooth S'-map of degree one. Given a
regular value x of f such that S'(x) is a principal orbit, ([3, pg. 179]) there
exists a smooth S'-map g:N*—M" which is S'-homotopic to f such
that x is a regular value of g and such taht g~ *(x) consists of a point. Thus
g~ '(S'(x)) is a principal orbit.
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Proof. We may assume that the inverse image of x under f is a collection
of points f~'(x)={yy,...,¥2,+1} S N* such that sign(df ) y; = (—1Y, for
J=1,...,2s+1, ([11, pg. 27]). If s=0 the lemma holds. Assume s> 0.
Let p: N* - N*/S" be the quotient map. We can choose a neighborhood
V oof {y;/S'} 32! diffeomorphic to the n-disk D", contained in the subset
of principal orbits and excluding the point y,/S', in such a way that p
is a fibration over V having a section ¢ : ¥V - N*. We want to define
g:N"—>M" coinciding with f out of p~! (interior of V) and sending
p~1(V) out of S!(x). To attain this purpose it suffices to extend the res-
triction of f over g(dV) to a smooth map o(V)— M™* that sends a(V)
to the exterior of 5'(x), that is out of a tubular neighborhood W of S'(x)
of the type W =S' x interior(D"), i.e. inside M* — W =~ D? x §"~!. But

the degree of the restriction h of f to o(V) is zero, since by [11, pg. 27],
25 1

deg(h,x)= ) sign(df) yj=0, and this value does not depend on the

=2

choice of theJ: regular point y of h. Thus the restriction i’ : 6(0V)> M™* — W.
has degree zero, so it is homotopic to a constant map. This implies that
h" can be extended to a smooth map h" :a(V)—> M* — W, Moreover, we
may choose h” in such a way that the map g: N* — M ™ defined g(y) =
=f() if ye N* —p~! (interior of V) and by g(ty)=th"(y) if yea(V)
and teS', is a smooth S'-map. To prove that g is S!-homotopic to f
it suffices to extend the map ¢ : d{a(V) x [0, 1]} - M™ defined by
¢(7,0) = f(») and ¢(y,1)=g(y), for yea(V) and by ¢(y,7)= f(y) for
yea(dV)and t€[0,1], to a map ¢ :a(V) x [0,1] > M™. But the domain
of ¢ is topologically " and its image is S" so that ¢ is homotopic to. a
constant map, and so ¢ exists as a continuous map. We define
Y:N" x[0,1]->M" by y(y,7)= f(y) for ye N* — p~! (interior of V)
and't€[0,1] and by Y(ty,7) = t¢(y,7) for yea(V), te S' and te[0,1].
Then y is an S'-homotopy between f =y, and g=y,.

Proof of theorem 9. Without loss of generality we may assume that T=S!
and y=t. Forj=1,...,mlet M; and N, be complex S'-modules of real di-
mension n+ 1 and let f;: N/ - M, be representatives of classes
[N}, /;]€S,(M]). According to lemma 10 the maps f; may be taken
so that there exists for k = 1, 2, smooth tubular S*-neighborhoods, (3, pg.
303]), Py, (resp. Q) of principal orbits of N, (resp. M) and such that
each f; restricts to a map g : N -interior (P;)— M -interior (Q,) that
restricts respectively to a diffeomorphism hj : P — 0Q ;, from the boun-
dary of Py to the boundary of Q, for k= 1,2. We will construct by in-
duction closed smooth S!-manifolds X ; and Y; without boundary and
with exactly 2a; fixed points and a smooth S'-map F;: X;— Y; repre-
senting a class [ X}, f;]€ Sq1(Y;), for j=1,...,m. We define X, =N/,



92 Italo José Dejter

Y, = M{ and F, = f,. Then we define recursively, (see for example
[3, pg. 50]).
- X+, = (X interior(P},) | ) (N} -interior(P;, ; ),
oj
where ¢;:0P;, »0P;,, is an S'-diffeomorphism:

Yj+y = (Y-interior(Q ;) U (M]++ y-interior(Q; . 4),
vj
Where l//j:hj2°¢j°hj1- A]SO deﬁne Fj+l :Xj+1—‘> )/j+1 by Fj+1 |Xj'in'
terior (P;,) and by F;., | N/, -interior(P;,, ;)=g;, . Note that F,,,
is a smooth S'-map. Finally we take X=X,, Y=Y, and f =F,,.
Observe that if r=2 then the subjacent spaces of X and Y are §2 x §"~!

Proposition 11. [X, f]e Ssi(Y).
Proof. The fact that f : X - Y is a homotopy equivalence follows from
the theorem of Whitehead, (see for example EIS]), and the exactness of
appropriate Mayer Vietoris sequences associated to our construction, such
as for example in [3, pag. 51].

From [7, pags. 117-118] we conclude the following.

4 j 2m
Proposition 12. If we denote YS' = Y. q;, where qy,_, is the origin of M,
j=1

J
and q,, is the point at infinity of M,

l#(f*(l)) = (1—1(M1)a j~—1(1V11), ""l—l(Mm)’A—l(Mm))-

then up to units

Now theorem 9 for T = S! is obtained from corollary 2 and the last
two propositions.

Remark 13. The G-homotopy equivalences obtained in the theorem 9
are atypical, i.e. they do not satisfy the conjecture 0 if for example
Py=A_(M)A-(N) and  P;=2_(M)/A_,(N;)

are different in R’/ U.

6. Atypical Settings and the Class A(.).

Proposition 14. Let f : X > Y as in theorem 9. Then f* (A(Y)) = A(X).

Proof. With the notation of theorem 9 suppose that r=2 and T =S
The general case may be conc]uded from what follows, an induction
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procedure and substitution of the group. Now for every complex S!-mo-
dule M of real dimension n + 1 there exists a diffeomorphism:
dm:S(RxM)—>M7™ given by ¢p(r,0)=(1+r)"'(, where re [-1,1) and
by ¢u(—1,0)=+. Then for j= 1,2 the normal bundle of N} ~ S(R x N;)
in Rx N; is a trivial bundle and from this we have embeddings
N} €N, x N, x R*=E with trivial normal bundle of N in E. By
attaching a handle §' x $"°! x [0, 1] < E, with effective S'-action on
S' and trivial S'-action on $"~! x [0, 1], so that S x $"~! x {0}, (resp.
S x 8”71 x {1}) is identified equivariant and diffeomorphically with 0P, ,,
(resp. 0P,,), we obtain an S'-embedding of X in E which can be chosen
smooth, [3, pag. 317]. Then there exists a bundle isomorphism from the
normal bundle of N in E restricted to dP,, onto the normal bundle
of N3 in E restricted to 0P, covering the S'-diffeomorphism ¢,. Con-
sider the correspondence y : 9P, , — SO(n + 3) taking each point x e 0Py
to the linear transformation over x associated to the mentioned bundle
ismorphism. Since ¥ is homotopic to a constante then the normal bundle
of X in E is trivial, ([14]). The same argument shows that Y can be em-
bedded in M; x M, x R, which implies that 7Y is stably trivial. Thus
the induced bundle f*(tY) is stably trivial. Consider the commutative
S'-diagram '

E Y ix B
ll Jproj.
X / ¥

where i : X - E is the constructed embedding. Then f oi: X — Y x E is
also an S'-embedding. The S'-normal bundle of X in Y x E is v, , . X =
=veX @ f*(zY).From the.observations above we have that v= Vyx X 18
a trivial bundle. Thus tX®v= f*tY @ E)), where E'= Y x E is a trivial
bundle. We conclude that

AeX) - Av) = AcX @ v) = f*[AY)- AE)] = [f*A(xY)).

Since v is trivial, it follows proposition 14.
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