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Isometry classes of lattices of nonpositive curvature and
uniformly bounded volume*

Su-Shing Chen and Patrick Eberlein

Introduction.

In [24, p. 39] Margulis posed the following question: Given a posi-
tive integer n and numbers a,b with 0 <a <b is it true that for every
positive number ¢ there exist only finitely many homotopy equivalence
classes of compact-Riemannian manifolds M such that M has dimension
n, volume at most ¢ and sectional curvature between —a and —b? The
answer is yes if a is positive and n >4 according to [15], [17] and [24],
but ‘the answer is no if a =0 for all dimension n>3 [15].

In this paper we consider the following simpler question: Let H
be a complete, C*, connected and simply connected Riemannian mani-
fold of nonpositive sectional curvature. For each positive number ¢ what
can one say about the set of compact quotient manifolds H/I" whose
volume is at most ¢? Our main result is

Theorem 1. Let H be a complete, C*, connected and simply connected
Riemannian manifold of nonpositive sectional curvature. Assume that the
factors in the de Rham decomposition of H do not include a Euclidean
space of any dimension or a hyperbolic space of dimension 2 or 3. For each
positive numbgr ¢ let V, denote the set of compact quotient manifolds of H
whose volume is at most c. Then V. contains only finitely many isometry
classes for each positive number c.

The restrictions on the de Rham factors of H cannot be eliminated.
However if one considers diameter instead of volume, then one may
eliminate the hypothesis that H have no 3-dimensional hyperbolic space
as a de Rham factor. More precisely we have

Theorem 2. Let H be a complete, C*, connected and simply connected
Riemannian manifold of nonpositive sectional curvature. Assume that the
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factors in the de Rham decomposition of H do not include a Euclidean space
of any dimension or a hyperbolic space of dimension 2. For each positive
number ¢ let D, denote the set of compact quotient manifolds of H whose
diameter is at most c. Then D, contains only finitely many isometry classes
for each positive number c.

As an immediate consequence of Theorem 1 we obtain

Corollary 1. Let H satisfy the hypotheses of Theorem 1. Then the set of
numbers that occur as the volumes of compact Riemannian quotient mani-
folds of H is a closed and discrete subset of R.

One obtains a similar corollary from Theorem 2. Next, observe
that the spectrum of the Laplace operator acting on the C* functions
of a compact Riemannian manifold M determines the volume of M.
Hence from Theorem 1 we also obtain

Corollary 2. Let H satisfy the hypotheses of Theorem 1. If M is a compact
Riemannian quotient manifold of H, then there are at most finitely many
isometry classes of Riemannian quotient manifolds of H that have the same
spectrum as M relative to the Laplace operator acting on C* functions.

The conclusion of Corollary 2 may be true without any restrictions
on the de Rham factorization of H, but we are unable to prove this. If
H is a Euclidean space or a hyperbolic space of dimension 2 or 3, then
the conclusion of Corollary 2 is known to be true [7], [25], [29].

Our final result is a proportionality theorem that generalizes a result
of [5], which itself is an extension of the Hirzebruch proportionality
principle [19].

Theorem 3. Let H be a complete, C=, connected and simply connected
Riemannian manifold of nonpositive sectional curvature. Then there
exists a constant a = o(H) such that if M is any compact quotient manifold
of H then y(M)=a vol(M)

Here y(M) and vol(M) denote respectively the Euler characteristic
and volume of M. From this result we immediately obtain the following
corollaries. Part 2) of the first corollary strengthens the conclusion of the
first corollary to Theorem 1.

Corollary 1. Let H satisfy the hypothesis of Theorem 3, and suppose that
H admits a compact quotient manifold of nonzero Euler characteristic. Then
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1) Any two compact quotient manifolds of H have nonzero Euler
characteristic of the same sign. /

2) There exists a positive constant f§.such that the volume of any
compact quotient manifold of H is an integer multiple of f.

3)If M|, M, are any compact quotient manifolds of H then the ratio
of their volumes is a rational number.

4) If M, M, are any compact quotient manifolds of H then y(M,) =
= (M) if and only if vol(M,)= vol(M,). Moreover vol(M,)= vol(M,)
if M, and M, have isomorphic fundamental groups.

Corollary 2. Let H satisfy the hypotheses of Theorem 3. Suppose that H
does not admit the hyperbolic plane as a de Rham factor and does admit a
compact quotient manifold M with nonzero Euler characteristic. Then

1) The set of compact quotient manifolds M* of H whose fundamental
group is isomorphic to that of M contains only finitely many isometry
classes.

2) For each positive number ¢ let y, denote the set of compact quotient
manifolds of H whose Euler characteristic has absolute value at most ¢.
Then y, contains only finitely many isometry classes for each positive
number c.

To obtain the conclusions of the two corollaries to Theorem 3 it
is necessary to impose some restriction on H such as the existence of a
compact quotient manifold with nonzero Euler characteristic. For example,
Thurston [14], [30] shows that the set of volumes of compact quotients
of hyperbolic 3-space forms a nondiscrete set of positive real numbers.

We give a brief outline of the proofs. By means of a decomposition
result stated in Proposition 4.1 of [11] it suffices to prove Theorem 1 in
the following cases:

1) H is a symmetric space of noncompact type

2) The isometry group of H is discrete

3) H is a nontrivial Riemannian product H, x B where H, is a
symmetric space of noncompact type and the isometry group of
B is discrete.

The result in case 1) is due to H.-C. Wang [31, Theorem 8.1]. In case 2)
we use a result a Mumford [27] to prove the stronger result that for every
positive number ¢ there are only finitely many distinct lattice subgroups
I' € I(H) such that the quotient space H/I" is a compact smooth manifold
with volume at most ¢. In case 3) we reduce to the previous 2 cases by
showing (Lemma 3) that for every positive number c¢ there exists a posi-
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tive integer r such that for every compact quotient manifold H/I" whose
volume is at most ¢ there exists a finite covering H/T'* of multiplicity
at most r such that H/T'* is isometric to a Riemannian product
(H,/A*) x (B/B¥)

Under the hypotheses of Theorem 2 one may also reduce considera-
tion to the same 3 cases listed above. The reason that one need not exclude
3-dimensional hyperbolic spaces as de Rham factors of H is apparent in
case 1), where H is a symmetric space of noncompact type. Here by con-
sidering diameter instead of volume one may replace the rigidity theorem
of Weil [32] in the argument of Wang [31, Theorem 8.1] by the strong
rigidity theorem of Mostow [26] and the convergence of Macbeath [23]
for uniform lattices in a Lie group. At the same time when one considers
diameter there are extra technical difficulties that are not present when
one considers volume. In particular if {M,} is a sequence of compact
quotient manifolds of H such that {diam(M,)} is uniformly bounded above
it is not immediately clear that if M} is a finite covering of M, of mul-
tiplicity r, <r for every n then {diam(M}y)} is uniformly bounded above.
This difficulty is handled by assertion 3) of Proposition 2.

The proof of Theorem 3 is again obtained by considering separately
the three cases listed above. In the case that H is a symmetric space of
noncompact type the result is an immediate consequence of Theorem
3.3 of [5]. v

Finally we wish to acknowledge the generous support and hospi-
tality of the Instituto de Matematica Pura e Aplicada in Rio de Janeiro,
Brasil. This paper was begun while the authors were visiting IM.P.A.
in the spring of 1979.

Preliminaries.

All Riemannian manifolds in this paper will be assumed to be com-
plete, connected and C* and to have nonpositive sectional curvature.
H will denote a simply connected manifold of this type, sometimes referred
to as a Hadamard manifold. For manifolds of nonpositive sectional curva-
ture we shall assume the notation, definitions and basic facts found in the
first few sections of [13] and in shorter form in section 1 of [12].

de Rham decompositions.

A Hadamard manifold H is said to be reducible if it can be expressed
as the Riemannian product of two manifolds of positive dimension. H is
irreducible if it is not reducible. Every- Hadamard manifold H can be
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expressed as a Riemannian product Hy, x H, x ... x H,, where H, is a
Euclidean space and each of the manifolds H; for i > 1 is non Euclidean
and irreducible. This decomposition is unique up to the order of the
factors and is called the de Rham decomposition of H. (This decompo-
sition is valid for an arbitrary complete, C*, connected and simply con-
nected Riemannian manifold. For further details see [21].)

Isometries of H.

Let I(H) denote the isometry group of H and I,(H) the connected
component of I(H) that contains the identity. I(H) is a Lie group relative
to the compact-open topology (see for example [18, pp. 166-170]). If
{#.} = I(H) is a sequence such that {¢,(p)} is a bounded sequence in H
for some point p in H, then it follows from [18, p. 167] that some subse-
quence of {¢,} converges to an isometry ¢ of H.

For every isometry ¢ of a Hadamard manifold H one has a displa-
cement function dg: H— R given by dy(p) = d(p, ¢p). An isometry ¢ is
elliptic, hyperbolic or parabolic if the function d, has respectively zero
as its- minimum value, a positive minimum value or no minimum value.
An isometry ¢ of H is a Clifford translation if d,, is constant in H. If I(H)
admits a Clifford translation ¢, then H admits a Euclidean de Rham
factor Hy and ¢ acts as a translation of H, while acting as the identity
on the product of all non Euclidean de Rham factors. [33, Theorem 1].

A group I' < I(H) is called a lattice if the quotient space H/T is a
smooth Riemannian manifold of finite Riemannian volume that has the

“same dimension as H. A lattice T is respectively uniform or nonuniform

if H/T is compact or noncompact. For a lattice I' we define vol(I') and
the isometry class of I' to be the volume of H/I" and the isometry class
of H/T' respectively. If I' is a uniform lattice we define diam(I') to be the
diameter of H/T' = sup{d(p,q):p,q€ H/T'}. ‘

A group I < I(H) is said to satisfy the duality condition if for every
open set 0 in T, H (the unit tangent bundle of H) and every number a > 0
there exists a number ¢ > a and an isometry ¢ in I such that [(¢),7,(0)] N0
is nonempty. Here {T;} denotes the geodesic flow in T, H. If H/T is a smooth
manifold with the same dimension as H, then I satisfies the duality con-
dition if and only if every vector in T;(H/T') is nonwandering relative to
the geodesic flow in H/T. In particular every lattice I' = I(H) satisfies the
duality condition. For an equivalent formulation of the duality condition
and for various consequences of the duality condition see [1], [8], [9], [11].
The definition of the duality condition that is given here is due to Ball-
mann [1].
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Volume and fundamental- domains.

Let H be any Hadamard manifold and let I’ < I(H) be a discrete
group; that is, I is closed in I(H) and is a zero dimensional Lie group.
By virtue of a fact mentioned above [18, p. 167] it follows that a discrete
group I' < I(H) acts properly discontinuously on H: if C< H is any
compact subset then ¢(C) N C is nonempty for only finitely many iso-
metries ¢ in I'. In general a discrete group I" < I(H) may contain elliptic
isometries so that the quotient space H/I" is not a smooth manifold.

For any discrete group I' < I(H) there exists a fundamental domain
for I'; that is, there exists an open set R < H such that ¢(R) N R is empty
for every nonidentity element ¢ in I' and H = () ¢(R). For example if

¢pel’
peH is a point not fixed by an elliptic isometry of I' (such points exist)
then we may construct the Dirichlet fundamental domain for I' with
center p, R,={ge H :d(p,q) <d(¢p, q) for all ¢ #1 in I'}. Clearly fun-
damental domains are not unique.

One now defines the volume of a discrete group I' < I(H) (= vol(I))
to be the volume of a fundamental domain for I". It is not difficult to show
that this definition of vol(I') does not depend on the fundamental domain
chosen. If H/T is a smooth manifold then vol(I') is the volume of H|T.
For future reference we observe that if I'* is a finite index subgroup of
a discrete group I' < I(H), then vol(I'*) = vol(T') - [T : T*]. To see this let
¢1,---, &, be a complete set of representatives for the right cosets of I'*
in I'. If R is a fundamental domain for I" then it is easy to see that

RE= U &{R)is a fundamental domain (not necessarily connected) for I'*.
i=1
Clearly vol(R*) = Z vol(&;R) = r vol(R) since the sets ¢(R) are pairwise
i=1

disjoint. Hence vol(I'*) = r vol(I").

Lattices of bounded volume.

In this section we prove Theorem 1, as stated in the introduction.
We note that the restrictions in Theorem 1 on the de Rham decomposition
of H are necessary. For each positive integer n there exist infinitely many
nonisometric flat tori of dimension n that have the same volume. If H
is the hyperbolic plane then for each integer g > 2 the compact surfaces
of genus g and curvature K = —1 are quotients of H with area 4n(g — 1),
but the set of isometry classes is the Teichmuller space of dimension
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69— 6. If H is the hyperbolic 3-space, then by methods of Thurston [14],
[30] one can construct a sequence of compact 3-manifolds with sectional
curvature K = — 1 whose volumes are uniformly bounded above but whose
diameters are unbounded.

For applications of Theorem 1 see the two corollaries stated in the
introduction.

Proof of Theorem 1. Let H satisfy the hypotheses of Theorem 1. We may
assume that H_ admits a compact quotient manifold for otherwise there
is nothing to prove. By the discussion of section 1 it follows that I(H)
satisfies the duality condition. By Proposition 4.1 of [11] it follows that H
is a Riemannian product H, x B, where H, is a symmetric space of non--
compact type and B is a Hadamard manifold whose full isometry group
is discrete and satisfies the duality condition. Either of the factors H,
or B may be absent. Using this decomposition of H the proof reduces
to a separate consideration of the following cases: 1) B is absent, 2) H,
is absent, 3) H, and B are both present.

In case 1), H=H, is a symmetric space of noncompact type and the
result is due to H.-C. Wang [31, Theorem 8.1]. We remark that in the
statement of Wang’s result one must add the hypothesis that G admit
no factor locally isomorphic to SL(2,C). Theorem 8.1 of [31] is false for
G = SL(2,C) as the work of Thurston shows [14], [30].

We consider case 2) where I(H) is discrete and satisfies the duality
condition. It suffices in this case to prove the following.

Proposition 1. Let H be a Hadamard manifold with I(H) discrete. For every
positive number c let V, denote the set of uniform lattices I in I(H) for which
vol(T) < c. Then V. is a finite set for every positive number c. Moreover
if T <I(H) is a uniform lattice, then I has finite index in I(H).

Proof. The index assertion is fairly clear. The quotient space H/I" has
finite volume if I" is a uniform lattice, and hence the quotient space H /I(H),
a manifold with singularities, must also have finite volume. This is only
possible if " has finite index in I(H). For a more detailed argument see
the proof of Proposition 2.2 of [12].

To prove the finiteness of ¥, we need some preliminary results.

Lemma la. For every point pe H and every positive number R there exist
only finitely many isometries ¢ € I(H) such that d(p, $p) <R.

Proof. Since I(H) is discrete this is an immediate consequence of Theorem
2.2 of [18, p. 167].
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Lemn‘u.n 1b. Suppose that I(H) contains a uniform lattice. Then there exists
a positive number & such that if d(p, ¢p) < ¢ for some p € H and some ¢ € 1(H),
then ¢ is either elliptic or the identity.

Proof. Suppose the assertion is false. Then we can find sequences
'{d),,} = I(H) and {p,} < H such that for every n_ d(p,, $,p,) < 1/n and &,
is neither elliptic nor the identity. Let I' < I(H) be a uniform lattice. Since
the translates by elements of I" of some compact set will cover H we may
F:hoose a sequence {¢,} =T so that g,=¢,(p,) is a bounded sequence
in .H. If o5 =¢,0,5, ' then dlg,, dFq,) = d(p,. ,p,) < 1/n and ¢* is neither
elhpﬁtic nor the identity for every n. By Lemma la only finitely many of
the isometries ¢; are distinct since [g,) is bounded. Passing to a subse-
quence if necessary, we may assume that ¢* = ¢* for every n and some
¢* € I(H). By continuity it follows that ¢* fixes every cluster point of the
sequence {g,/. Hence ¢} and ¢, = &, '¢*&, are either elliptic or the iden-
tify for every n, contradicting the hypothesis on {¢,|. The Lemma is proved.

We now complete the proof of Proposition 1. Let ¢ > 0 be given and
let {I',} be a sequence of uniform lattices in I(H) with vol(I',) < ¢ for
every k. It suffices to show that there are only finitely many distinct lattices
I'y. Using a result of Mumford [27], we show first that diam(I',) < ¢ for
every k and a suitable constant ¢’ > 0. Recall that each element of a uni-
form lattice is hyperbolic and for any hyperbolic isometry ¢ the minimum
locus of the convex function d,: p—d(p, ¢p) is the union of all geodesics
translated by ¢, |3, Proposition 4.2]. By Lemma 1b, there exists a num-
ber & > 0 such that d(p, ¢p) > ¢ > 0 for every point p of H and every noni-

dentity element ¢ in () I',. From this fact and the remark above, it
k=1

foll'ow.s immediately that if L, is the length of the smallest periodic geo-
desic in H/T,, then L, > ¢ for every k. By the lemma of [27, p. 291] we
have dzam(Fk} < Avol(T',)/(L,)"~ ! for every k where n is the dimension of
H and 4 > 0 is a constant independent of k. Hence diam(T'}) < ¢’ = Ac/e" !
for every k.

~ Let ¢’ be the constant just defined. Fix a point pe H and for each
integer k let A, = {¢p el :d(p, pp)<3c’}. By Lemma la, U Ay is a fi-

; : : k=1
nite set. In pgrt'lcular, each set A, is finite and only finitely many of the
sets A, are distinct. The proof of the proposition will be complete when
we show that A, generates I', for every k.

More generally, let I" be any uniform lattice in I(H) with diam(I") =

=R>0,and let A= {¢p €T :d(p, pp) < 3R}. We show that A generates I_.

———
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Let y eI be given and let ¢ = yp. Let {p,, ..., py} be a sequence of points
on the geodesic from p to g such that p, = p, py = g and d(p;, p;+ ;) < R for
1 <i< N-—1. Since diam(I') = R we can find ¢;€ I so that d(p;, ¢;p) <R
for1 <i< N.Itfollows that d(¢,p, ;. p) <3Randhence &, = ¢; ‘¢, € A4
for 1 <i< N — 1. Moreover, ¢, € A since p, = p and ¢y 'Y € A4 since

d(p, o5 ' ¥p) = d(dnp, ¥p) = d(énp, py) < R. Since Y = ¢,8:85 .. Ena1On 'V
it follows that A generates I'. The proof of Proposition 1 is now complete.

We now consider the third and final case of the theorem, where H
is a nontrivial Riemannian product H, x B with H, a symmetric space
of noncompact type and B a Hadamard manifold such that I(B) is discrete
and satisfies the duality condition. Clearly, we want to reduce to the
first two cases already considered. This will be made easier by

Lemma 2. Let H be a Hadamard manifold that admits no Euclidean de
Rham factor. Let {T',} < I(H) be a sequence of uniform lattices such that
vol(T',) < ¢ for all n and some positive number c. For each n let I'¥ be a nor-
mal subgroup of T, such that the index of Ty in T', is uniformly bounded .
above. If the lattices T* belong to only finitely many isometry classes, then
the lattices T, belong to only finitely many isometry classes. ‘

Remark. For the proof of the lemma the restriction that the index
[, : T*] be uniformly bounded above is unncessary. However, the lemma
will only be applied and useful in the case that this index condition is
satisfied.

Proof of Lemma 2. Let {I',} and {I'}} be sequences of uniform lattices in
I(H) with the properties stated above. Let M}, M, denote H{T: HM,
respectively. The covering My — M,, is regular since I'* is a normal sub-
group of I',,, and hence M,, is obtained from M# by identifying all points
in each orbit of some finite group of isometries of M. Suppose that the
manifolds M* belong to only finitely many isometry classes represented
by compact manifolds M;=H/T;, 1 <i<r. Observe that the center of
each lattice T, is the identity; by the work of [22], [33] or Proposition 2.3
of [9] any central element of T'; would be a Clifford translation and by
Theorem 1 of [33] the existence of a nonidentity Clifford translation
would imply the existence of a Euclidean de Rham factor of H. It now
follows from Corollary 3 of [22, p. 225] or Theorem 5.3 of [12] that the
isometry group of M; is finite for each 1 <i <r. Since each M} is isometric
to some M;, it follows that only finitely many groups occur as subgroups
of the isometry groups I(M}), n> 1. Therefore the manifolds M, = H/T,
belong to only finitely many isometry classes, which proves Lemma 2.
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Proceeding now to the proof of the theorem in case 3), we let {T",}
be a sequence of uniform lattices in I(H) with vol(T',) < ¢ for every n and
some positive number c. It suffices to show that the lattices {T",} belong
to only finitely many isometry classes. We first prove

Lemma 3. Let H be a nontrivial Riemannian product H, x B, where H,
is a symmetric space of noncompact type and B is a Hadamard manifold
whose isometry group is discrete and satisfies the duality condition. Then
for every number ¢ >0 there exists a number r > 0 such that if T < I(H)
is a uniform lattice with vol(I') < c then there exists a normal subgroup
I'* of T such that [T :T*]<r and T* is a direct product A* x B*, where
A*c I(H,) and B* < I(B). In particular, H/T* is isometric to the Rie-
mannian product (H,/A*) x (B/B*).

Assuming for the moment that Lemma 3 has been proved, we com-
plete the proof of the theorem in case 3). By Lemma 3, we can choose
uniform lattices {I'¥} in I(H) such that for every n, I'* is a normal sub-
group of I, [T, : T'¥] is uniformly bounded above and I'* is a direct
product Ay x By, where A%< Iy(H,) and B* < I(B). Moreover, there
exists a constant ¢* > 0 such that vol(T’}) < c* for every n since vol(T =Y
and [T, :I'}] is uniformly bounded. By Lemma 2, it suffices to prove
that the lattices {I'¥} belong to only finitely many isometry classes.

Suppose that there are infinitely many isometry classes represented
by the sequence {I'}}. Passing to a subsequence, we may assume further
that no two lattices of the sequence {I'*} are isometric. Since H, is a
symmetric space of noncompact type and A} is a discrete subgroup of
Io(H,) for every n it follows from the corollary to Theorem 1 of [20]
or from Corollary 11.9 of [28, p. 178] that there exists § > 0 such that
vol(Ay) = 6 for every n. Next observe that vol(B/B¥) = vol(H/T¥)
vol(H,/A¥) < ¢*/é for every n since H/T'} is a Riemannian product. By
Proposition 1, only finitely many of the uniform lattices B* < I(B) are
distinct. Passmg to a subsequence, we may assume that B* = B* < I(B)
for every n. Then vol(H /A¥) = vol(H/T}¥)/vol(B/B*) < c*/vol(B/B¥) for eve-
ry n. By case 1), that is, Theorem 8.1 of [31], there are only finitely many
isometry classes of manifolds H,/A¥. Passing to a further subsequence
we may assume that H,/A} is isometric to H,/A* for every n and some
uniform lattice A* < I(H,). Finally, H/T} is isometric to (H,/A*) x (B/B*)
for every n, contradicting the hypothesis that no two of the manifolds
H/T'} are isometric.

We conclude the proof of the theorem by proving Lemma 3t Let
¢ >0 be given. We first define the constant r whose existence is asserted
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by the lemma. Since H, is a symmetric space of noncompact type it follows
by the argument just mentioned above that there exists a number § > 0
such that vol(H,/D) > for every discrete subgroup D of I,(H,). Let ¢
be the volume of the quotient space B/I(B). This makes sense since I(B)
is discrete. Finally let r=(c/d0)?[I(H H,)]?. We assert that r is
the desired constant.

Now let I' = I(H) be a uniform lattice with vol(I') < ¢. Define
A*=T n1y(H;), B* =T n I(B) and T* = A* x B* We assert that I'*
is a normal subgroup of I' with [I":T*] <r.

To prove that I'* is a normal subgroup of I' we consider the de Rham
decomposition H = Hf x ... x Hf of H. This decomposition is unique up
to the order of the factors and hence the factor B in the decomposition
H=H, x B is the Riemannian product of those de Rham factors H¥
such that I(H¥) is discrete. It follows that every isometry of H preserves
the factors of the decomposition H= H, x B and in particular I(H) =
= I(H,) x I(B). It is now clear that A* B* are normal subgroups of '
since Iy(H,) = I,(H) and I(B) are normal subgroups of I(H). Hence
I'* = A* x B* is a normal subgroup of T. :

We begin the proof that [T :T*]<r. Since I(H)=I(H,) x I(B), we
may define projection homomorph1sms py I(H )—»I(H )and p, : I(H)— I(B).
Let A=p()<I(H,) and Ay=A nI,(H,). Let B= p2(I') € I(B). Note
that A* B* as defined above are normal subgroups of 4,, B respecti-
vely since A* B* are normal subgroups of I'. The group B is discrete
since I(B) is discrete and hence A is discrete by Theorem 4.1 of [12]. It
follows that 4 x B is a discrete subgroup of I(H) that contains T.

Next we show that [4 x B:T] < (c/o0) - [I(H,) : 1o(H,)], where 6, o
are the constants defined above. Since A0 c I4(H,), we have vol(Hl/Ao) >
>§>0 by the way in which & was chosen. Observe that [4:4,] <
<[I(H,) : 1o(H,)] since the map ad,—aly(H,) is a well defined injective
homomorphism of A/A, into I(H,)/I,(H;). Hence

vol(H,/A) = vol(H,/A)/[A : A] = 6/[I(H,) : 1,(H,)].
Since B = I(B) we have vol(B/B) > vol(B/1(B)) = ¢ > 0. Hence
vol(H/A x B) = vol(H,/A) - vol(B/B) > éa/[I(H,) : 1,(H,)].
Finally,

[Ax B:T] vol(H/F)/vol(H/A $ B)< vol(HJT) - [I(H,)l: 1o(H,)]/d0
< c[I(H (H,)]/de.

We conclude the proof that [F bk *] <r. Observe that [4, : A*] <
<[Ax B:T] and [B:B*] <[4 x B:T'] since the maps a4* — ol and
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BB* — BT are well defined injective maps of the groups A,/A* and B/B*
into the left coset space A x B/I" respectively. Finally,

[[:T*]<[AxB:T*]=[A4:A4*]- [B: B*]=[4: 4o]- [4,: A*][B: B*] <
<[I(H)):1o(H,)]- [A x B:T]* < (c/d0)*[I(H,): Io(H,)]* =r.

Lattices of Bounded Diameter.

If we consider diameter instead of volume, we may improve Theorem 1
by eliminating the restriction on 3-dimensional hyperbolic factors of H.
The restrictions on Fuclidean or 2-dimensional hyperbolic factors of H
still remain. '

In this section, we prove Theorem 2 as stated in the introduction.
For the proof of Theorem 2, the next result is useful and has some interest
in its own right as well.

Proposition 2. Let H be a Hadamard manifold with no Euclidean factor
in its de Rham decomposition. Then

1) For each positive number ¢ there exists a positive number ¢* such
that if T < I(H) is a uniform lattice with d(p, ¢p) > ¢ for all pe H and all
¢ €T, then diam(I') < c* vol(T).

2) For each positive number ¢ there exists a positive number ¢ such
that if T < I(H) is a uniform lattice with diam(T') < c, then d(p, ¢p) = ¢ for
all pe H and all ¢peT.

3) For each positive number c there exists a positive number ¢* such
that if T < I(H) is a uniform lattice with diam(T)<c and if T*<T is a
subgroup of finite index, then diam(T'*) < c*[T" : T*].

Remark. Assertion 2) of Proposition 2 is clearly false if H is allowed to
have a Euclidean de Rham factor. Let M* be a fixed compact manifold
of nonpositive sectional curvature, and let M,, be the Riemannian product
of M* with a circle of length ¢, where ¢,—0 as n— + oo. The diameters
of {M,) are uniformly bounded above and the manifolds {M,} have the
same universal Riemannian covering space H. Cleatly, however, no
constant ¢ > 0 has the desired properties of Assertion 2) for all the mani-
folds M, simultaneusly.

Proof. 1) This assertion follows immediately from the lemma of [27,/p. 291]
which asserts that diam(I') < (A/I"~') vol(T'), where I' = I(H) is a uniform
lattice, 4 >0 is a constant independent of I and L is the length of the
smallest closed. geodesic in H/T. We set c* = A/e"™".
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2) Since' H has no Euclidean de Rham factor, we may express H as
a Riemannian product H; x B by Proposition 4.1 of [9], where H, is
a symmetric space of noncompact type and B is a Hadamard manifold
whose isometry group is discrete and satisfies the duality condition. We
again consider separately the cases i) H, is absent, ii) B is absent, iii) H i
and B are both present.

In case i), we have H = B and the result follows from Proposition 1
and the following well known result whose proof we include for com-
pleteness. '

Lemma 4. Let H be an arbitrary Hadamard manifold. For every positive
number ¢ there exists a positive number c* such that if T’ = I(H) is a uniform
lattice with diam(T') < ¢, then vol(T') < c*.

Proof. Let ¢>0 be given and let I < I(H) be a uniform lattice with
diam(I') < c. It follows that all values of the sectional curvature of H are
assumed on 2-planes tangent to a compact subset of H. In particular,
—b? is a lower bound for the sectional curvature of H for some constant
b> 0. It follows by a comparison theorem [2, p. 256] that the volume
of a closed ball of radius ¢ in H is at most ¢*, the volume of a closed ball
of radius ¢ in a hyperbolic space of the same dimension and curvature
K = —b%. However, the volume of H/I" is at most the volume of a closed
ball of radius ¢ in H since diam(I') <c. This proves the lemma.

The proof of Assertion 2) of the proposition in case ii) is an obvius
simplification of the proof in case iii) so we consider only case iii), where
H = H, x B and both factors H,, B are present. Suppose that the asser-
tion is false for some positive number ¢. Then we can find a sequence
{T',} of uniform lattices in I(H), a sequence {p,} in H and a sequence
{¢,} of nonidentity elements in I(H) such that for every integer n we
have diam(T',) <c¢, ¢,eT', and d(p,, ¢,p,) < 1/n. By Lemma 4, there exists
a constant c* > 0 such that vol(T',) < ¢* for every n. By Lemma 3 of the
previous section, we can find uniform lattices I'} such that for every n,
I'* is a normal subgroup of I',, [[, :'¥] is uniformly bounded above
and IT'* is a direct product A} x B¥, where A} < I,(H,) and B} < I(B).
By Theorem 1 of [20] or Theorem 11.8 of [28], there exists a neighborhood
U of the identity in I,(H,) and a sequence {g,} < Io(H,) such that
(gn.AZXg, ") N U is the identity for every n. Hence, we may assume to begin
with that 4* A U is the identity for every n by replacing I, with g,I,g, .

Now fix a point p€ H. The fact that diam(I',) < ¢ for every n means
that H= () #(B/(p)), where B (p) denotes the closed spherical ball in

cpel,
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H of center p and radius c. Hence, by replacing each ¢, by a suitable
conjugate in I',, we may assume that {p,} < B(p). By Theorem 2.2 of
[18, p. 167], we may assume by passing to a subsequence that {¢,; con-
verges to an isometry ¢ of H. It follows by continuity that ¢ fixes any
cluster point p of {p,}. Since [T, :T'¥] is uniformly bounded above, we
may assume that [T, : I'¥] = N for every n by passing to a further subse-
quence. In particular @) >.¢" as n— +oc; ¢" fixes some point pe H
and @) e T} for every n.

By definition of I'¥, there exist sequences {«,} < Io(H,)and {B,} < I(B)
such that o, € A* and ¢Y = a, x B, for every n. It follows that ¢" = a x §,
where a € I(H,), € I(B), {a,} = a and {B,} = B as n— oc. Since ¢" fixes
a point p, we conclude that either « and B are both elliptic isometries of
H or one of them (and possibly both) is the identity. In any case, we can
find an integer k > 0 such that f*=1 and o*€ U, where U is the neigh-
borhood of the identity in I (H,) that was chosen above. We use the dis-
creteness of I(B) to conclude that =1 for some k > 1. It follows that
ok e U for large n and BX— 1 as n— + oc. Hence B = 1 for all sufficiently
large n since I(B) is discrete. Since A¥ N U is the identity for every n by
hypothesis, we conclude that of =1 for all sufficiently large n. Finally
¢ N = ok x Bk =1 for all sufficiently large n. This contradicts the fact that
¢, €T, for every n and every nonidentity element of I', has infinite order
in T, by a fixed point theorem of Cartan [18, p. 75]. This completes the
proof of Assertion 2) of Proposition 2.

We prove Assertion 3) of Proposition 2. Let ¢ > 0 be given. Let ¢ >0
be a number satisfying the properties of Assertion 2) of Proposition 2.
For this choice of ¢ let ¢* >0 be a number satisfying the properties of
Assertion 1) of Proposition 2. By Lemma 4, we may choose a constant
¢’ >0 such that vol(I') < ¢’ whenever I" € I(H) is a uniform lattice with
diam(T") < c. Finally, let ¢ = c*c.

We assert that if I' = I(H) is a uniform lattice with dlam(F) <c¢ and
if T*<T is a subgroup of finite index, then diam(I'*) < [T :T*]. This
will prove Assertion 3). Let I', I'* be given as above. From Assertion 2)
and the way in which ¢ was chosen, we see that d(p, ¢p) > ¢ for all pe H
and all ¢ e . Hence d(p, ¢p) = ¢ for all pe H and all ¢ eT'*. It follows
from Assertion 1) that

diam(I'*) < c* vol(T*) = c* vol(I)[T : T*] < ¢*¢'[T :T*] = &[T : T*].

We now prove Theorem 2. By Proposition 4.1 of [11], it suffices to
consider the following cases: 1) I(H) is a discret group that satisfies the
duality condition, 2) H is a symmetric space of noncompact type, 3) H is
a nontrivial Riemannian product H, x B, where H, is a symmetric space
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of noncompact type and I(B) is a discrete group that satisfies the duality
condition. The result in case 1) follows from Lemma 4 and Proposition 1.

We now consider case 2). Let ¢ > 0 be given and let {T",} be a sequence
of uniform lattices in I(H) such that diam(I',) < c for every n. It suffices
to show that the lattices {I",} belong to only finitely many isometry classes.
Let T* =T, N Io(H) for every n. Then [T, :T¥] < [I(H) : I,(H)] and T*
is a normal subgroup of I', for every n. By Lemma 2, it suffices to show
that the lattices I'* belong to only finitely many isometry classes.

Suppose that there are infinitely many isometry classes represented
by the sequence |I'}}. Then by passing to a subsequence, we may assume
that no two of the lattices in {I'¥} are isometric. I follows from Theorem 1
of [20] or Theorem 11.8 of [28] that there exists a neighborhood U of the
identity in I(H) and a sequence {g,} < I,(H) such that ['}*=g,I'*g, "
intersects U only in the identity for every n. Clearly M}* = H/I'}* is
isometric to M¥ = H/T'¥ for every n so we may consider she sequence
of lattices {I"**} instead. By Chabauty’s theorem [6] or [16, pp. 319-322],
there exists a subsequence {I';* | that converges to a lattice ['** as k— + c0.
By Proposition 2 the lattices {I'**} have uniformly bounded diameter
and thus I'* is a uniform lattice. It now follows from a result of Macbeath
[23], [16, p. 322] that the groups ['}* are isomorphic to I'** for suffi-
ciently large k. By the rigidity theorem of Mostow [26], we see that the
manifolds M}* = H/I'}* are isometric, which contradicts ‘the hypothesis
on iy Therefore the lattices {I'}} belong to only finitely many iso-
metry classes, which completes case 2).

We conclude the proof of the theorem by considering case 3) where
H is a nontrivial Riemannian product H, x B. As in case 2), we let ¢ >0
be given and let {I',} be a sequence of uniform lattices in I(H) with
diam(T",) < c for every n. Again, it suffices to prove that the lattices {I’,]
belong to finitely many isometry classes. By Lemma 3, we can find a
sequence of uniform lattices {I'¥} in I(H) such that for each n, I'} is a
normal subgroup of I',,, [T, : I'}] is uniformly bounded above and I'; is
a direct product A* x B¥, where A* < 1,(H,) and B} < I(B). By Lemma 2,
it suffices to prove that the lattices {I'¥} belong to only finitely many
isometry classes. Since [T, : I'¥] is uniformly bounded above, it follows
from Assertion 3) of Proposition 2 that we can find a constant ¢* >0 such
that diam(I'y) < c* for every n.

By the definition of '}, it is apparent that H/I'} is the Riemannian
product|(H 1/A¥) x (B/B¥). It follows that for every n we have diam(Ay) <
<diam(T'*) < c* and diam(B}) < diam(I'y) < c*. By Lemma 4 and Pro-
position 1, there are only finitely many distinct lattices B}. By case 2)
above, there are only finitely many jsometry classes of lattices {A7}.
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Therefore, the lattices {I'¥} belong to only finitely many isometry classes,
which completes the proof of Theorem 2.

Proportionality of Euler characteristic and volume

If I is a uniform lattice in a Hadamard manifold H then we define
x(I'), the Euler characteristic of I', to be y(H/I'), the Euler characteristic
of the quotient space H/T". The existence of a uniform lattice I" with nonzero
Euler characteristic in a Hadamard manifold H has strong consequences.
In this section we prove Theorem 3 and its two corollaries. See
the introduction for a precise statement of these results. We begin with
the following

Lemma. Let H be a Hadamard manifold that admits a uniform lattice T’
with nonzero Euler characteristic. Then H admits no Euclidean de Rham
factor nor any nonEuclidean de Rham factor of odd dimension.

Proof. Clearly H must have even dimension 2n for some integer n > |
since y(H/T')# 0 by hypothesis. Let {E, ..., E,,] denote an orthonormal
frame field defined in an open set U of the quotient manifold M = H/T.
Passing to a double cover if necessary we may assume that M is orientable.
It is known (see for example [10] that the Euler characteristic of M is
given by y(M) = jA where A is the 2n-form given by

A= Zs(il, iz, e lZn)Q Q A A Q

igiz i3ig in—1i,

Here i=(i,i,,...,i,,) denotes an arbitrary permutation of 2n letters,
&liy, Iz, - i2,) denotes the sign of this permutation and {Q;;} denotes the
skew symmetric matrix of curvature 2-forms on M determined by the
frame field {E,, ... E,,}. By our hypothesis y(M) is nonzero and hence
A cannot be identically zero. In particular H cannot be a Euclidean space
for this would imply that Q;=0 for every i,j.

Suppose now that H can be written as a Riemannian product
H=H, x H, of two manifolds of positive dimensions k, and k,. By
the de Rham decomposition theorem [21] we can find for any point p
in M = H/T" a neighborhood U of p isometric to a Riemannian product
U, x U,, where for i=12 U, is an open subset of H; and carries the
metric from H;. By making U smaller if necessary we may choose an adapted

frame field {E,, ... E;,} on U such that E; is tangent to U, for every
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1 <i<k, and E; is tangent to U, if 1 + k, <i <k, + k, =2n. It follows
that Q;;=0 if i<k, and j>k, or if i>k, and j<k,.

If H, is a Euclidean space then by the preceding observation
Q;, _,i,,=0 for 1 <r<n and any permutation i= (i, i, ...,i,,) unless
both i,,_, and i,, are greater than k,. This requirement cannot be satis
fied simultaneously for every r with 1 <r <n and hence each term in the
sum defining A is zero, contradicting our hypothesis that A # 0. Hence H
has no Euclidean de Rham factor. Similarly if both k; and k, are odd
integers then for each permutation i=(i,, i, ... 7,,) we can find an integer
r with 1 <.r <n such that either i,,_, <k, and i,, >k, or i,,_; >k, and
iy <k,. In any case Q;, _,;, =0| by the discussion above. This shows
that each term in the sum that defines A must be zero, again contradicting
our hypothesis that A =£0. Therefore H has no odd dimensional non
Euclidean de Rham factors.

We now begin the proof of Theorem 3. Clearly it suffices to prove
Theorem 3 in the case that H admits a compact quotient manifold
with nonzero Euler characteristic. As in the earlier arguments we use
Proposition 4.1. of [11] and the lemma above to write H as a Riemannian
product H; x B, where H, is a symmetric space of noncompact type and B
is a Hadamard manifold such that I(B) is discrete but satisfies the duality
condition. Again we consider separately the following cases: 1) H 1] is absent.
2) B is absent. 3) H; and B are both present.

We consider the first case where H = B and I(H) is a discrete group
that satisfies the duality condition. To prove Theorem 3 in this case it
suffices to prove that the ratio y(I'*)/vol(I'*) is a constant « that is inde-
pendent of the uniform lattice I'* in H. We observe first that every uni-
form lattice I'* in H must have finite index in the discrete group I(H).
The quotient manifold H/T'* is compact and hence the quotient space
H/I(H), amanifold with singularities, must also be compact. This is possible
only if I'* has finite index in I(H) since I(H) is discrete. For a more detailed
argument see the proof of Proposition 2.2 of [12].

By hypothesis there exists a uniform lattice I' in H such that y(I') # 0.
Let I'* be any uniform lattice in H. By the previous paragraph both lattices
I' and I'* have finite index in I(H) and hence G =T n I'* has finite index
kin T and k* in T*. It follows that y(I'*)/vol(I'*) = k*y(I'*)/k* vol(I'*) =
= y(G)/vol(G) = ky(I')/k vol(I') = y(I')/vol(I') = o 0.

We now consider the second case where H = H, is a symmetric
space of noncompact type. Let I' be a uniform lattice in H with y(I') # 0,
and let T'* be any uniform lattice in H. Theorem 3.3 of [5] states that
x(T'*) vol(M’) = (— 1)"y(M’) vol(I'*), where M’ is the compact Riemannian
symmetric space that is dual to H and 2n is the dimension of M" and H.
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It follows that y(M') #+ 0 since y(I') # 0 and hence y(I'*)/vol(I'*) =

=(—1)"%(M')/vol(M’) = oo # 0 for any uniform lattice I'* in H. We note

that « = —1/2n if n=1 by the Gauss-Bonnet theorem applied to the case
== 1.

We conclude the proof of Theorem 3 by considering the third case,
where H is a nontrivial Riemannian product H, x B such that H, is a
symmetric space of noncompact type and B is a Hadamard manifold whose
isometry group I(B) is discrete and satisfies the duality condition. Every
isometry of H preserves the factors of this decomposition and hence I(H) =
=I(H,) x I(B). Let p, : I(H)— I(H,) and p, : I(H)— I(B) denote the pro-
jection homomorphisms.

Let I'* be any uniform lattice in H. The group p,(I'*) < I(B) is dis-
crete-and hence by Theorem 4.1 and Proposition 2.2 of [12] it follows
that I';* x I',* has finite index in I'*, where I'; * = kernel(p,)=T nI(H,)
and I',;* =kernel(p,)=T nI(B). (When applying Theorem 4.1 of [12] we
use the fact that I'* contains no Clifford translations by Theorem 1 of [30]
and the fact that H has no Euclidean de Rham factor). Therefore the
compact manifold H/I'* admits a finite Riemannian covering by the
Riemannian product manifold (H,/T";*) x (B/T",*). If k denotes the mul-
tiplicity of this covering then ky(I'*) = y(I'y* x I';*) = ¢(I';*) - y(I',*) and
k vol(I'*) = vol(I';* x I',*) = vol(I',*) - vol(I',*). We obtain

X(T*)/vol(T*) = [ *)/vol(T,*)] - [x(I ;*)/vol(I',*)]

for every uniform lattice I'* in H.

Finally let I' be a uniform lattice in H with y(I')#0. Let I'; x I,
be a subgroup of I of finite index in I such that I'; < I(H,) and I, < I(B).
By the equation above and the way in which I'; and I", were constructed
we see that I'y and I', are uniform lattices with nonzero Euler charac-
teristic in H, and B respectively. By applying the previous two cases to the
lattices I'y, I';* and I', I',* we conclude that y(I';*)/vol(I',*) =
= x(I';)/vol(T";) and y(I",*)/vol(I";*) = x(I",)/vol(I",) for any uniform lattice
I'* in H. It now follows from the equation of the previous paragraph that
xI*)/vol(I'*) = y(I')/vol(’) =a + 0 for every uniform lattice I'* in H.
This concludes the proof of Theorem 3.

We now prove the two corollaries of Theorem 3.

Proof of Corollary 1. Assertions 1), 2), 3) and the first part of assertion 4)
are immediate consequences of Theorem 3. The second part of assertion
4) follows from the first part when one recalls that H is diffeomorphic
to Euclidean space and hence any isomorphism between the fundamental
groups of M,;, M, is induced by a homotopy equivalence between the
compact quotient spaces M; and M,.
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Proof of Corollary 2. The proofs of both assertions 1) and 2) follow imme-
diately from the lemma of this section, assertion 4) of Corollary 1 and
Theorem 1 of this paper.
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