On equivariant homotopy equivalences

Italo José Dejter*.

Let G be a compact Lie group. Ted Petrie set the following conjecture related to [7, pg. 20].

Conjecture 0. Let X and Y be closed smooth G-manifolds without boundary and let $f: X \to Y$ be a smooth G-map which represents a homotopy equivalence not necessarily having an equivariant homotopy inverse. Then there exist product G-fibre bundles $Y \times N$ and $Y \times M$ such that X is smoothly G-embedded in $Y \times N$ via an embedding f such that the composition f is f with the projection f if f is f in f in f in f in f is f in f

A description of the situation in the conjecture is given in the following diagram.

A G-homotopy equivalence $f: X \to Y$ with no G-homotopy inverse is called exotic and so X is called G-exotic homotopy Y. The quasi-equivalences of [7, pg. 21], whose classification for actions of a torus T, given in [9], we remark in our section 2, give exotic G-homotopic equivalences by Alexandroff compactification. In section 3 we contradict the possibility given by W. Y. Hsiang [6, pg. 108] of the inexistence of effective exotic actions of T^2 or T^3 in CP^n .

A G-homotopy equivalence is said to be atypical if it does not satisfy conjecture 0, in which case is necessarily exotic. In section 5 we show the existence of atypical G-homotopy equivalences constituted by the cases

^{*} Supported by a grant from CNPq, Brasil. Recebido em 20/02/81.

described in theorem 9 as indicated in remark 13. In fact theorem 9 shows the diversity of coordinates of the invariant $i_Y^*f_*(1)$ in equivariant K-theory [7, pg. 108], in contrast to their indifference in Petrie's exotic examples [7, pg. 125] and the effective ones of our section 3. We recall that [12, pg. 142] shows that these Petrie's examples $f: X \to Y$ preserve the classes $\widehat{A}(.)$ of Hirzebruch, [5], (Compare [4]), which suggests the preservation of the Pontrjagin classes. In section 6, proposition 14, we see that if $f: X \to Y$ is as in theorem 9, then f preserves the classes $\widehat{A}(.)$.

1. Cyclotomic toral representations.

The ring R(T) of complex representations of the n-dimensional torus $T^n = S^1 \times ... \times S^1$ (n times), is obtained over the ring Z of integers by adjunction of n indeterminates $t_1, ..., t_n$ and their inverses, [1, pg. 77]. An irreducible element of this ring $Z[t_1, ..., t_n^{-1}]$, say $t_1^{a_1} ... t_n^{a_n}$, represents the classe of T-isomorphism of the complex vector space C endowed with the linear action of T given by $tz = (t_1, ..., t_n)$ $z = t^az = t_1^{a_1} ... t_n^{a_n} \cdot z$, where $t = (t_1, ..., t_n) \in T$, $z \in C$ and $a = (a_1, ..., a_n) \in Z^n$. The sum and the product of elements in R(T) correspond respectively to the direct sum and to the tensor product of elements of the T-isomorphism classes so represented. We represent by the same symbol a classe in R(T) or a representative of this class.

To each integer $p \in Z$ it corresponds an Adams operation ψ^p on R(T) given by $\psi^p(\chi) = \chi^p$, where χ is an irreducible element in R(T), [14]. We represent by R indistinctively the ring R(T) or its tensor product with the field Q of rationals, $R(T) \otimes Q$. Let $R' \subseteq R$ be the subsemiring consisting of the elements of R expressible in the form

A Geomotopy equi,
$$\prod_{j=1}^{r} (1-t^{\alpha_j})(1-t^{\beta_j})^{-1}$$
, up a value of the quasi-equi-

where $\alpha_j = (\alpha_{j1}, ..., \alpha_{jn}), \beta_j = (\beta_{j1}, ..., \beta_{jn}) \in \mathbb{Z}^n$ satisfy

$$\left|\prod_{j=1}^{r} \alpha_{ji}\right| = \left|\prod_{j=1}^{r} \beta_{ji}\right|, \quad \text{for} \quad i=1,\ldots,n.$$

To each collection $P = \{p_1, \dots, p_r\}$ of integers >1 relatively prime in pairs and irreducible $\chi \in R(T)$ we associate the unique pair of complex T-modules of dimension 2^{r-1} or 2^{r-1} -dimensional complex representation spaces of T,

$$M_P(\chi) = M_{p_1, \dots, p_r}(\chi)$$
 and $N_P(\chi) = N_{p_1, \dots, p_r}(\chi)$
determined by the relation, [9], $\psi^P(\chi) = (\psi^{p_i} - 1) \ (\chi) = M_P \ (\chi) - N_P \ (\chi)$.

For example, if r = 2 then

$$\psi^{P}(\chi) = (\psi^{p_1} - 1)(\psi^{p_2} - 1)(\chi) = (\psi^{p_1 p_2} - \psi^{p_1} - \psi^{p_2} + 1)(\chi) = M_P(\chi) - N_P(\chi),$$
where $M_P(t) = t^{p_1 p_2} + t$ and $N_P(t) = t^{p_1} + t^{p_2}$.

Next we give an equivalent characterization of the pair (M_P, N_P) . Recall that the class λ_{-1} of a complex T-module, [14], is defined by $\lambda_{-1}(\chi) = 1 - \chi$, where χ is irreducible in R(T), and by $\lambda_{-1}(\oplus \chi_i) = \Pi \lambda_{-1}(\chi_i)$, if χ_i runs through a finite family of complex T-modules. Then M_P and N_P satisfy

$$\phi_P(\chi) = \lambda_{-1} (M_P(\chi))/\lambda_{-1} (N_P(\chi)) \in R'.$$

In fact $\phi_P(\chi)$ constitutes an integer polynomial. Furthermore, M_P and N_P are the unique complex T-modules of dimension 2^{r-1} such that $\phi_P = \lambda_{-1}(M_P)/\lambda_{-1}(N_P)$. If p_1, \ldots, p_r are prime integers then $\phi_P = \phi_{p_1 \cdots p_r}$ is the cyclotomic polynomial of order $p_1 \ldots p_r$.

Note that the multiplicative subgroup U of units of R satisfies $U \subseteq R'$.

Lemma 1. A basis for R'/U is constituted by the cyclotomic polynomials of composite numbers applied to effective irreducible complex T-modules. (Recall that a T-space X is said to be effective if and only if $X^T \neq X^H$ for every subgroup $H \neq T$, where X^H is the fixed point set of X under the action of H).

Proof. We identify R'/U with the set of elements of R' such that the α_{ji} and β_{ji} are positive. If $a \in Z^n$ denote $(a) = 1 - t^a$. To each element $\Pi(\alpha_j)/(\beta_j) \in R'$ it corresponds the element $\Pi(|\alpha_j|)/(|\beta_j|)$ under the indicated identification, where $|\alpha_j| = (|a_{j1}|, \ldots, |\alpha_{jn}|)$. In this way R'/U is seen as a multiplicative subsemiring of the polynomial ring Z[t]. On the other hand the cyclotomic polynomial of the number $a = p_1^{r_1} \ldots p_\ell^{r_\ell}$, where $\ell > 1$, p_1, \ldots, p_ℓ are prime numbers > 1 and r_1, \ldots, r_ℓ are positive integers, is $\phi_a(t) = \phi_{p_1, \ldots, p_\ell}(t^{a'})$, where $a' = p_1^{r_1-1}$. $p_\ell^{r_\ell-1}$ by Moebius formula, [8, pag. 207]. Since the irreducible polynomials in t constitute a basis for Z[t] and the only irreducible polynomials in R'/U are the cyclotomic polynomials of composite numbers, the lemma is proved.

2. Quasi-equivalences.

A proper map $f: N \to M$ between vector spaces of the same dimension is said to have degree one if the map induced by f between the Alexandroff compactifications N^+ and M^+ of N and M respectively.

which is a map between spheres of the same dimension, is a homotopy equivalence. This makes sense since f is proper.

A smooth T-map of degree one between complex T-modules of the same dimension is said to be a quasi-equivalence of complex T-modules. In [9] nontrivial quasi-equivalences of complex S^1 -modules $f_{p_1, \dots, p_r} = f_P : N_P \to M_P$ are constructed.

For example if n=2, let a,b be natural numbers such that -ap+bq=1. Then we can take $f_{p,q}(z_1,z_2)=(\overline{z}_1^az_2^b,z_1^q+z_2^q)$.

Corollary 2, [9]. If $T = S^1$ for each $\phi \in R'$ there exists a quasi-equivalence of complex S^1 -modules $f: N \to M$, where N and M satisfy $\lambda_{-1}(M)/\lambda_{-1}(N) = \phi$. Furthermore, the common dimension of N and M may be taken to be arbitrarily large with $N^{S^1} = M^{S^1} = \{0\}$.

Remark 3. Consider the set Γ of ordered pairs (M, N) of nontrivial complex T-modules such that $\dim M = \dim N$ and such that $\lambda_{-1}(M)/\lambda_{-1}(N) \in R(T)$ takes value ± 1 when t = 1, i.e. it converges in absolute value to 1 when $t \to 1$. Let $\Omega(M, N) = \lambda_{-1}(M)/\lambda_{-1}(N)$. Ω may be interpreted as a semiring homomorphism. In fact Ω is an epimorphism. Then for each $(M, N) \in \Gamma$ we apply corollary 2 and lemma 1 to obtain a pair $(M', N') \in \Gamma$ and a T-quasi-equivalence $f: N' \to M'$ such that $\phi = \Omega(M', N')$. Furthermore $M' = M \oplus P_M$ and $N' = N \oplus P_N$, where $(P_M, P_N) \in \Gamma$ and $\Omega(P_M, P_N)$ is a unit in R', i.e. $P_M = P_N$ up to units. This is the sufficiency of the main theorem of [9].

For example let $T = S^1$, $M = t^1 \oplus t^{12}$, $N = t^3 \oplus t^4$. Then

$$\Omega(M,N) = \frac{(1-t)(1-t^{12})}{(1-t^3)(1-t^4)} = \frac{(1-t^{12})(1-t^2)}{(1-t^6)(1-t^4)} \cdot \frac{(1-t^6)(1-t)}{(1-t^3)(1-t^2)} =$$

$$= \phi_{2,3}(t^2) \cdot \phi_{2,3}(t).$$

In this case $P_M = P_N = t^2 \oplus t^6$. Then we can take $f = (f_{2,3} \circ q) \oplus f_{2,3}$, where $q(z_1, z_2) = (z_1^2, z_2^3)$.

3. Effective nonlinear T-actions on CPr

Let Δ be a complex $T \times S^1$ -module on which $\{1\} \times S^1$ acts freely, i.e. for example Δ is C^{r+1} with $(t,\eta) \in T \times S^1$ acting on $(z_0,\ldots,z_r) \in C^{r+1}$ by $(t,\eta) \circ (z_0,\ldots,z_r) = (z_0 \eta \Pi t_i^{a_{i0}},\ldots,z_r \eta \Pi t_i^{a_{ir}})$, that is $\Delta = \theta \otimes \eta$ for some complex T-module θ . Note that the unitary sphere $S(\Delta)$ is $T \times S^1$ -invariant. Define $P(\Delta) = P(\theta) = S(\Delta)/\{1\} \times S^1$, the T-linear CP^r associated to Δ or space of complex lines of θ . This is a smooth T-manifold.

Question 4. For positive integers s and r, are there effective nonlinear actions of T^s on CP^r ?

Remark 5. It is easy to see that there are not effective actions of T^k on CP^r for k > r. If T^r acts effectively on CP^r for r > 1 then the T-action is T-quasi-linear in the sense that T-actions induced on the tangent bundle and the Hopf bundle are essentially the same, as in the linear case, [4]. Kai Wang announced similar result for T^{r-1} acting on CP^r , [16].

Remark 6. Known affirmative answer to the question above happened for s = 1 and r = 4k - 1, [7, pg. 125], [12, pg. 148].

W. Y. Hsiang in [6, pg. 108], cites the S^1 -nonlinear CP^r of [12] but expresses that quasi-linearity seems to be possible for $s \ge 2$ ou 3.

Theorem 7. There exist effective nonlinear T^s -actions on $CP^{4\ell-1}$, for $1 \le s \le \ell$.

This solves partially the problem of existence of question 4 with the restrictions imposed in remarks 5 and 6.

In fact, let χ be an irreducible complex T-module. Let $M = \chi \oplus \chi^{pq}$, where pq is a composite number. Then the equivariant exterior power of M, $\Lambda(M) = \chi^0 \oplus \chi^{pq+1} \oplus \chi^1 \oplus \chi^{pq}$ has their levels $\Lambda^0(M) = \chi^0$, $\Lambda^1(M) = \chi^1 \oplus \chi^{pq}$ and $\Lambda^2(M) = \chi^{pq+1}$. Let ϕ be any T^s-complex module of dimension ℓ and let $\theta = \phi \otimes \Lambda$. Then a T^s-nonlinear $CP^{4\ell-1}$, say X, is obtained together with an equivariant homotopy equivalence $f: X \to P(\theta)$ without equivariant homotopy inverse, being the construction of f for $T = S^1$ due to [7, pg. 125].

We will remark at the end of this section a construction method for this fact.

Now, if $P(\theta)$ has effective T-action, also X has effective T-action. Assume $\theta = (\prod t_i^{a_{i1}}) \oplus \ldots \oplus (\prod t_i^{a_{i,4}} e)$. We will see in lemma 8 that for $P(\theta)$ to be T-effective, the associated matrix

$$\begin{bmatrix} a_{11} \dots a_{1.4e} \\ a_{s1} \dots a_{s,4e} \end{bmatrix}$$

must contain a maximal square matrix whose determinant is ± 1 .

For convenience denote $Z_0 = S^1$. Let $G = Z_{\alpha_1} \times ... \times Z_{\alpha_s}$, where $0 < \alpha_j < \infty$. We represent elements in G by s-tuples $t = (t_1, ..., t_s)$, where $t_i \in Z_{\alpha_i}$. Let $Z^{\nu}(G)$ be the additive group of $s \times \nu$ -matrices of integers modulo α_j in the j^{th} row for j = 1, ..., s. Let $R^{\nu}(G)$ be the set of ν -dimensional complex G-modules and let $M^{\nu}_G : Z^{\nu}(G) \to R^{\nu}(G)$ given by

$$M_G^{\mathrm{v}}(\{\gamma_{jk}\}) = \sum_{k=0}^{\mathrm{v}-1} (t_j^{\gamma} j^k).$$

Then M_G^v is a bijection and $R^v(G)$ gets a group structure by means of M_G^v in such a way that M_G^v is a group isomorphism. Let $\gamma = \{\gamma_{jk}\} \in Z^v(G)$ and let W be a G-invariant subset of the projective space $P(M_G^v(\gamma))$ of complex lines of the G-module $M_G^v(\gamma)$. Denote the k-column of γ by γ_k , for $k = 0, \ldots, v - 1$.

Lemma 8. If there exists a point $[z_0; ...; z_v] \in W$ (in homogeneous coordinates) with s+1 nonzero coordinates $z_0, z_{k_1}, ..., z_{k_s}$, where $0 < k_1 < ... < k_s < < v-1$, such that $|\det(\gamma_{k_1} - \gamma_0, ..., \gamma_{k_s} - \gamma_0)| = 1$, then the action of G on W is effective.

Proof. We may assume $\gamma_0 = 0$. Suppose that the action is not effective. Then there exists $t \in G - \{1\}$ such that tw = w for every $w \in W$ and such that, if we denote by $[t] \subseteq G$ the subgroup topologically generated by t, then [t] is the image of an injective homomorphism $\phi \colon G' \to G$, where $G' = \prod_{i=1}^{\sigma} Z_{\beta_i}$ and $0 \le \beta_i < \infty$. This determines a matrix $\delta = \{\delta_{k\ell}\} \in Z^s(G')$ such that $\phi(\tau_1, \ldots, \tau_{\sigma}) = \left(\prod_{k=1}^{s} t_k^{\delta_{k1}}, \ldots, \prod_{k=1}^{s} t_k^{\delta_{ks}}\right)$. If W' is the G'-space obtaining

ned from W by means of ϕ , then $W' = P(M_G^{\sigma}, (\delta \cdot \gamma))$, where $\delta \cdot \gamma \in Z^{\sigma}(G')$ is obtained by multiplying two integer matrices representing respectively δ and γ and taking the reduction of the result in $Z^{\sigma}(G')$, contradicting that $|\det(\gamma_{k_1}, \dots, \gamma_{k_s})| = 1$, absurd.

Example. Let $\ell = 2$, $\chi = t_1 t_2^2$, pq = 6, $\phi = 1 + t_1 t_2$. Then the matrix associated to θ is

$$\begin{bmatrix} 0 & 7 & 1 & 6 & 1 & 8 & 2 & 7 \\ 0 & 14 & 2 & 12 & 1 & 15 & 3 & 13 \end{bmatrix}$$

in which we find for example the maximal square matrix formed by the third and seventh columns having determinant -1.

The end of this section was suggested by conversations mantained with W. Iberkleid.

The construction used in theorem 7 may be obtained elegantly as an application of the homotopy covering theorem of Palais, [3, pg. 93] and the generalized Poincaré conjecture, [10, pg. 109]. In fact let $\theta_{\pm} = \phi \otimes \Lambda^{\pm}(M)$, where $\Lambda^{+}(M)$, (resp. $\Lambda^{-}(M)$) is the equivariant exterior power of M in event, (resp. odd) dimensions, i.e. $\Lambda^{-}(M) = \chi^{1} \oplus \chi^{pq}$,

 $\Lambda^+(M)=\chi^0\oplus\chi^{pq+1}$. Then there exists a structure of quaternionic vector space H^n on θ^\pm so that $\rho:S(\theta)\to D(\mathbb{R}\times M)$ (with image in the equivariant unit disk of $\mathbb{R}\times M$), given by $\rho(u_+,u_-)=(|u_+|^2-|u_-|^2,2\langle u_+,u_-\rangle)$, where $u_\pm\in H^n\theta_\pm$, is a T-map. ρ may be considered as the orbit map of $S(H^n\times H^n)$ with the diagonal action of Sp(n). There are exactly two types of orbits for this action, namely Sp(n)/Sp(n-2) over $S(\mathbb{R}\times M)\subseteq D(\mathbb{R}\times M)$, and Sp(n)/Sp(n-1) over the interior of $D(\mathbb{R}\times M)$. Let $\phi\colon\chi^p\oplus\chi^q\to M$ be given by $\phi=f_{p,q}\cdot|f_{p,q}|^{-1}$. Then ϕ is a T-map, $D_\phi=\phi^{-1}(D(\mathbb{R}\times M))$ is a 5-disk [7, pg. 122], and ϕ restricted to the boundary ∂D_ϕ of D_ϕ is homotopic to the identity map $id\mid\partial D^5$ of the boundary S^4 of D^5 by a homotopy that extends radially over D^5 , starting at ϕ .

Let Y be the pullback space of ρ and $\phi \mid D_{\phi}$. Then the lifting of ϕ , $\overline{\phi}: Y \to S(\theta)$ is a Sp(n)-map homotopic to the identity map of Y by the Palais theorem mentioned above. By the generalized Poincaré conjecture, Y is diffeomorphic to $S^{8\ell-1}$. Let $b: S^1 \to Sp(n)$ be given by $b(t) = diag(t, \ldots, t)$. The image of S^1 through b acts freely on both sides of $\overline{\phi}$, so that by taking the orbit spaces by the resulting S^1 -actions we obtain a homotopy equivalence $f: X \to P(\theta)$ with Y diffeomorphic to $P(C^{4\ell})$. Note that f is a T-map. However f does not have equivariant homotopy inverse, as was established in [7, pg. 128], technic that we describe subsequently in relation to questions and facts suggested in the beginning of this paper.

4. Equivariant homotopy irreversibility.

Given a closed boundaryless smooth T-manifold Y, let $S_T(Y)$ be, as in [7, pg. 102], the family of classes [X, f] of T-homotopy equivalences of smooth T-maps $f:(X, X^T) \rightarrow (Y, Y^T)$. In addition we assume that $H^1(Y; Z) = 0$ and that $H^3(Y; Z_2) = 0$. Under these circunstances [10, pg. 116] establishes the existence of a Thom isomorphism in equivariant K-theory, $\psi_Y: K_T^*(Y) \rightarrow K_T^*(\tau Y)$, where τY is the tangent bundle of Y. Let $h^*(.) = K_T^*(.) \otimes Q$. Then [7, pg. 116] establishes the existence of a homomorphism $f_*: h^*(X) \rightarrow h^*(Y)$ adjoint to the usual induced homomorphism $f_*: h^*(Y) \rightarrow h^*(X)$ with respect to nondegenerate bilinear forms ([7, pg. 98]), $Id_T^X(x \cdot x')$ and $Id_X^Y(y \cdot y')$, where Id_T^Y is the composition $(Ind_Y \circ \psi_Y) \otimes 1_Q$ with $Ind_Y: K_T^*(\tau Y) \rightarrow R(T)$, the Atiyah-Singer index homomorphism, $f_*: h^*(X)$, $f_*(X)$, $f_*(X)$, $f_*(X)$, and $f_*(X)$ being the identity map of the rational numbers.

This way $f_*(1)$ becomes an invariant of the setting $[X, f] \in S_T(Y)$ satisfying (if X_α are the connected components of X^T and $i_Y: Y^T \to Y$ is the usual inclusion) that the element $i_Y^*(f_*(1)) \in h^*(Y^T) = \prod_{i=1}^r h^*(X_\alpha)$

On equivariant homotopy equivalences

has its coordinate in $h^*(X_{\alpha})$ equal to $\lambda_{-1}(vY_{\beta})/\lambda_{-1}(vX_{\alpha}) \cdot 1$ up to units in R(T), where $f(X_{\alpha}) \subseteq Y_{\beta}$, Y_{β} is a connected component of Y^T and vX_{α} (resp. vY_{β}) is the equivariant normal bundle of X_{α} (resp. Y_{β}) in X (resp. Y).

According to [2] we know that i_Y^* is a monomorphism of R(T)-modules (Atiyah-Segal localization lemma) and since f restricted to the fixed point sets is a T-homotopy equivalence, we conclude that the R-algebra $h^*(Y)$ is an R-submodule via f^* of $h^*(X)$ with coordinates taken in the larger R-module $h^*(X^T) = h^*(Y^T)$. See [7, pg. 116] and [4, Thm. 1.1].

Observe that in section 3 we obtained a homotopy equivalence $f: X \to P(\theta)$ given by a smooth T-map. The restriction of f to X^T is a bijection $f^T: X^T \to P(\theta)^T$ so that $i_Y^*(f_*(1)) = \phi_{p,q}(\chi) \cdot 1 \in h^*(X^T) = \text{direct}$ sum of 4ℓ copies of the ring R. Thus f fails to be a T-homotopy equivalence, as we claimed in section 3 to warrant nonlinearity of the T-action obtained over X, since $\phi_{p,q}$ is not a unit in R(T).

5. Diversity of coordinates of $f_*(1)$ for X connected.

The examples of nontrivial settings [X, f] in the work of T. Petrie are characteristic in that all the coordinates of $i_Y^*(f_*(1))$ coincide up to units. Yet in our effective generalization in section 3 this fact always happens, as in the Alexandroff compactifications of the T-quasi-equivalences of our first two sections. When does it fail to happen?

Theorem 9. Given P_1, \ldots, P_m in $R'(S^1)$, pairwise different, given an irreducible complex T-module χ and positive integers a_1, \ldots, a_m there exists a closed boundaryless smooth T-manifold Y such that $H^1(Y; Z) = 0$, $H^3(Y; Z_2) = 0$ and such that Y^T is isolated and a map $f: X \to Y$ representing and element $[X, f] \in S_T(Y)$ such that $2a_j$ coordinates of $i_Y^*(f_*(1)) \in K_T^*(Y^T) = \Pi R(T)$ are of the form $P_j(\chi)$ up to units, for $j = 1, \ldots, m$, being the number of nonunit coordinates of $i_Y^*(f_*(1))$ equal to $2\sum_{i=1}^m a_i$.

The proof of theorem 9 depends on the following.

Lemma 10. Let N and M be nontrivial complex S^1 -modules of real dimension n+1 and let $f: N^+ \to M^+$ be a smooth S^1 -map of degree one. Given a regular value x of f such that $S^1(x)$ is a principal orbit, ([3, pg. 179]) there exists a smooth S^1 -map $g: N^+ \to M^+$ which is S^1 -homotopic to f such that x is a regular value of g and such taht $g^{-1}(x)$ consists of a point. Thus $g^{-1}(S^1(x))$ is a principal orbit.

Proof. We may assume that the inverse image of x under f is a collection of points $f^{-1}(x) = \{y_1, ..., y_{2s+1}\} \subseteq N^+$ such that $sign(df) y_i = (-1)^j$, for j = 1, ..., 2s + 1, ([11, pg. 27]). If s = 0 the lemma holds. Assume s > 0. Let $\rho: N^+ \to N^+/S^1$ be the quotient map. We can choose a neighborhood V of $\{y_i/S^1\}_{i=2}^{2s+1}$ diffeomorphic to the *n*-disk D^n , contained in the subset of principal orbits and excluding the point v_1/S^1 , in such a way that ρ is a fibration over V having a section $\sigma: V \to N^+$. We want to define $g: N^+ \to M^+$ coinciding with f out of ρ^{-1} (interior of V) and sending $\rho^{-1}(V)$ out of $S^{1}(x)$. To attain this purpose it suffices to extend the restriction of f over $\sigma(\partial V)$ to a smooth map $\sigma(V) \to M^+$ that sends $\sigma(V)$ to the exterior of $S^1(x)$, that is out of a tubular neighborhood W of $S^1(x)$ of the type $W = S^1 \times \operatorname{interior}(D^n)$, i.e. inside $M^+ - W \cong D^2 \times S^{n-1}$. But the degree of the restriction h of f to $\sigma(V)$ is zero, since by [11, pg. 27], $\deg(h, x) = \sum_{j=2}^{2s+1} sign(df) y_j = 0, \text{ and this value does not depend on the}$ choice of the regular point y of h. Thus the restriction $h': \sigma(\partial V) \to M^+ - W$. has degree zero, so it is homotopic to a constant map. This implies that h' can be extended to a smooth map $h'': \sigma(V) \to M^+ - W$. Moreover, we may choose h" in such a way that the map $g: N^+ \to M^+$ defined g(y) == f(y) if $y \in N^+ - \rho^{-1}$ (interior of V) and by g(ty) = th''(y) if $y \in \sigma(V)$ and $t \in S^1$, is a smooth S^1 -map. To prove that g is S^1 -homotopic to fit suffices to extend the map $\phi: \partial \{\sigma(V) \times [0, 1]\} \to M^+$ defined by $\phi(y,0) = f(y)$ and $\phi(y,1) = g(y)$, for $y \in \sigma(V)$ and by $\phi(y,\tau) = f(y)$ for $v \in \sigma(\partial V)$ and $\tau \in [0, 1]$, to a map $\overline{\phi} : \sigma(V) \times [0, 1] \to M^+$. But the domain of ϕ is topologically S^n and its image is S^n so that ϕ is homotopic to a constant map, and so $\overline{\phi}$ exists as a continuous map. We define $\psi: N^+ \times [0,1] \to M^+$ by $\psi(y,\tau) = f(y)$ for $y \in N^+ - \rho^{-1}$ (interior of V) and $\tau \in [0, 1]$ and by $\psi(ty, \tau) = t\phi(y, \tau)$ for $y \in \sigma(V)$, $t \in S^1$ and $t \in [0, 1]$. Then ψ is an S^1 -homotopy between $f = \psi_0$ and $g = \psi_1$.

Proof of theorem 9. Without loss of generality we may assume that $T = S^1$ and $\chi = t$. For j = 1, ..., m let M_j and N_j be complex S^1 -modules of real dimension n+1 and let $f_j: N_j^+ \to M_j^+$ be representatives of classes $[N_j^+, f_j] \in S_{s,1}(M_j^+)$. According to lemma 10 the maps f_j may be taken so that there exists for k = 1, 2, smooth tubular S^1 -neighborhoods, ([3, pg. 303]), P_{jk} , (resp. Q_{jk}) of principal orbits of N_j^+ , (resp. M_j^+) and such that each f_j restricts to a map $g_{jk}: N_j^+$ -interior $(P_{jk}) \to M_j^+$ -interior (Q_{jk}) that restricts respectively to a diffeomorphism $h_{jk}: \partial P_{jk} \to \partial Q_{jk}$ from the boundary of P_{jk} to the boundary of Q_{jk} , for k = 1, 2. We will construct by induction closed smooth S^1 -manifolds X_j and Y_j without boundary and with exactly $2a_j$ fixed points and a smooth S^1 -map $F_j: X_j \to Y_j$ representing a class $[X_j, f_i] \in S_{S^1}(Y_j)$, for j = 1, ..., m. We define $X_1 = N_1^+$,

 $Y_1 = M_1^+$ and $F_1 = f_1$. Then we define recursively, (see for example [3, pg. 50]).

$$X_{j+1} = (X_{j-1} \operatorname{interior}(P_{j2}) \bigcup_{\phi_j} (N_{j+1}^+ \operatorname{-interior}(P_{j+1,1}),$$

where $\phi_j: \partial P_{j2} \to \partial P_{j+1}$ is an S^1 -diffeomorphism:

$$Y_{j+1} = (Y_{j-interior}(Q_{j2}) \bigcup_{\psi_j} (M_{j+1}^+-interior(Q_{j+1,1}),$$

where $\psi_j = h_{j2} \circ \phi_j \circ h_{j1}$. Also define $F_{j+1} : X_{j+1} \to Y_{j+1}$ by $F_{j+1} \mid X_j$ -interior (P_{j2}) and by $F_{j+1} \mid N_{j+1}^+$ -interior $(P_{j+1,1}) = g_{j+1,1}$. Note that F_{j+1} is a smooth S^1 -map. Finally we take $X = X_m$, $Y = Y_m$ and $f = F_m$.

Observe that if r = 2 then the subjacent spaces of X and Y are $S^2 \times S^{n-1}$

Proposition 11. $[X, f] \in S_{S^1}(Y)$.

Proof. The fact that $f: X \to Y$ is a homotopy equivalence follows from the theorem of Whitehead, (see for example [15]), and the exactness of appropriate Mayer Vietoris sequences associated to our construction, such as for example in [3, pag. 51].

From [7, pags. 117-118] we conclude the following.

Proposition 12. If we denote $Y^{S^1} = \sum_{j=1}^{2m} q_j$, where q_{2k-1} is the origin of M_k and q_{2k} is the point at infinity of M_k^+ then up to units

$$i_{\mathbf{Y}}^*(f_*(1)) = (\lambda_{-1}(M_1), \lambda_{-1}(M_1), \dots, \lambda_{-1}(M_m), \lambda_{-1}(M_m)).$$

Now theorem 9 for $T = S^1$ is obtained from corollary 2 and the last two propositions.

Remark 13. The G-homotopy equivalences obtained in the theorem 9 are atypical, i.e. they do not satisfy the conjecture 0 if for example

$$P_1=\lambda_{-1}(M_1)/\lambda_{-1}(N_1) \qquad \text{and} \qquad P_2=\lambda_{-1}(M_2)/\lambda_{-1}(N_2)$$
 are different in R'/U .

6. Atypical Settings and the Class $\hat{A}(.)$.

Proposition 14. Let $f: X \to Y$ as in theorem 9. Then $f^*(\widehat{A}(Y)) = \widehat{A}(X)$.

Proof. With the notation of theorem 9 suppose that r = 2 and $T = S^1$. The general case may be concluded from what follows, an induction

procedure and substitution of the group. Now for every complex S¹-module M of real dimension n+1 there exists a diffeomorphism: $\phi_M: S(\mathbb{R} \times M) \to M^+$ given by $\phi_M(r,\zeta) = (1+r)^{-1}\zeta$, where $r \in [-1,1)$ and by $\phi_M(-1,0) = +$. Then for j = 1, 2 the normal bundle of $N_i^+ \simeq S(\mathbb{R} \times N_i)$ in $\mathbb{R} \times N_i$ is a trivial bundle and from this we have embeddings $N_i^+ \subseteq N_1 \times N_2 \times \mathbb{R}^2 = E$ with trivial normal bundle of N_i^+ in E. By attaching a handle $S^1 \times S^{n-1} \times [0,1] \subseteq E$, with effective S^1 -action on S^1 and trivial S^1 -action on $S^{n-1} \times [0,1]$, so that $S^1 \times S^{n-1} \times \{0\}$, (resp. $S^1 \times S^{n-1} \times \{1\}$) is identified equivariant and diffeomorphically with ∂P_{12} , (resp. ∂P_{21}), we obtain an S^1 -embedding of X in E which can be chosen smooth, [3, pag. 317]. Then there exists a bundle isomorphism from the normal bundle of N_1^+ in E restricted to ∂P_{12} onto the normal bundle of N_2^+ in E restricted to ∂P_{21} covering the S^1 -diffeomorphism ϕ_1 . Consider the correspondence $\psi: \partial P_{12} \to SO(n+3)$ taking each point $x \in \partial P_{12}$ to the linear transformation over x associated to the mentioned bundle ismorphism. Since ψ is homotopic to a constante then the normal bundle of X in E is trivial, ([14]). The same argument shows that Y can be embedded in $M_1 \times M_2 \times \mathbb{R}$, which implies that τY is stably trivial. Thus the induced bundle $f^*(\tau Y)$ is stably trivial. Consider the commutative S¹-diagram

$$E \xrightarrow{\qquad} Y \times E$$

$$\downarrow i \qquad \qquad \downarrow proj.$$

$$X \xrightarrow{\qquad f \qquad} Y$$

where $i: X \to E$ is the constructed embedding. Then $f \circ i: X \to Y \times E$ is also an S^1 -embedding. The S^1 -normal bundle of X in $Y \times E$ is $v_{Y \times E} X = v_E X \oplus f^*(\tau Y)$. From the observations above we have that $v = v_{Y \times E} X$ is a trivial bundle. Thus $\tau X \oplus v = f^*(\tau Y \oplus E')$, where $E' = Y \times E$ is a trivial bundle. We conclude that

$$\widehat{A}(\tau X) \cdot \widehat{A}(\nu) = \widehat{A}(\tau X \oplus \nu) = f^* [\widehat{A}(\tau Y) \cdot \widehat{A}(E')] = f^* (\widehat{A}(\tau Y)).$$

Since v is trivial, it follows proposition 14.

References

^[1] J. F. Adams, Lectures on Lie Groups, Benjamin, 1967.

^[2] M. Atiyah and G. Segal, *The index of elliptic operators 11*, Ann. of Math. (2) 87, (1968), 531-545.

- [3] G. E. Bredon, Introduction to Compact Transformation Groups, Academic Press, New York, 1972.
- [4] I. J. Dejter, Smooth S¹-manifolds in the homotopy type of CP³, Michigan Math. Jour., 23, (1976), 83-95.
- [5] F. Hirzebruch, Topological Methods in Algebraic Geometry, 3th ed., Springer-Verlag, New York, 1966.
- [6] W. Y. Hsiang, Cohomological Theory of Topological Transformation Groups, Springer-Verlag, New York, 1975.
- [7] W. Iberkleid and T. Petrie, Smooth S¹-manifolds, Springer-Verlag Lecture Notes 557, New York, 1978.
- [8] S. Lang, Algebra, Addison-Wesley Co., Reading, Mass., 1966.
- [9] A. Meherhoff, Proper T-maps of T-modules, Bull. Amer. Math. Soc., 81(3), 474.
- [10] J. W. Milnor, Lectures on the h-cobordism theorem, Princeton Univ. Press, 1975.
- [11] ______, Topology from the Differentiable Viewpoint, Univ. of Virginia Press.
- [12] T. Petrie, Smooth S¹-actions on homotopy complex projective spaces and related topics, Bull. Amer. Math. Soc., 78(2), 1972.
- [13] ______, Torus actions on homotopy complex projective spaces, Invent. Math. 20, 139-146, (1973).
- [14] G. Segal, Equivariant K-theory, Inst. Hautes Études Sci. Publ. Math., 34 (1968), 129-151.
- [15] E. Spanier, Algebraic Topology, McGraw Hill, New York, 1966.
- [16] K. Wang, Torus actions on homotopy complex projective spaces, preprint to be published.

UNIVERSIDADE FEDERAL DE SANTA CATARINA 88.000, Florianópolis, SC, Brasil.