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On mappings into R?*¢

Leén Kushner*

Abstract.

Let M be a compact orientable manifold. We know how to calculate
x(M), the Euler characteristic of M, from a stable map f : M — R, with
information only on S(f), the singular set of f. This result was extended"
to stable maps into the plane by H. Levine [L-2] when M has dimension
2n, and it is also calculated from S(f). The purpose of this work is to
generalize the above result for maps into R?, where n > ¢. In this case
S(f) is not a manifold. We use the process of resolution of singularities
[L-3] to get a homomorphism having only singularities of codimension
1 and use simmilar technics as in [L-2]. '

1.1. Let M be a compact oriented manifold of_ dimension 2n_and
F:M—R*, n>¢, a differentiable map with *F A E® and j'F & =¥,
where T® =3U-1- =1 and the X* are the Boardman singularities in
JYM, R*) and J'(M, R?*) respectively. We let S® = (*F)~4(Z%) and
St=('F)"1(Z").

In the case £ = 1 we have the following theorem due to H. Levine L-2.

Theorem 1.‘1f F is as above, then the Euler characteristic of M is given by
2(M) = 3 r(C)
C

where the C are the components of the singular set of F with sore
orientation and r(C) the degree of a certain map ¢.

For the case { >1 we have following

Theorem 2. Let F : M — R?*¢ be as above avnd' stable; then

x(M) = 3r(©)
C

(*) Supported by FAPESP and FINEP.
Recebido em 10/06/81.
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where C are the components of the singular set of dF, the map
obtained from the resolution of the manifold collection (SYE), ..., S(F);,
{ = max {k/S*F # &} and the homorphism dF is defined as in [L-3] and
r is the degree of a certain map ¢.

The proof runs parallel to [L-Z] with the introduction of the new
map ¢. The changes of coordinates of 2.5 are also similar. 1 thank Prof.
H. Levine for the suggestion of the problem and kind advice.

1.2. Definition of the map &.

We consider the germs of stable maps F : R* — R** such that 0 € S'(F).
By ‘Martinet correspondence Theorem [M-1] between S(2¢-1,1,1) and
V(2¢-1,1,1) it is enough to study germs f :(R,0)—(R,0) with df(0)=0
and codim, f <2¢; hence f(x) = x*h(x) with h(0) # 0 and then f v 5. Lhe
unfoldings of this maps are given by:

F.:RY "B +R* xR
(i, x) — (u, filu, x))
&k—1
where fi(@,x) = x**1 + ) ux'.

i=1

The singular set of F, is given by

x =0 for k=1 and

k—1
u, = — ((k + Dx*+ Y iux'~') for k> 1.
i=2
- Let k>1; we consider {{0|0du;};2{"",d|0x} the basis for the source
and {{0|dv;}2¢7",0|0Y} the basis for the target. If pe S!(F) then T,S'(F)
is generated by: -

Slow — i "liw e 122k~ 1
0| Ou; ford 7=k M, 28 »d
0[ax—cka[5u1

: k=1 i
where C, = (k+ Dkx*~1 + Y i(i — Dupx'~2 If we let
S e

A, = SOF — S®*DF then pe A, < C, # 0
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The image under dF, of this vector is _
B;=0|0v;, — ix'"'0|0v,— (i — 1)x'd|dy for i=2,....k — 1
Y= 0|0y [or " ek, e
= Cyd ] ov, + x| aY)
Let Gy, ,(R*) be the Grassmannian manifold and G,,_,(TR%*) the
Grassmannian of TR*‘. We let

$: A, - Gz¢—1(R2f)

be the differentiable map defined by ¢(x) = the vector space generated
by n,{B;,y;,0|0v, +x0|0y, where m,: TR* - R is the projection onto-
the fiber over o€ R%. This map can be extended to a differentiable map
over S'F. If pe A, then ¢(p)= n, - dF(T,S'F) and the extension is given
by é(p) =, - dF(T,M).

1.3. An example where S'F is not compact: Consider F : R* - R* given by
F(uy,us, x,y) = (uy, 42, x> +u1y, 5% + uzx).

In this case S'F = {(uy, uy,x,y)€ R* — 6 4xy — uu, = 0} and
S*F = {0}, so S'F is not closed. Moreover it is impossible to extend
0 !

We state the following theorem (L-3)

Let dF:TM — F*(TR**) where J'F AX* and 6:M—>M be the
composition of the maps obtained by the resolution of singularities (¢

k
is a diffeomorphism outside ¢~ ' ( ( ) S*F |), then there exists a bundle
o =2
T8 and homomorphisms dF: TM — ¢*F*(TR?*¢) and h: Tﬁ/l—»a*(TM),
g k
with h an isomorphism outside ¢~' <U S'F) such that the following

P\ i=2
diagram of vector bundles over M commutes

i ek o* F*(TR*)
e ‘ o™ (dF)
o~ '(T™)

We define @ : S'(dF)— G, ;(R*) by $(p) = n,dF(T,M).
In fact S'(dF)=0¢"(S'F)=0 '(S'F).
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2.1. We let M be a compact oriented manifold of dimension n with
n>2¢. Then the maps F, are given by

Fk :RZl’—l X R X R"_Zf—>R2f_l
(ﬁy X, E) by (l_" fk("_‘, x) + Q(E))

where Q is a nondegenerate quadratic form. We shall denote F, by F.
We give the standard orientation to R* and an orientation & to
$2¢~1 with p A &(p) being the standard orientation at p. We will follow (L-2).
We denote by E= TM | S'F and F*TR*“ the pull back of TR*¢ over
S'F, then we have exact sequence of bundles over S'F:

0—>L—>E—>F*'IR2”—>G—>O

where L, the kernel of dF,is an n — (2¢ — 1) bundle and G a line bundle.
If D(dF) denotes the quadratic differential then we also have the
sequence A :

0—>’ISF E—L*®G—-0

If we restrict to Lp, then we have

D(dF)

0-R,—>L,—pll*®RG),—~K,=0

and if pe A\(F) then D(dF), is an isomorphism

The following construction will be done restricted to a chart (u, ¢)
of M around pe A,.

Let w be an orientation for S'F; since pe A, then kernel (dF ot
+ T,S'F = T,M and then A >“~'dF, o w,is nowhere zero. Let h,, e F*T,R*
w1th R 24 ldF ow, A h,(p) be the orlentatlon of F*T,R* and g,,= n(h ).
Since G is a tr1v1al lme bundle the orientation g, gives a trivialization of
G and we have an isomorphism

D@F),:L,® L, —» R

We denote by t, the index of this matrix.
If we choose the orientation — w then the above index would change
ton—Q2¢-1)—1,.

2.2 Let Y(F)= {ye Hom(R*/, R)|y has only nondegenerate singularities
on U}. Then y(F) is dense in Hom(R?*¢,R),in fact we can obtain that the
singular points of y. F belong to 4, " U.
Consider coordinates (i, )€ R*~! x R"~2~1) centered at pe A,
and (V, Y)eR” ! x R centered at F(p) such that on U we have
261 RF— 1

Yo F ='a,,0(y) + Z au; + Z CU2 + Zb,,uu + .

i=1 k=1 r<j
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and 0|du=a- wn(0|0YF)=bog, with a>0>b>0.
Since 0 is a nondegenerate singularity we get a,,#0, a;=0 for
1<i<2f—1 and A, is given by y=0, then
2¢-1
yOFR B8 le | S LS b bijuu; + .
k=1 i<i
if s is the index of the above quadratic form, then the index of y . F on
0 is just the index of Q(y)+s=r1,+s.
Since o is a singular point of y. F then dF (T, SlF)ckeme] of y
and then n(d|dy) is non zero; hence we have the following two cases:

(* 1) n(a%oF> is a positive multiple of g, then

index yoF=r1,+ 5.
n(3 |0y F) is a negative multiple of g,, then
index y_oF=n—(2€—1)—rw+(2€—1)—s=n—rw—s.

Let yey(F) and denote by n(y) = n:(y) A ... A n,—4(y) where
IM47)} 1 <i<2¢—, generates the kernel of y and n,(y) A ... Anye_y(y) A 0|0, A
is the orientation of R?*‘. ;

'Define a new map 0,,:U n A4, » A% YR*)~ R*7! by

oA 27 1dF o w(p))
|| ma AT dF o w(p) |

0..(p) =

where 7, : A2¢71TR?¢ 5 A 27 1R is the projection onto the zero fiber,
then we can consider

&, 1 Usiild = 825 04

The singular points of yoF on U are just 0,'(+ n(y)): since
) A 0|0y # 0 we translate lemma 2,3 in [L-2].

pe 0 (£ n(y) <= ma( A7 1dF o wp))| | n(y)
|1y A 27 1dF ow(p) A 0|0y, #0
c’71:(6‘6'})‘31;‘”|7t(hw)= 9w
We claim that the parallelities are of the same sign.
Put 0, =€n(y) and g,(p)= un(d|dy - F); we then have
A?7YdF ow A g, is the orientation of F¥*(TR*)
<> umy(A7'dF ow) A 0|0y |, Ts the orientation of R
"< ub,(p) A 0|3y, is the orientation of R*
<> pen(y) A 0|dylo is the orientation of R*
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Hence pe >0 since n(y) was chosen in such a way that n(y) A 2|0y o
is the orientation of R?‘.

It is clear that +#(y) are regular values of 0,,, since this is equivalent
for o being a regular value of y. 7, o (A2~ !dF o w) which is equivalent
to yo. F has nondegenerate points;

Then (*) can be rewritten as

I) 0,.(p) = n(y) then

s even if 0, preserves
index(yo F) =1, + s orientation
s odd if 0, doesn’t

I) 6.(p) = — n(y) then ‘
s even if 0, preserves
index (yoF)=N—1, —s orientation
s odd if 0, doesn’t

Let N,(o) be the number of points in U, where y . F is singular with
its singularities having index ¢ and 3# (5(y), 0,) be the number of 0,
preimages of n(y) counting + 1 when 0,, preserves orientation and — |
when it doesn't. We then have: '

€<l
# (1(y),0,) = Y Nyt,+ 2i) — N1, + 2i + i)

i=0
-1 :

# (_ n(y)aew) = Z Nu(n T Tw ST 21) % Nu(n Tl 5= (21 + 1))
i=0

Let o:S?*7! - p?**~! be the canonical orientation preserving map
from the sphere to the projective space.
Then o060, =¢|U and we have (**)

S5 # ()], | U) = # (1(»), 0.) — # (= n()- 0,,).

Now, if C is a component of A, , then C = () U; where U, are locally
i=1

trivial and (**) can be restated as

# (1] @) = # (1), 0 |c) + # (= n(y), 0, |0).
We state a lemma and delay proof until the next section.
Lemma. Suppose F : M — R* satisfies the conditions of theorem 2, then

there exists an unique orientation w for S'(F), such that if ¢ is a component
of Ay, the w-index of c is even. :
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Proof of theorem 2.

Observe that M is a compact manifold and so are the components
¢ of S!(dF). We can have y : R* - R such that the singularities of ¢ are
in 67 1(A,) and then as in [L-2]

x(M)= Z # ([n()],y-#|@ = Y r@), ¢ component of S'F.

If $? = @ then
x(M) = ¥ r(c), ¢ component of S'(dF).

2.3. Suppose ? is a component of S'(dF) and < 4,; since M is even
dimensional we can give, in a unique way, an orientation to ¢, such that
the index is even. This is equivalent to the statement that if B is a matrix
of size 2¢ — 1) x (2¢ — 1) then either B or —B has even index.

We consider ¢ with ¢ N A4, # &, k> 1 and let pe ¢ N A, then under
change of coordinates

F.(u1,x,%) = (u; C(u, x) + Q(z)) where
ka1

Cil,x) = x**1 + ¥ ux' + au,x, with |a| = 1.
i=2

The singular set of F,,S'F, is defined by

=1
Z iu,-xi_l>2 = ()

k
i=2

LS i((k bk 4
a
and A, is defined by u,=...=u_; =x=0.
Let pe A then T,S'F, = <0|0u,),...,0|0uzs -1, d|0x) and L,=kernel
DF ,= (0 | 0x,0|0zy,...,0/0Z2n-¢)-
Given /, orientation of L, we let V, € A 26-1T . M such that V, A 4,
is the orientation of M at p. Choose

ye F*(TR*) with A%*7'dF(V,) A y

be the orientation of TR (or a positive multiple of it) and let g,(p) = n(y).
Since V,¢ TpS'F =kernel D(dF) then A 26-1D(dF)(v,) = a,(w; ® ¢,(p))
modulo D(dF),(L,). :

If we would choose — 4, then we still geta, since M is even dimensional,
hence we have a map a,,, dependent only on w, defined by

ou(p) =

a,,.

|4, ]
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Note: a,, is just the coefficient of u,x.
We state a simmilar proposition as in [L-2].

Proposition. If the dimension of M. is even and F : M — R* is as before
the we can give an orientation to C in such a way that:

au(p) = (= 1w

b

The proof for ¢ =1 is in [L-1] and the proof of this proposition is
completely similar since L, continues to be an odd dimensional vector
space.

Proof of lemma:

We choose coordinate systems (&, x,z) and (V,y) such that:
1) VoF(u,x,2)=1

k—1
2) YoF(u,x,2)= Q)+ x*" '+ ¥ ux'+ au,x

i=2
where a=(—1)"', ¢ the index of Q
3) 0|0x A 3|0uy A ... A O|Ouye—, is a positive multiple of w
0|0v A 8]@Y is the standard orientation in R*¢

Let Q=(u,s,0) A;. Then Q is of the form

1—2‘

[0) =<—%((k+ L)s% Z iujsi~1) uz,---a“'Zf—l‘.s-o> and

F(Q)=< %((k'i‘ )s* + Z iuis' ™y, ey, — (ks¥TT +

1=

+ Z (i — l)u:-si)> with

i=2
k—1
k(k + 1)s*~ ' + ¥ (i — Diujs'=2 #0.
i=2

f?éﬁ(\)‘ﬁsider the ‘following changes of coordinates

B~ ((k+1s«+ Zlus'1
i=2

W=%—%

X=X — 5.
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and in the target

<(k+ls o Zlus 1)

1
U1= 9y
- a i=2

u;

=0; — i

J
k=1
Y=Y—gtl — ¥ sv,— asv,

i=2

Then (v, y) o F% (4, X, 2) = (Uy, ..., Uz 1, Q(Z) + jh(i1, X)) :
k+1 : S . s
where h(, X) = ) <k+1>!s‘ik+l_'+ Y @ 4 w) (x + s) + ax i,

A

k-1 A k=10 s
—(k+ Dxskt —x Y ius'" = Y sk @)
i=2 i=2

hence S'F is given by
15 1 k+1 B A Al N(x + S)i—l
0 =—-— z / (k+1—1i)s'x +Zl(ui+“:x

a = i=2

we erase the suprascripts and calculate

; 2s 65>
Azf—ldFo[<f—0’6ul+6]5u2 A —70|6u1+0|6u3 A
a

A s 8 (—M—ﬁa!aul +6!8uk_2'>/\ s Ol L
a

A are OO oo R B} where

€ : k—1
e i[2<’”2'1>5k—1 + Y ili— l)u}si_z](?]@u, + 0 ox
a ‘ i=2

This is equal to

53

>

I:—i<k+1)ks'“rl + Z i(i — 1)) TN 2}6!8% A oo A0 | Ougp—y

which from (*) is not zero, hence we choose

: | k=1 :
h, =[—1—(klk+ 4 36— l)u.-S"z]f?!@v
a i=2
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and then we have to calculate the index of
() = GlOE + Cinx?] = (~1/CQE) + Cipx?]
which h is the same index as the one of
(= D[ciQ(2) + x*] where C; = [(k + DI kil i(i — l)u:-si‘z:l;
i=2

we have two cases
(I) If 7 is even then

tifc;, > 0

index [¢,Q(z) + x*] = index ¢,Q(z) = {2“1 A it ol <0
N ) k

(IT) If 7 is odd then

2n—¢)—t+1if¢,>0

index [ — (c;Q(2) + x*)] = 1 + index [ — ¢,Q(2)] = {r LG kg
k

hence the index is always even.
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