On mappings into $\mathbb{R}^{2\ell}$

León Kushner*

Abstract.

Let M be a compact orientable manifold. We know how to calculate $\chi(M)$, the Euler characteristic of M, from a stable map $f: M \to R$, with information only on S(f), the singular set of f. This result was extended to stable maps into the plane by H. Levine [L-2] when M has dimension 2n, and it is also calculated from S(f). The purpose of this work is to generalize the above result for maps into $R^{2\ell}$, where $n \ge \ell$. In this case S(f) is not a manifold. We use the process of resolution of singularities [L-3] to get a homomorphism having only singularities of codimension 1 and use simmilar technics as in [L-2].

1.1. Let M be a compact oriented manifold of dimension 2n and $F: M \to R^{2\ell}$, $n \ge \ell$, a differentiable map with $j^k F \ \ \Sigma^{(k)}$ and $j^1 F \ \ \Sigma^k$, where $\Sigma^{(k)} = \Sigma^{(1, 1, \dots, 1)}$ and the Σ^k are the Boardman singularities in $J^k(M, R^{2\ell})$ and $J^1(M, R^{2\ell})$ respectively. We let $S^{(k)} = (j^k F)^{-1}(\Sigma^{(k)})$ and $S^k = (j^1 F)^{-1}(\Sigma^k)$.

In the case $\ell = 1$ we have the following theorem due to H. Levine L-2.

Theorem 1. If F is as above, then the Euler characteristic of M is given by

$$\chi(M) = \sum_{C} r(C)$$

where the C are the components of the singular set of F with some orientation and r(C) the degree of a certain map ϕ .

For the case $\ell > 1$ we have following

Theorem 2. Let $F: M \to R^{2\ell}$ be as above and stable; then

$$\chi(M) = \sum_{\widehat{C}} r(\widehat{C})$$

(*) Supported by FAPESP and FINEP.

Recebido em 10/06/81.

where \widehat{C} are the components of the singular set of \widehat{dF} , the map obtained from the resolution of the manifold collection $\{S^1(F), \ldots, S^\ell(F)\}$, $\ell = \max\{k/S^kF \neq \emptyset\}$ and the homorphism dF is defined as in [L-3] and r is the degree of a certain map $\widehat{\phi}$.

The proof runs parallel to [L-2] with the introduction of the new map $\widehat{\phi}$. The changes of coordinates of 2.5 are also similar. I thank Prof. H. Levine for the suggestion of the problem and kind advice.

1.2. Definition of the map $\widehat{\phi}$.

We consider the germs of stable maps $F: R^{2\ell} \to R^{2\ell}$ such that $0 \in S^1(F)$. By Martinet correspondence Theorem [M-1] between $S(2\ell-1,1,1)$ and $V(2\ell-1,1,1)$ it is enough to study germs $f:(R,0) \to (R,0)$ with df(0)=0 and $\operatorname{codim}_V f \leq 2\ell$; hence $f(x)=x^kh(x)$ with $h(0)\neq 0$ and then $f\tilde{v}(x^k)$. The unfoldings of this maps are given by:

$$F_k: R^{2\ell-1} \times R \to R^{2\ell-1} \times R$$
$$(\bar{u}, x) \to (\bar{u}, f_k(\bar{u}, x))$$

where
$$f_k(\bar{u}, x) = x^{k+1} + \sum_{i=1}^{k-1} u_i x^i$$
.

The singular set of F_k is given by

$$x = 0$$
 for $k = 1$ and $u_1 = -((k+1)x^k + \sum_{i=2}^{k-1} iu_i x^{i-1})$ for $k > 1$.

Let k > 1; we consider $\{\{\partial \mid \partial u_i\}_{i=1}^{2\ell-1}, \partial \mid \partial x\}$ the basis for the source and $\{\{\partial \mid \partial v_j\}_{j=1}^{2\ell-1}, \partial \mid \partial Y\}$ the basis for the target. If $p \in S^1(F)$ then $T_pS^1(F)$ is generated by:

$$\begin{array}{lll} \partial \mid \partial u_i - i x^{i-1} \partial^i \mid \partial u_1 & \text{for} & i = 2, ..., k-1 \\ \partial \mid \partial u_j & \text{for} & j = k, ..., 2\ell-1 \\ \partial \mid \partial x - C_k \partial \mid \partial u_1 & \end{array}$$

where
$$C_k = (k+1)kx^{k-1} + \sum_{i=2}^{k-1} i(i-1)u_ix^{i-2}$$
. If we let
$$A_k = S^{(k)}F - S^{(k+1)}F \text{ then } p \in A_1 \Leftrightarrow C_k \neq 0$$

The image under dF_p of this vector is

$$B_{i} = \partial |\partial v_{i} - ix^{i-1}\partial |\partial v_{1} - (i-1)x^{i}\partial |\partial_{Y} \text{ for } i = 2, ..., k-1$$

$$\gamma_{j} = \partial |\partial v_{j} \text{ for } j = k, ..., 2\ell-1$$

$$- C_{k}(\partial |\partial v_{1} + x\partial ||\partial Y)$$

Let $G_{2\ell-1}(R^{2\ell})$ be the Grassmannian manifold and $G_{2\ell-1}(TR^{2\ell})$ the Grassmannian of $TR^{2\ell}$. We let

$$\phi\colon A_1\to G_{2\ell-1}(R^{2\ell})$$

be the differentiable map defined by $\phi(x)$ = the vector space generated by $\pi_2\{B_i, \gamma_j, \partial \mid \partial v_1 + x\partial \mid \partial_{\gamma}\}$, where $\pi_2: TR^{2\ell} \to R^{2\ell}$ is the projection onto the fiber over $\bar{o} \in R^2$. This map can be extended to a differentiable map over S^1F . If $p \in A_1$ then $\phi(p) = \pi_2 \circ dF(T_pS^1F)$ and the extension is given by $\phi(p) = \pi_2 \circ dF(T_pM)$.

1.3. An example where S^1F is not compact: Consider $F: \mathbb{R}^4 \to \mathbb{R}^4$ given by

$$F(u_1, u_2, x, y) = (u_1, u_2, x^2 + u_1 y, y^2 + u_2 x).$$

In this case $S^1F = \{(u_1, u_2, x, y) \in R^4 - \bar{o} \mid 4xy - u_1u_2 = 0\}$ and $S^2F = \{\bar{o}\}$, so S^1F is not closed. Moreover it is impossible to extend to S^2F .

We state the following theorem (L-3)

Let $dF:TM \to F^*(TR^{2\ell})$ where $J^1F \cap \Sigma^k$ and $\widehat{\sigma}:\widehat{M} \to M$ be the composition of the maps obtained by the resolution of singularities (σ is a diffeomorphism outside $\sigma^{-1}\left(\bigcup_{i=2}^k S^kF\right)$), then there exists a bundle \widehat{TM} and homomorphisms $\widehat{dF}:TM \to \sigma^*F^*(TR^{2\ell})$ and $h:\widehat{TM} \to \sigma^*(TM)$, with h an isomorphism outside $\sigma^{-1}\left(\bigcup_{i=2}^k S^iF\right)$ such that the following diagram of vector bundles over \widehat{M} commutes

We define $\widehat{\phi}: S^1(\widehat{dF}) \to G_{2\ell-1}(R^{2\ell})$ by $\widehat{\phi}(p) = \pi_2 \widehat{dF}(\widehat{T_pM})$. In fact $S^1(\widehat{dF}) = \sigma^{-1}(S^1F) = \overline{\sigma^{-1}(S^1F)}$. 2.1. We let M be a compact oriented manifold of dimension n with $n \ge 2\ell$. Then the maps F_k are given by

$$F_k: R^{2\ell-1} \times R \times R^{n-2\ell} \to R^{2\ell-1}$$
$$(\bar{u}, x, \bar{z}) \to (\bar{u}, f_k(\bar{u}, x) + Q(\bar{z}))$$

where Q is a nondegenerate quadratic form. We shall denote F_k by F.

We give the standard orientation to $R^{2\ell}$ and an orientation δ to $S^{2\ell-1}$ with $p \wedge \delta(p)$ being the standard orientation at p. We will follow (L-2).

We denote by $E = TM \mid S^1F$ and $F^*TR^{2\ell}$ the pull back of $TR^{2\ell}$ over S^1F , then we have exact sequence of bundles over S^1F :

$$0 \to L \to E \stackrel{dF}{\to} F^* TR^{2\ell} \stackrel{\pi}{\to} G \to 0$$

where L, the kernel of dF, is an $n-(2\ell-1)$ bundle and G a line bundle. If D(dF) denotes the quadratic differential then we also have the sequence

 $0 \to TS^1 F \to E \xrightarrow{D(dF)} L^* \otimes G \to 0$

If we restrict to Lp, then we have

$$0 \to R_p \to L_p \xrightarrow{D(dF)} p(L^* \otimes G)_p \to K_p \to 0$$

and if $p \in A_1(F)$ then $D(dF)_p$ is an isomorphism

The following construction will be done restricted to a chart (u, φ)

of M around $p \in A_1$.

Let w be an orientation for S^1F ; since $p \in A_1$ then kernel $(dF_p) + T_pS^1F = T_pM$ and then $\wedge^{2\ell-1}dF_p \circ w_p$ is nowhere zero. Let $h_w \in F^*T_pR^{2\ell}$ with $\wedge^{2\ell-1}dF_p \circ w_p \wedge h_w(p)$ be the orientation of $F^*T_pR^{2\ell}$ and $g_w = \pi(h_w)$. Since G is a trivial line bundle the orientation g_w gives a trivialization of G and we have an isomorphism

$$D(dF)_p: L_p \otimes L_p \to R$$

We denote by τ_w the index of this matrix.

If we choose the orientation -w then the above index would change to $n - (2\ell - 1) - \tau_w$.

2.2 Let $\psi(F) = \{ \gamma \in Hom(R^{2\ell}, R) \mid \gamma \text{ has only nondegenerate singularities on } U \}$. Then $\psi(F)$ is dense in $Hom(R^{2\ell}, R)$, in fact we can obtain that the singular points of $\gamma \circ F$ belong to $A_1 \cap U$.

Consider coordinates $(\bar{u}, \bar{y}) \in R^{2\ell-1} \times R^{n-(2\ell-1)}$ centered at $p \in A_1$ and $(V, Y) \in R^{2\ell-1} \times R$ centered at F(p) such that on U we have

$$\gamma \circ F = a_{2\ell}Q(\bar{y}) + \sum_{i=1}^{2\ell-1} a_i u_i + \sum_{k=1}^{2\ell-1} C_k U_k^2 + \sum_{i < j} b_{ij} u_i u_j + \dots$$

and $\partial \mid \partial \bar{u} = a \cdot w\pi(\partial \mid \partial YF) = b \circ g_w$ with a > 0 > b > 0.

Since \bar{o} is a nondegenerate singularity we get $a_{2\ell} \neq 0$, $a_i = 0$ for $1 \leq i \leq 2\ell - 1$ and A_1 is given by $\bar{y} = 0$, then

$$\gamma \circ F\big|_{A_1 \cap U} = \sum_{k=1}^{2\ell-1} C_k U_k^2 + \sum_{i < j} b_{ij} u_i u_j + \dots$$

if s is the index of the above quadratic form, then the index of $\gamma \circ F$ on \bar{o} is just the index of $Q(\bar{y}) + s = \tau_w + s$.

Since \bar{o} is a singular point of $\gamma \circ F$ then $dF_p(T_pS^1F) \subset \text{kernel of } \gamma$ and then $\pi(\partial \mid \partial \gamma)$ is non zero; hence we have the following two cases:

(*) I) $\pi \left(\frac{\partial}{\partial \gamma} \circ F \right)$ is a positive multiple of g_w then index $\gamma \circ F = \tau_w + s$.

II) $\pi(\partial \mid \partial \gamma \circ F)$ is a negative multiple of g_w then index $\gamma \circ F = n - (2\ell - 1) - \tau_w + (2\ell - 1) - s = n - \tau_w - s$.

Let $\gamma \in \psi(F)$ and denote by $\eta(\gamma) = \eta_1(\gamma) \wedge \ldots \wedge \eta_{2\ell-1}(\gamma)$ where $\{\eta_1(\gamma)\}_{1 \leq i \leq 2\ell-1}$ generates the kernel of γ and $\eta_1(\gamma) \wedge \ldots \wedge \eta_{2\ell-1}(\gamma) \wedge \partial \mid \partial_{\gamma}$ is the orientation of $R^{2\ell}$.

Define a new map $\theta_w: U \cap A_1 \to \wedge^{2\ell-1}(R^{2\ell}) \approx R^{2\ell-1}$ by

$$\theta_{w}(p) = \frac{\pi_{2}(\wedge^{2\ell-1}dF \circ w(p))}{\left|\left|\pi_{2}\wedge^{2\ell-1}dF \circ w(p)\right|\right|}$$

where $\pi_2: \wedge^{2\ell-1} TR^{2\ell} \to \wedge^{2\ell-1} R^{2\ell}$ is the projection onto the zero fiber, then we can consider

$$\theta_w: U \cap A_1 \to S^{2\ell-1}$$

The singular points of $\gamma \circ F$ on U are just $\theta_w^{-1}(\pm \eta(\gamma))$; since $\eta(\gamma) \wedge \partial \mid \partial \gamma \neq 0$ we translate lemma 2,3 in [L-2].

$$p \in \theta_{w}^{-1}(\pm \eta(\gamma)) \Leftrightarrow \pi_{2}(\wedge^{2\ell-1}dF \circ w(p)) \mid | \eta(\gamma) \rangle$$

$$| \Leftrightarrow \pi_{2} \wedge^{2\ell-1}dF \circ w(p) \wedge \partial | \partial \gamma_{p} \neq 0$$

$$\Leftrightarrow \pi(\partial | \partial \gamma \circ F) \mid | \pi(h_{w}) = g_{w}$$

We claim that the parallelities are of the same sign. Put $\theta_w = \epsilon \eta(\gamma)$ and $g_w(p) = \mu \pi(\partial \mid \partial \gamma \circ F)$; we then have

$$\wedge^{2\ell-1} dF \circ w \wedge g_w \text{ is the orientation of } F^*(TR^{2\ell})$$

$$\Leftrightarrow \mu \pi_2 (\wedge^{2\ell-1} dF \circ w) \wedge \partial \mid \partial \gamma \mid_0 \text{ is the orientation of } R^{2\ell}$$

$$\Leftrightarrow \mu \theta_w(p) \wedge \partial \mid \partial \gamma \mid_0 \text{ is the orientation of } R^{2\ell}$$

$$\Leftrightarrow \mu \in \eta(\gamma) \wedge \partial \mid \partial \gamma \mid_0 \text{ is the orientation of } R^{2\ell}$$

Hence $\mu \in >0$ since $\eta(\gamma)$ was chosen in such a way that $\eta(\gamma) \wedge \partial |\partial \gamma|_0$ is the orientation of $R^{2\ell}$.

It is clear that $\pm \eta(\gamma)$ are regular values of θ_w , since this is equivalent for o being a regular value of $\gamma \circ \pi_2 \circ (\wedge^{2\ell-1} dF \circ w)$ which is equivalent to $\gamma \circ F$ has nondegenerate points;

Then (*) can be rewritten as

I)
$$\theta_w(p) = \eta(\gamma)$$
 then

$$s \text{ even if } \theta_w \text{ preserves}$$

$$index (\gamma \circ F) = \tau_w + s$$

$$s \text{ orientation}$$

$$s \text{ odd if } \theta_w \text{ doesn't}$$

II)
$$\theta_w(p) = -\eta(\gamma)$$
 then
$$s \text{ even if } \theta_w \text{ preserves}$$

$$index (\gamma \circ F) = N - \tau_w - s \qquad orientation$$

$$s \text{ odd if } \theta_w \text{ doesn't}$$

Let $N_u(\sigma)$ be the number of points in U, where $\gamma \circ F$ is singular with its singularities having index σ and $\#(\eta(\gamma), \theta_w)$ be the number of θ_w preimages of $\eta(\gamma)$ counting +1 when θ_w preserves orientation and -1 when it doesn't. We then have:

$$\# (\eta(\gamma), \theta_w) = \sum_{i=0}^{\ell-1} N_u(\tau_w + 2i) - N_u(\tau_w + 2i + i)$$

$$+ (-\eta(\gamma), \theta_w) = \sum_{i=0}^{\ell-1} N_u(n - \tau_w - 2i) - N_u(n - \tau_w - (2i + 1))$$

Let $\alpha: S^{2\ell-1} \to p^{2\ell-1}$ be the canonical orientation preserving map from the sphere to the projective space.

Then $\alpha \circ \theta_w = \phi \mid U$ and we have (**)

$$(**) \qquad \# ([\eta(\gamma)], \phi \mid U) = \# (\eta(\gamma), \theta_w) - \# (-\eta(\gamma) \cdot \theta_w).$$

Now, if C is a component of A_1 , then $C = \bigcup_{i=1}^n U_i$ where U_i are locally trivial and (**) can be restated as

$$\# ([\eta(\gamma)], \phi|_{C}) = \# (\eta(\gamma), \theta_{w}|_{C}) + \# (-\eta(\gamma), \theta_{w}|_{C}).$$

We state a lemma and delay proof until the next section.

Lemma. Suppose $F: M \to R^{2\ell}$ satisfies the conditions of theorem 2, then there exists an unique orientation w for $S^1(F)$, such that if c is a component of A_1 , the w-index of c is even.

Proof of theorem 2.

Observe that \widehat{M} is a compact manifold and so are the components \widehat{c} of $S^1(dF)$. We can have $\gamma: R^{2\ell} \to R$ such that the singularities of $\widehat{\phi}$ are in $\sigma^{-1}(A_1)$ and then as in [L-2]

$$\chi(M) = \sum_{\widehat{c}} \# ([\eta(\gamma)], \gamma \circ \widehat{\phi} \mid (\widehat{c}) = \sum_{\widehat{c}} r(\widehat{c}), \ \widehat{c} \text{ component of } S^1 F.$$

If
$$S^2 = \emptyset$$
 then

$$\chi(M) = \sum_{c} r(c)$$
, c component of $S^{1}(dF)$.

2.3. Suppose \widehat{c} is a component of $S^1(dF)$ and $\widehat{c} \subset \widehat{A}_1$; since M is even dimensional we can give, in a unique way, an orientation to \widehat{c} , such that the index is even. This is equivalent to the statement that if B is a matrix of size $(2\ell-1)\times(2\ell-1)$ then either B or -B has even index.

We consider c with $c \cap A_k \neq \emptyset$, k > 1 and let $p \in c \cap A_k$ then under change of coordinates

$$F_k(\bar{u}, x, \bar{z}) = (\bar{u}, C_k(u, x) + Q(z))$$
 where $C_k(u, x) = x^{k+1} + \sum_{i=2}^{k-1} u_i x^i + a u_1 x$, with $|a| = 1$.

The singular set of F_k , S^1F_k is defined by

$$u_1 = -\frac{1}{a} \left((k+1)x^k + \sum_{i=2}^{k-1} iu_i x^{i-1} \right) \bar{z} = 0$$

and A_k is defined by $u_2 = ... = u_{k-1} = x = 0$.

Let $p \in A_k$ then $T_p S^1 F_k = \langle \partial | \partial u_2 \rangle, \dots, \partial | \partial u_{2\ell-1}, \partial | \partial x \rangle$ and $L_p = \text{kernel}$ $DF_p = \langle \partial | \partial x, \partial | \partial z_1, \dots, \partial | \partial z_{(2n-\ell)}.$

Given λ_p orientation of L_p , we let $V_p \in \wedge^{2\ell-1}T_p$: M such that $V_p \wedge \lambda_p$ is the orientation of M at p. Choose

$$y \in F^*(TR^{2\ell})$$
 with $\wedge^{2\ell-1}dF(V_p) \wedge y$

be the orientation of $TR^{2\ell}$ (or a positive multiple of it) and let $g_v(p) = \pi(y)$. Since $V_p \notin TpS^1F = \text{kernel } D(dF)$ then $\wedge^{2\ell-1}D(dF)_p(v_p) = a_p(w_p^* \otimes g_v(p))$ modulo $D(dF)_p(L_p)$.

If we would choose $-\lambda_p$ then we still get a_p since M is even dimensional, hence we have a map α_w , dependent only on w, defined by

$$\alpha_w(p) = \frac{a_p}{|a_p|}.$$

Note: α_w is just the coefficient of u_1x . We state a simmilar proposition as in [L-2].

Proposition. If the dimension of M is even and $F: M \to R^{2\ell}$ is as before, the we can give an orientation to C in such a way that:

$$\alpha_w(p) = (-1)^{\tau_w(p)+1}$$

The proof for $\ell=1$ is in [L-1] and the proof of this proposition is completely similar since L_p continues to be an odd dimensional vector space.

Proof of lemma:

We choose coordinate systems (\bar{u}, x, \bar{z}) and (V, y) such that:

1) $V \circ F(\bar{u}, x, \bar{z}) = \bar{u}$

2)
$$Y \circ F(\bar{u}, x, \bar{z}) = Q(z) + x^{k+1} + \sum_{i=2}^{k-1} u_i x^i + a u_1 x$$

where $a = (-1)^{\tau+1}$, τ the index of Q

3) $\partial |\partial x \wedge \partial |\partial u_2 \wedge ... \wedge \partial |\partial u_{2\ell-1}|$ is a positive multiple of w $\partial |\partial v \wedge \partial |\partial Y|$ is the standard orientation in $R^{2\ell}$

Let Q = (u', s, 0) A_j . Then Q is of the form

$$Q = \left(-\frac{1}{a}((k+1)s^k + \sum_{i=2}^{k-1} iu_i's^{i-1}), u_2', \dots, u_{2\ell-1, s, o}'\right) \text{ and}$$

$$F(Q) = \left(-\frac{1}{a}((k+1)s^k + \sum_{i=2}^{k-1} iu_i's^{i-1}, u_2', \dots, u_{2\ell-1}', -(ks^{k+1} + \sum_{i=2}^{k-1} (i-1)u_i's^i)\right) \text{ with}$$

$$k(k+1)s^{k-1} + \sum_{i=2}^{k-1} (i-1)iu_i's^{i-2} \neq 0.$$

Consider the following changes of coordinates

$$\bar{u}_1 = u_1 + \frac{1}{a}((k+1)s^k) + \sum_{i=2}^{k-1} iu_i s^{i-1}$$

$$\bar{u}_j = u_j - u_j'$$

$$\bar{x} = x - s$$

$$\bar{z} = z$$

and in the target

$$\bar{v}_1 = v_1 + \frac{1}{a} \left((k+1)s^k + \sum_{i=2}^{k-1} iu_i s^{i-1} \right)$$

$$\bar{v}_j = v_j - u'_j$$

$$Y = Y - s^{k+1} - \sum_{i=2}^{k-1} s^i v_i - asv_1$$

Then $(\bar{v}, y) \circ F \circ (\bar{u}, \bar{x}, \bar{z}) = (\bar{u}_1, \dots, \bar{u}_{2\ell-1}, Q(\bar{z}) + h(\bar{u}, \bar{x}))$ where $h(\bar{u}, \bar{x}) = \sum_{i=1}^{k+1} \binom{k+1}{i} |s^i \bar{x}^{k+1-i} + \sum_{i=2}^{k-1} (\bar{u}_i + u_i') (\bar{x} + s)^i + a\bar{x} \bar{u}_1 - (k+1)\bar{x}s^k - \bar{x} \sum_{i=1}^{k-1} iu_i' s^{i-1} - \sum_{i=2}^{k-1} s^i (\bar{u}_i + (\bar{u}_i'))$

hence S^1F is given by

$$\bar{u}_1 = -\frac{1}{a} \left(\sum_{i=1}^{k-1} {k+1 \choose i} (k+1-i) s^i x^{-k-i} + \sum_{i=2}^{k-1} i (\bar{u}_i + u_i') (\bar{x} + s)^{i-1} - \sum_{i=2}^{k-1} i u_i' s^{i-1} \right), \ \bar{z} = 0.$$

we erase the suprascripts and calculate

$$\wedge \frac{2e^{-1}dF}{a} \circ \left[\left(-\frac{2s}{a} \partial \mid \partial u_1 + \partial \mid \partial u_2 \right) \wedge \left(-\frac{6s^2}{a} \partial \mid \partial u_1 + \partial \mid \partial u_3 \right) \wedge \dots \wedge \right]$$

$$\wedge \dots \wedge \left(-\frac{(k-1)(k-2)}{a} \partial \mid \partial u_1 + \partial \mid \partial u_{k-2} \right) \wedge \dots \wedge \partial \mid \partial u_{k-1} \wedge \dots \wedge \right]$$

$$\wedge \dots \wedge \partial \mid \partial u_{2e-1} \wedge B$$
 where
$$B = -\frac{1}{a} \left[2\binom{k+1}{2} s^{k-1} + \sum_{i=2}^{k-1} i(i-1)u_i' s^{i-2} \right] \partial \mid \partial u_1 + \partial \mid \partial x$$

This is equal to

$$\left[-\frac{1}{a}\left((k+1)ks^{k+1}+\sum_{i=2}^{k-1}i(i-1)\right)u_1's^{i-2}\right]\partial \left|\partial u_1\wedge\ldots\wedge\partial\right|\partial u_{2\ell-1}$$

which from (*) is not zero, hence we choose

$$h_{w} = \left[-\frac{1}{a} (k \mid k+1) s^{k-1} + \sum_{i=2}^{k-1} i (i-1) u_{i} s^{i-2} \right] \partial \mid \partial \gamma$$

and then we have to calculate the index of

$$(**) -\frac{1}{a}C'_{k}[Q(z) + C'_{k/2}x^{2}] = (-1)^{t}C'_{k}[Q(z) + C'_{k/2}x^{2}]$$

which h is the same index as the one of

$$(-1)^{\tau} [c'_k Q(z) + x^2]$$
 where $C'_k = \left[(k+1)ks^{k-1} + \sum_{i=2}^{k+1} i(i-1)u'_i s^{i-2} \right];$

we have two cases

(I) If τ is even then

$$\operatorname{index} \left[c'_k Q(z) + x^2 \right] = \operatorname{index} c'_k Q(z) = \begin{cases} \tau & \text{if } c'_k > 0 \\ 2(n - \ell) - \tau & \text{if } c'_k < 0 \end{cases}$$

(II) If τ is odd then

$$\operatorname{index} \left[- (c'_k Q(z) + x^2) \right] = 1 + \operatorname{index} \left[- c_k Q(z) \right] = \begin{cases} 2(n - \ell) - \tau + 1 & \text{if } c'_k > 0 \\ \tau + 1 & \text{if } c'_k < 0 \end{cases}$$

hence the index is always even.

References

- [L-1] Levine H.; Elimination of cusps, Topology, Vol. 3, Supp 2, 1965.
- [L-2] Levine H.; Mappings of Manifolds into the plane, American Journal of Mathematics, Vol. LXXVIII, N.º 2, April 1966.
- [L-3] Levine H.; A generalization of a formula of Todd, Academia Brasileira de Ciências, Vol. 37, N.º 314, Rio de Janeiro, R. J. 1965.
- [W-1] Martinet. J.; Deploiments versels des applications differentiables et classification des applications stables,
- [M-2] Mather J.; On Thom Boardman Singularities, Dynamical Systems, Edited by M. M. Peixoto, Academic Press 1973.
- [W-1] Wasserman G.; Stability of Unfoldings, Lecture notes in mathematics, Vol. 393, Springr Verlag.

Bandeis University – USA and Instituto de Ciências Matemáticas de São Carlos – USP, Brasil.