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The topological conjugacy problem for generalized Hénon
mappings: some negative results.

C. Tresser

Abstract.

Mappings of the plane, introduced by M. Hénon and R. Lozi, are
presented as perturbations of endomorphisms of the line. When some
heteroclinic tangencies occur, which allow topological conjugacy between
the corresponding endomorphisms, -and arbitrarily close to the endo-
morphisms case, we prove the nonexistence of topological conjugacy
between Hénon mapping and Lozi mapping. The proof, as well as related
results, relies on the existence of a topological invariant previously in-
troduced by J. Palis.

1. Introduction.

In [6], M. Hénon introduced a two-parameter tamily of diffeomor-
phisms of R?:

(1) Hu.b:(x’y)_’(l —ax2+y,bx).

Numerical computations performed with this mapping led to the con-
jecture that, for any b with |b| € ]0; 1[, at least |b| small enough, and some
values of a depending on b, H,, possesses a strange attractor (for recent
works on the meaning one should attribute to these last words, see [15]).
A proof of this conjecture (and more generally a clear understanding
of what is going on in the dynamics of (1)) would be of prime interest
for dynamical systems theory, and more particularly, for its applications
to the description of the onset of turbulence. A similar conjecture has
been proved recently by M. Misiurewicz [11] for the two-parameter fa-
mily of homeomorphisms first investigated by R. Lozi [8]:

@) Loy ()= (1 = alx| + ,bx).

More precisely, he proved the following
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Theorem 1 (Misiurewicz). If a and b verify the following conditions:

1.0<b<1,a>0,
2. 2a+ b < 4,

2
TR
4 a./2> b +2,

2a +1°

then L,, has a strange attractor.

For b# 0, and when their non-wandering set is nonvoid, H,, and L,,
can be written respectively as:

3) Hg,: (X, Y)—> (Y, RY(l — Y) + bX),
and:
@ Loy (U, V)a(v,g(l —|1—2V|)+bu),

where use has been made of the changes of variables:

(X, Y)=(y + .o’ x + B),
with:
R b 1 o 1
R=1-b 1 —b)? 2 =" — — — ag=— f=f=—
(5) < +£[( )2 +4a]'’?, 2 -+ > 2,0( b,ﬂ B 5
e= +1, only ¢ = —1 is possible if a = 0.
Here, we shall take a # 0 and ¢ = 1.
and:
U, V)=(yy + 6, y'y + 9),
(6) with:
AR B -t T e
Yag 2 sy_ba(s_é—z

Both Hg, and L,, can be considered, at least when |b| is small enough,
as perturbations of an endomorphism of R?>. More generally, for an n
parameter family:

(M Ja 1 x> fux),

of endomorphisms of R, it-is interesting to consider the elements of the
(n+ 1) parameters family:

(8) Fa.b :(x’y) _’ (,V, fa(y) it bx),
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of homeomorphisms of R?, when b is small, as perturbations of the en-
domorphisms:

(9) Fu‘O Z(X, ,V) i (y’ fa(y)),

whose dynamics in turn is easily deduced from the dynamics of f,. (To
my knowledge, this kind of remark first appeared in [2].)
Réturning now to the maps:

(10) hg : x - Rx(1 — x),
and:
(11) bt w0 el £ 1

which generate respectively Hg, and L,,, let us remark that, respecti-
vely for 0<R<4 and 0 <a <2, these maps, restricted to [0, 1], are
endomorphisms of the interval. Most results on sensitive dependence
to initial conditions for such maps of an interval into itself are expressed
in terms of probabilistic invariant measures absolutely continuous with
respect to Lebesque’s (im.) [3, 7, 10] (see however [4, 15]). £, admits
such im.’s for 1 <a <2 while the set of “good” values of R for hyg has
a complicated (Cantor) structure. When hy preserves an im,, it is topo-
logically conjugate to some ¢, [10]. As pointed out in [11], it is thus
tempting to look for topological conjugacies relating some Hénon maps
to some Lozi maps with (a,b) verifying the conditions in Theorem 1
(indeed, Misiurewicz mentioned that it may happen that such conjugacy
does not exist: see also [16]).

Let us now recall an old conjugacy result relating hg to ¢, [18]:

Theorem 2 (Ulan, Von Neumann). h, is topologically conjugate to {,.
The conjugacy is given by

2 {
x—»——arcsm\/;
T

1 dx
which allows one to get — ————= as i.m. for h,.
e ol —1x) '

Since the surjectivity of h, and ¢, restricted to [0, 1] is hardly genera-
lized to a property of some Hg, or L,, for b# 0, we shall characterize
the endomorphisms in a different way: R =4 (respectively a =2) is the
lowest value of the parameter such that a point in [0, 1] has the trivial
fixed point 0 as limit of its forward images and the non trivial fixed point
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as limit of one sequence of its backward images under hg (respectively £.,).
Otherwise speaking, adapting the terminology introduced by L. Block
for one dimensional endomorphisms [1] (see also [9]), R = 4 (respecti-
vely a=2) corresponds to a first heteroclinic tangency of the unstable
manifold of the non trivial fixed point with the stable manifold of 0, when
increasing R in hg (respectively a in ¢,). The same first tangency, between
the unstable manifold of the non trivial fixed point and the stable ma-
nifold of the origin; seems then a good candidate for the research of a
conjugacy of a Hg p to an L, ,. However, the main result of this paper
is the following:

b
Theorem A. On the line b>0, a=2 — 5 in a — b parameters space, there

is a sequence (a;, b;) converging to (2,0) such that no Ly, s, is topologically
conjugate to a Hénon mapping.

Note that the line a =2 — %, b >0 in the ¢ — b parameters space, which

corresporids to the heteroclinic tangency above mentioned, is also a frontier
of the open domain defined in Theorem 1, when bsL-_Sﬂ (see
Figure 1 in [11]). As is already the case for ¢,, the closure of the invariant
“manifold” (see [11] for the use of this:word for L, ,) of the non trivial
fixed point of L, _,,, is not a strange attractor since in any neighbor-
hood of this closure, one can find points whose trajectory diverges. This
closure appears however as a “strange invariant set,” as well as [0, 1]
when one considers ¢, as a mapping from R to itself.

The paper is organized as follows: section 2 contains a geometric
description of the mappings considered and of part of some of the invariant
manifolds. In section 3, we prove Theorem A: the proof relies deeply on
the existence of a topological invariant introduced by J. Palis in [14].
Related results are formulated in section 4 and further comments are
reported in the conclusive part.

I want to thank P. Collet, S. Newhouse and J. Palis for their advice
which enabled me to complete this work. I also want to thank all my
colleagues of C.IM.S. for their very kind hospitality.

2. Description of the mappings.

Let ce]0,1[ and f :R— R be continuous, concave, difterenuable
except maybe at ¢, with f'(x)>0 for x<¢, f'(x) <0 for x>¢, f(0) =

e ————— e e
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=f(1)=0 and f(c) close to 1. We suppose furthermore that there is a
x*e e, I, with, f(x*)=2* and f'(x*) < —1, which implies f'(0)>1: f
admits two unstable fixed points. The two dimensional map:

(12) F:(x,9) =0, f0)

maps R? on the graph of the function y = f(x). F admits 0 = (0,0) and
M = (x*, x*) as unique fixed points. The following definition will be well
adapted for all our needs:

Definition. Let g be an endomorphism of a metric space into itself. A
local stable (respectively, unstable) manifold at a fixed point A4 is de-
fined as:

Wi toe = {B! lim dist(A, g"(B)) = 0 and dist(4, g"(B)) < ¢ for all n > 0!,

n—>o

(respectively:

W4 1 = {B| lim dist(A, g "(B))=0 and dist(4, g "(b))<e¢ for all n>0})
for some &> 0. A global stable (respectively unstable) set (we shall say
also, often abusively, manifold) at a fixed point A is defined as

= J 9"(W"%.1.). A further subs-
n=0

cript w1ll be added when necessary to indicate to which mapping one

refers.

U 9 'l A Iuc reSpeCtive‘ly,

Remark. W3, , is the point A in the case of f as defined above. W5 and
W' are the usual stable and unstable manifolds for F when F is a diffeo-
morphism.

The following proposition is straightforward (see [1] for more general
considerations):

Proposition 1. For a map f: R— R as defined above, one has:

Wi.= {yeR| f"(y) = x* for some n > 0},
We = [f2c), f(O)] if fle)<1 and J—o0,f(c)] if f(c)>1,
Wi ={yeR: f(y)= for same n> 0} (W3 reduces to.
{0,1} if f(c) < 1),
= ]-o00,f(d)] = f(R).

One deduces then (see also [9]):
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Proposition 2. For the map F :R?> —» R2, one has:

W3 = lhorizontal lines through each point of Waeris
Wi = Graph [ f !_Wf(-*.f}’
W3 = {horizontal lines through each point of WA, It

Wi = Graph [f -, jenl.
Before proving theorem A, we shall describe, for the homeomorphisms:
(13) (b > 0, small) F,:(x,y) = (0, f(3) + bx),

the invariant sets relative to the fixed points 0 and M, which may be
viewed as perturbations of the fixed points 0 and M for F (see also [9]):

It is convenient to choose a small { > 0 and to consider the successive
images, under F,, of the square Q=0,0,0,0, where Q,=(—{, —{)
and Q;=(014+140).

Fy(Q) is the intersection with the vertical strip —{<x<1+4¢(, of
the parabolic strip f(x)—b{ <y <f(x)+ b(l1 + (). Using the change of
coordinates:

(14) (X,Y)=(x,[y = f()]/b),
which brings Fy(Q) on Q, one gets:
(15) (X, )= (RX(1' = X} 4 &%, ¥),

as new expression for F,: the same as before but with the roles of coordi-
nates exchanged. This allows to construct the sucessive iterates of Q in
a quite comprehensive way [17], the first steps being illustrated in fi-
gure 1 (see also [17]). For n small enough, F}(Q) is roughly made of 2"
“parabolas” which can be numbered from 1 to 2" starting from the upper
one. We are now in position to describe Wy, f, as well as necessary for
our purpose. This description will be made in four steps.

Step 1. Using proposition 2, W), F contains an arc, to which M belongs,
near the graph of y = f(x). This arc, like M, lies in the first parabola of
FX(Q). The part of this arc with positive abscissa and to the left of M is
mapped by F, onto that part of the arc joining M to the right end of the
arc. This right part is in turn mapped by F, onto the part joining M to
the left end. With the notations of Figure 1, one gets:

@3=Fb(ﬁ17)2)=@um3-

.- B
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/l Flg 1

Step 2. Since f(c)~ 1, the projection of I;:P1 on the y-axis covers, at
least almost completely, the interval —¢ <y <1+e¢. As a consequence,
Fy(P,P,) will run at least almost all along F,(Q). More precisely, F,(P, P3) =
= P,P, will be in the second parabola of FZ(Q).

Step 3. P,P, is below P’ﬁ’z. Ordering from left to right, one gets successi-
vely P’;P,, I;:P’l, ﬁ:Pz and 171\1’2. The image of P,P, will be made of
two parabolas, images of P,P; and };7’4'

TR R S O A S B O e TN A

Step 4. I;;Pz, 157’2, 1737’2 and };47’2 are respectivelly in the first, second,
third and fourth parabolas of Fj(Q). We now look at the 1mage of

P P5' it will be made of four parabolas, images of PP 3Py, P”P’z, P’ B
and P’{’PS.

ﬁczFb(Pfsl\))=P4P2UP2 3V Py ZIUFI—N\P :
The part of Wy p, we have constructed at this point has elght arcs

pertalmng to the elght parabolas of F ,,(Q) and ordered as P P2, P’ P
’” P P P5P P6P”’ P4P’ and P4P2 We shall also need a rough
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picture of W p,, and more precisely of the part W’(‘,_*Fb which contains
the part of W¢ . with positive ordinates. We first remark that W'(‘)}b
starts from O with an arc OR close to the graph of y = f(x). We now re-
mark that:

— the stable manifold of 0 starts close to the x axis,
— the eigenvalues of DF, at 0, with norm less than 1, are negative.

As a consequence, P, and its first successive images alternate on
each side of 0, close to Wg.pb, when W}, g, is close to being tangent to
W(S).Fb. W‘(‘,f}b is thus situated as represented in Figure 1. Note that the
parts of W,ﬁ_,«b and Wg.,«h we have represented are obtained by a pertur-
bation argument (see proposition 2 above and [9]).

The rough picture on Figure 1 will serve as a basis of all subsequent
analysis. Note that no precise detail on the geometry of the manifolds
has been obtained up to now (as for example the type of tangencies):
indeed a precise description seems only possible in the case of the Lozi
mappings or the diffefomorphisms considered in Theorems B and B'. It
should be noticed that the P,’s have not been proved to be candidate
to the point of tangencies of W}, ;, and Wf,_pb when a parameter varies
if F, is not further specified.

3. Proof of Theorem A.

The main tool of the proof is a topological invariant introduced
by J. Palis in [14]. He proved the following:

Theorem 3 (Palis). Let F, F' be two C? diffeomorphisms on two manifolds,
with hyperbolic fixed (or periodic) points p and g, p' and ¢’ of saddle type.
Suppose that W*(q) and W*(p), W*(q') and W*(p') have one orbit y,y" of
quasi-transversal intersection, respectively. Denote by p, p’ the eingenvalues
of DF(q), DF'(q) with norm less than one and p, ' the eigenvalues of DF(p),
DF'(p') with norm greater than one. If f and f' are conjugate (even only
in neighborhoods of y and V') then: :

(16) log | ulllog|p| = log !y lllog!lp’|.
We need two remarks in order to apply this theorem to our problem.

Remark 1. The C?-diffeomorphism character of the maps is mainly used
to insure: a) the existence of smooth (C') linearization in the neighbor-
hood of the saddle points, independently of any non-ressonance condi-
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tion, in virtue of a theorem by P. Hartman [5], b) that the invariant mani-
folds are well behaved so that one can define quasi-transversal tangencies.

Remark 2. As well, the quasi-transversal requirement is here to prevent
pathologies like crossing of the manifolds at the tangency points (on
the contrary to theorems in bifurcation theory (see [12], [13] and referen-
ces therein) where the quasi-transversal (parabolic) character is of central
interest.) In the case of Lozi mappings, tangency is to be understood as
a vertex of one manifold pertaining to the other manifold.

A first consequence of these remarks is that Theorem 3 works as
well if F is a Lozi mapping (or one of the other piecewise linear maps
considered in section 1V). A second consequence is that we will not have
to investigate the tangencies of manifolds for the Hénon mappings: to-
pological type of tangencies would be transferred from the Lozi maps
to the Hénon map by a conjugacy (see also section V).

Using Theorem 3, Theorem A will appear as an immediate conse-
quence of the following two lemmata.

Lemma 4. On the line b >0, a=2— b/2, there is a sequence (a;,b;) con-
verging to (2,0)-such that, for the Lozi mapping WY, is tangent to Wi,.

Let us call log! u!/log!p! in Theorem 3 the Palis invariant of type

(p.q). Then we can formulate the:

Lemma 5. The Lozi maps and the Hénon maps cannot have simultaneously
their Palis invariants of types (0, M) and (M, M) respectively equal when
b #0.

Proof of Lemma 4. We need to know some pieces of the invariant mani-
folds of 0 and M for L, ,. We start with the manifolds of M.
— M itself is given by:
' - a a
(17) (xM’yM)_<]+a_b51+a_b>

— In the neighrborhood of M, F,, reads:

(18) (x,y) > (y,a — ay + bx),

and the Jacobian matrix is:

XE
(19) [b _a}
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with eigenvalues:

(20) Ay =

—a—\/a2+4b; 3= —a+/d* +4b

2 e 2 )

and associated eigenvectors given respectively by:

(21) <£> and ({ )
% oy

— The first part of Wy, we construct is a segment of the straight linc (i)}
containing M:

(22) (D): y = Ayx + (1 — Af)xp.

This segment is delimited by P,, obtained by the intersection of (D) with
the vertical line x = 1/2, and by P, obtained as the image of P,. By set-
ting that P, e Wg, one gets the condition:

b

23 e
(23) a 2

for the first tangency of Wy; and W;. Indeed, the same kind of arguments
as those developed at the end of this proof of Lemma 4 show that P, e W}
is a good condition to impose in order to obtain this first tangency. Using
(23), one gets:

4—b
4 Xy =JVu =

(24) XM = Im 6_3b"
5) s D

1 2 2 b
0 ) =(g 325): Cmtnd=5op 555

One computes then easily the points P, P), P,, P{, P5, P|’, P,, PV, P},
P, P3. Note thatall P,s are (n— 1) images of P, and that P™'s are (n— 1)
images of P{": the P{"’s are on a vertical segment and the P™’s are on
the (n— 1) image of this segment, which become fairly complicated when
n is large enough.

— The part of Wy which we shall use here is the part of the line (D'):

Of sujoogn (g Iptinppu g
(27) DI R o
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between M and the intersection of (D) with the line y=1/2. Note
that for b small enough, (D) is below the segment P;P,.

— We need also a small part of the invariant manifolds of 0. We first
note that L, , reduce to:

(28) (x,y) = (y,ay + bx),

in the y <0 half space. With (23), the Jacobian matrix is there:

0- a0 & SR~ 1
i (b a>= (b 2—b/2>’

with eigenvalues:

a+/'a*+ub

3 ju —
(30) 40 7

g I

and eigenvectors:

J 1 1
(31) (i,(,)> T4 <%>.

The piece of W we will consider is the segment of (A):

(32) (A)rp = 2X,

between 0 and the intersection of (A) with the line x=1 /2
The piece of W§ of interest is the segment of (A'):

(33) A}y = —%x,
between the intersection of (A’) with the line y =1/2 and the image of
this last point under F,_p; 5 -

The part of invariant sets we have /co\nstructed is as represented on
Fig. 1, except of course that P3P, ..., P,P, are now straight lines. The
proof of Lemma 4 relies on this picture and on the two following remarks.

Remark 1. Forb=0,a=2,all P,’s and all P,’s, forn>3 coincid‘e with 0:
as a consequence all P,’s, for n < N given, remain as close as one wants
from 0 from a=2—b/2 and b sufficiently small.
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Remark 2. F,, is linear in the half plane y <1/2. The dynamics there
is the usual linear dynamics governed by a saddle point (0 in this case):
in particular, the successive images P,, n > 2 of P} will run almost along
the piece of W} we have constructed, as long as they remain in the half
space y <1/2. On the other hand, the line y = 1/2 is mapped under F, ,
on the line x=1/2: if P, is on y=1/2, its image is on x = 1/2, and
and more precisely on the segment P/,T"I, thus above the part of Wy,
we have constructed.

Now take any b, > 0 small enough: one can then find n, such that,
with obvious notations:

~, 1 2 1
(34) Ye,,—1bo) < o and yp, (b)) = o
Thus there is a b, < b, with:

1

(35) yp, (bo) = 5

no

and a sequence |b;! converging to 0 with:

, 1
(36) _)/'p;'o+',(b,') — ? .

One deduces then the existence of a sequence [b;}, with:

(37) bye b}, bisy |4
defined by:
(38) Vry . b7 € D).

where (D’) is the piece of W;; we have constructed. This sequence corres-
ponds to homoclinic tangencies of the invariant manifolds Wy and Wy,
in the sense that a vertex of W,; belongs to Wj;.

Proof of Lemmas.
The Palis invariants of types (0, M) and (M, M) for L, , = 2%
are both equal to:

(39) p = Log?*/Log (b/2).
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For Hpg g, the fixed points are 0 and M given by:

R4+ B—1"RI¥B—1
R ; R ;

(40) (Vi <

The Jacobian matrix is:

0 1
iy (B R—2Ry>’

with eigenvalues:

_ R—2Ry+./(R—2Ry)*+4B
2 :

(42) A

For R near 4 and B small, this gives:

1

(43) M=~ (2=R—~2B—/(2— R~2B) + 4B),
% wi /

(44) M= (2—R-2B+./2— R-2B)’ +4B),

(45) A =% (R +/R*+4B).

The Palis invariants of types (0, M) and (M, M) are respectively:

Log A%
46 B L
(46) Pus i

Log — A%y

BRa. bz Log 7}
M

In order to prove Lemma 5, one has only to check that one cannot have
p1 = p,: supposing equality gives Ay = — 1}, or:

(47) 2B—2+./2—R—4B*+4B = ,/R*+4B,
which implies:
(48) R(B-1)= (1 — B)/R*+4B,

and thus is always impossible, since we have supposed R > 0. This con-
cludes the proof of Lemma 5 and Theorem A.
4. Related results.

The arguments in the proof of Theorem A must be slightly adapted
if one wants to prove the same kind of non conjugacy results between
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., and maps such that Ay =1}, : one can then introduce a sequence
(aj, b}) on a=2—b/2 such that, for L, ,, some P,; belongs to the
stable manifold of the periodic point of period 2.

In particular, we have considered the C' diffeomorphisms G, , ,
associated with the one dimensional mappings (see [3]):

1
xX<——¢
ax 5 x_2 f
g B8 O degtesdolis g
(49) Goiy 3 X X Sx oo o Sl T 2'_5,
|
1 —: AX == 5
al X) X 2+z

for a>0, ¢ >0 small. g, , is C’ and C° — as close as one wants from ¢,,.
However, one has the following:

Theorem B. On the line b >0, a=#, there is a sequence (dj,b})

converging to (2,0) such that no L, ., is topologically conjugate to a G, , 4
with ¢ small enough.

The next result illustrates another aspect of how restrictive are the
Palis invariants: if we consider the homeomorphisms K, ,, associated
with the one dimensional mappings:

ex,nx < ¢

d
: = 0 l k)
(50) bty sl G 2 €10, 1]

dl—x), x>c

with e>0, d >0, we get the following:

Theorem C. If (a;,b;) is the sequence defined in Theorem A, no L., ;s
topologically conjugate to a k, ., with d+#e.

This last theorem is proved using the same Palis invariants as Theorem A.

Before ending this section, let us mention that the methods used
here, finding sequences of double tangencies, can be used to investigate
other lines of the (a, b) parameter space of Lozi maps: for example, one gets

similar results on the line b>0, a=1/2./3b> + 4 + /(3b*> + 4)* — 32b>
which corresponds to first tangencies of Wg with W3 when b is small
enough.
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5. Some Comments.

We have tried to replace the sequence of points in theorems A, B, C
by a continuous piece of the line a =2 — b/2 starting from b= 0, by
considering mainly the signature invariants of Birkhoff. Such tentatives
have been unsuccessful up to now. However, Theorem B can be some-
what improved as follows: replace G, , , by G, , , obtained by smoothing
G, near 1/2—¢ and 1/2+¢(C? is sufficient, see [12] Theorem 3). For
G, u» (as well as for G, , ), the homoclinic tangencies and heteroclinic
tangencies of interest can be proved to be non degenerate (of parabolic
type). Then, using Newhouse’s results ([12] and references therein) on
homoclinic tangencies, we get the following:

Theorem B'. On the line b>0, a=2—b/2, there is a sequence (d,,b})
converging to (2,0) such that no L, ,, is topologically conjugate to a G,,._m,,,
with ¢ small enough. For any such ¢, there is a sequence (x{e), Bi€)) cor-
responding to the same tangencies of invariant manifolds of 0 and M as
for Ly y;, and for any 6 >0, >0 small enough, there are subsets S, ; ;
of the line of heteroclinic tangency in the (x, f) plane such that:

— S,.i.s is contained in an interval of length 6 centered at (o}, 8;) and the
Lebesgue measure uS, ; s is positive
— if (0, B)E€S, i 5. G, ,p has infinitely many sinks.

Note that in view of the results of [13], S, ; ; could be somewhat

(Sy.i.ﬁ)

small, with lim £

-0
which are proved for diffcomorphisms with finitely many orbits in their
limit set.”

In [12], S. Newhouse announces the non degenerate character of
some homoclinic tangencies of the Hénon mapping. He does not study
the whole parameters range where such non degenerate tangencies occur
but it is likely that a theorem similar to B’ holds for the Hénon mapping.

Of course, the existence of sinks, by itself, is enough to prevent the
conjugacy of a homeomorphism to a L, ,, with (a, b) as in Misiurewicz’s
theorem reported in section 1, but:

=0, if one could extend the results in [13]

— it is. not proved that sinks can occur on the line of first heteroclinic
tangency in an arbitrary neighborhood of b =0, for diffefomorphisms
of Hénon’s type.

— Theorem C shows that, within the class of generalized Hénon mappings,
sinks are not essential in the lack of conjugacy.
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