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Foliations by closed cylindres in 3 dimensional manifolds

Carlos Frederico Borges Palmeira

1. Introduction. Let F be a differentiable (C ) foliation in a simply connec-
ted 3-dimensional manifold M such that all leaves are closed and diffeo-
morphic to some fixed surface L. We know that every leaf is proper and
that the space of leaves M/F (quotient of M by the equivalence relation
which identifies all points in the same leaf) is a simply connected, one dimen-
sional manifold, not necessarily Hausdorff [Ha 1]. If L= R?, then the space
of leaves characterizes the foliation, i.e., given two such foliations F and
F’ on manifolds M and M’ and a diffeomorphism h : M/F — M'/F’, there
exists a difffomorphism H : M — M’ such that the diagram below com-
mutes, where p and p’ are the natural projections [Pm 1]

H

M M’

p' lp’
h

M/F M//Fl

Such a diffeomorphism H is called a conjugacy between F and F'.

In this paper the case L =R x S! is considered with the extra hypo-
thesis that the manifolds are irreducible, i.e., every embedded 2-sphere
bounds a ball, and it is proved that although the space of leaves no longer
suffices to characterize the foliation, the space of leaves plus the set of leaves
supporting vanishing cycles, plus an order induced by the foliation on
each set of non separated points of the space of leaves do characterize
the foliation in the above sense, i.e., up to conjugacy. Partial results can
be found in [Pm 2] and [Pm 3] (the case M = R? and R*/F diffeomor-
phic to R).

Let us recall the definition of a vanishing cycle, as in [Ha 2].

Let F be a codimension one foliation of a manifold M. A vanishing
cycle is a (differentiable) map f,:S' — M such that
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(@) fois a map from S* to a leaf L, which is non homotopic to a constant
in Ly
(b) fo can be extended to a differentiable map
f:[0,1] x S* »> M, f(t,x) = f(x) such that V¢t > 0, f(S')

is contained in a leaf L, and is null homotopic in L,. Without loss of
generality, we may still suppose that
(c) Vxe S! the curve t—f(t,x) is transversal to the foliation F.

We say that the leaf L, supports the vanishing cycle f, and that f is
its associate map.

If the leaf L, divides M into two connected components (such is the
case for foliations with closed leaves in suply connected manifolds) then
condition (c) above implies that f((0,1) x S*) is contained in one of the
two connected components of M — L,. It will be shown in section 3 that
this connected component is the same for all vanishing cycles supported
by L,. This component will be called the inside of the leaf L,. The other
component will be called the outside of the leaf L,. This notion can be
extended to leaves which do not support vanishing cycle, i.e., given a leaf
L and a map from S! into L, non homotopic to zero in L, then it is homo-
topic to zero in one of the connected components of M>-L but not in the
other, so the inside and the outside are well defined for any leaf. By abuse
of language, given a point x € M3/F we may call inside of x the projection
of the inside of the leaf p~!(x). In the same way we may speak of the outside
of. x.

Let M and M’ be simply connected irreducible 3-manifolds.

Given two foliations by closed cylinders F and F' on M and M’
respectively and a map h : M3/F - M"3|F’, h will be said to preserve sides
if for all xe M3/F, h takes the inside of x into the inside of h(x) and the
outside of x into the outside of h(x). We will say that h preserves vanishing
cycle if for all xe M3/F such that p~!(x) supports a vanishing cycle, then
p'~!(h(x)) also supports a vanishing cycle.

It will be shown in section 3 that if F is a foliation of M by closed cy-
linders and if {x;;ie I} = M/F is a set of non separated points, i.e., i,j€ I,
every neighbourhood of x; intersects every neighbourhood of x;, then the
foliation induces an order in this set.

Theorem. Given two differentiable foliations by closed cylinders F and F’
on simply connected irreducible 3-manifolds M and M’ respectively, and a
diffeomorphism h : M/F — M’ | F’ which preserves sides, vanishing cycles and
order, there exists a diffeomorphism H : M — M such that the diagram below
commutes, where p and p' are the natural projections.
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H
M M’
p P
h

M/F —— M'|F’
The foliations F and F’ are then said to be conjugate.

Corollary. If M is a simply connected, irreducible, 3 dimensional manifold,
foliated by closed cylinders, then M is diffeomorphic to R3.

Remark 1. Through this paper the word cylinder is applied either to
surfaces diffeomorphic to R x S or to surfaces diffeomorphic to [0, 1] x S*.
In the latter case, the boundary components ({0} x S! and {1} x §')
will be called bases of the cylinder. In section 3.1 solid cylinders are men-
tioned. By that we mean D? x [0, 1] or S* x [0,1] x [0, 1], and its bases
are D? x {0} and D2se={i--or-8Tx [0,1] x {0}-and S* x [0,1] x {1)
respectively.

2. Examples. Let

A, =lx,09eR 1x =0 ye= 3 z=£2£+ tan™'(y)}
B ={xy2leRix =0 p=0; 2 >0}

Example 1. Let us consider R? foliated by the horizontal planes z = cons-

tant. Let M =R?>— ) A4,. It is easy to see that: M is diffeomorphic
neZ

to R3, the foliation z = constant is a foliation by closed cylinders in M;
the space of leaves is diffeomorphic to R; the leaves which supports vanis-
hing cycle are given by z=nn/2, ne Z (figure 1).
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Example 2. Let M =R3*—B— () A_,. Again, M is diffecomorphic to R?,

n>0
the foliation z = constant is a foliation by closed cylinders, and the space
of leaves is diffeomorphic to R. The leaves which support vanishing cycle
are given by z=nn/2, n=0, —1, =2, —3,... (figure 2).
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Fig. 2

Since the set of leaves which support vanishing cycle is preserved
by conjugacy it is clear that the foliations in examples one and two are
not conjugate.

Example 3. Foliation by cylinders in R* with non closed leaves.

Let us modify the foliation in example 2, in the region z > 0. We re-
mark that the region z > 0 in M is diffeomorphic to the region x? + y* > |
in R3.

In {(x,y,z2)€R®:x*+y' > 1} consider the foliation given by the
surfaces r =14 Ce” (cylindrical coordinates) where C >0. From this
region thus foliated, remove the curve a defined by

/2
(14+e*")—2

It is easily seen that this curve cuts once every leaf of

y=0,z=tan E32). Doz 26 w5l i

{(x,y,2)eR?:x*> + y* > 1}.

Taking this foliation to the region z > 0 in M, we obtain a new manifold
M, = M minus the immage of «, which is still diffeomorphic to R3, foliated
by cylinders, such that in the region z > 0, all leaves accumulate on the
leaf z=0.
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This construction is equivalent to the following:
Foliate the region z >0 in M by helicoides with axis x=0, y=0, z> 0.
Then remove a curve diffeomorphic to [0, + co], which cuts every leaf
once.

Example 4. Consider the curve x =0;

1 v/ s
y=n—2_22; = 7<z<?(ﬁgure 3)
4
Az
k i
=T/2
Fig. 3
on ! T <22 whe e Haee
It is clear that if n— + o0 then z,,—»-_i-%.
T ZisiiZ
Let a, be''the curve x=0; y=———— + fan— ————
o cu y 7t2/4_)2'2.—|~ an N

Zuse Zo<tz v i(figure 4)
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Let R® be foliated by the planes z = constant and consider
M=R*— () A,— | o, As before, M is diffeomorphic to R3, and

ne Z ne Z
n+0

the foliation z = constant is a foliation by closed cylinders. The leaves
which support vanishing cycle are given by z = nn/2 and z = n/|n|+ 1 - =/2.
Note that the images of these leaves in the space of leaves form a set which
has —n/2 and n/2 as accumulation points:

Example 5. Consider the foliation of the half-plane x > 1 in figure 5, where
the leaves C and C' are non separate.

///,c,

Fig. §

YA

=

Rotating the figure around the y-axis, we obtain a foliation by closed
cylinders on the region x>+ y*> 1. We complete the foliation putting
in the region x* + y* < 1 the foliation of example 1, obtaining the foliation
of figure 6. :

_\§//_C,
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Note that we have here a foliation with a non Hausdorff space of
leaves. The non separate leaves do not support vanishing cycle.

Example 6. We will modify example 5 to obtain two foliations with the
same space of leaves, the same set of leaves supporting vanishing cycle,
but non conjugate.

Consider the foliation G of the region x>+ y* > 1 in R? defined as
in figure. 7.

v 4
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Fig. 7

=2

The leaves in the region | y|>2 are the lines Y= constant and in
the region | y | < 2 are the elipses x?/a® + y*/b* = 1 with a and b increasing
functions of a parameter te[0,1) such that a(0)= b0)=1 and
’121} a(t) = oc and 'Imﬁlz blr) =2

Consider the product of G by R and remove the half-lines x =0,
y>2 z=0and x=0, y< —2, z=0. We have obtained a foliation G’
in R® — {(x,»,2):x* + ?> < 1}. G’ is a foliation by closed cylinders which
will be used to construct our example.

Let us modify example 5 by introducing a new non-separate leaf

2

Fig. 8

YA
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There are, now, 3 non separate leaves: A4, B, C. Rotating the figure
around the y-axis, we obtain a foliation by closed cylinders of
R® —{x,y,z) :x* + z> < 1} with 3 non separate leaves which we still will
call A, B, C. As in example 5, we extend the foliation to the region
Xidzta 1.

We will now consider the exterior of the cylinders A4, B, C (i.e. the
non simply connected component of their complements). The exterior of
each cylinder is diffeomorphic to the region x? 4+ y? > | and we can com-
plete our foliation by putting in the exterior of each among A, B, C, either
the product foliation, or the foliation G'. Let F be the foliation obtained
by putting G’ on the exterior of A and B, and the product foliation on the
exterior of C. Let F’ be the foliation obtained by putting G’ on the exterior
of A and C, and the product foliation on the exterior of B.

There are no differences between R3/F and R3/F’; nevertheless F
and F’ are not conjugate since a homeomorphism of R* cannot exchange
the cylinders 4 and B keeping fixed the cylinder C. After the order is de-
fined (in section 3.6), it will be easy to see that in both cases the order is
A < B < C and there is no homeomorphism between the spaces of leaves
which is order preserving, since any such homeomorphism must switch
A and B, therefore will not be order preserving.

3. Proof of the Theorem. The proof of the theorem is very similar to the
proof of theorem-1 of [Pm 1]. M and M’ will be decomposed into big
trivialized pieces (decomposition lemma in the end of section 3.6 and
trivialization lemma, section 3.1) where the conjugacy can be defined.
The extension lemma (section 3.7) shows how to put together adjacent
pieces. Section 3.8 wraps it up.

3.1 Trivialization Lemma.

Lemma. Let M be a 3-dimensional manifold endowed with a foliation F
by closed cylinders, such that M/F is diffeomorphic to an interval J (open,
closed or semi-open) and with no vanishing cycles. Then F is conjugate to
the product foliation of J x (R x S').

Proof. The same proof of the trivialization lemma in [Pm 1] applies.
The only difference is that the solid cylinders to be considered will have
base S' x [0, 1] and not D?. The condition of non existence of vanishing
cycle will allow us to glue the small cylinders to obtain the big cylinders
containing arbitrary compact sets in their interiors.
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3.2 Vanishing Cycles and Embeddings.

Proposition 1. Let M be a 3-dimensional manifold foliated by closed
cylinders. Let L be a leaf supporting a vanishing cycle. Then L supports a
vanishing cycle which is an embedding.

Proof. Just notice that f : S! - L is an embedding, if and only if it is a gene-
rator of n,(L) and if f is a vanishing cycle, then there exists a vanishing
cycle which is a generator of m,(L).

From now-on we will suppose that every vanishing cycle is an em-
bedding.

3.3. Existence of the inside and outside of a leaf

Proposition 2. Let M be a simply connected 3-manifold and let L be a
eylinder (R x S*) properly embedded in M. Then:

a) M — L has two connected components. Let M, and M, be their
closures, ie, M nM,=L noM,;, i=1,2.

b) At least one of My and M, is simply connected.

c) If C is a circle embedded in L, then C bounds a disk embedded in
M;, i=1 or 2 and M; simply connected.

d) If M is irreducible, only one of M, and M, is simply connected,
and C is not null homotopic in both M and M,.

Proof. a) If M — L is connected, there is a circle cutting L only in one
point. Since M is simply connected, any circle intersects L in an even
number of points (intersection number is preserved by homotopy).

b) A simple application of Van Kampen’s theorem shows that since
n,(L)= Z and n,(M) = {0}, we must have n,(M,) = {0}, or m,(M,)= {0}
or both.

c) We have: M, is a 3-manifold with boundary, C is a circle embedded
in 0M; which is null homotopy in M; but not in M, so by the loop theorem
[He], C bounds a disk embedded in M,.

d) If C bounds disks D, = M, and D, = M,, we have the cylinder L
intersecting the sphere D, u D, along the circle C, but C divides L into
two umbounded connected components and since M is irreducible,
D, u D, divides M into 2 components, one of which is a ball, so we have
an unbounded part of a closed properly embedded surface contained
in a bounded part of M, which is impossible. So the inside and outside
of a cylinder L are well defined.

Corollary 1. If a leaf supports a vanishing cycle (on a foliation by closed
cylinders in M), the cycle vanishes on the inside of the leaf and not on the



Carlos Frederico Borges Palmeira

outside, i.e., if we push the cycle to nearby leaves on the outside, it stays non
homotopic to zero on each leaf.

In this situation we say that the inside is a vanishing side and that
the outside is a persisting side (the cycle persists; does not vanish by ho-
motopy on the leaf). If the leaf does not support vanishing cycle, we will
say that both sides are persisting. By abuse of language, just as before we
may talk of persisting and vanishing sides of points in M/F.

Let A< M be the union of all leaves which support vanishing cycle
and let A be the projection of A on M/F.

Corollary 2. A is non-empty and infinite.

Proof. Let L be a leaf which does not support a vanishing cycle (if there
is no such leaf, the corollary is true). Let C be a circle embedded in L,
non homotopic to zero in L. Let D be a disk bounded by C in general
position with respect to F. The well known Haefliger’s argument of the
disk in general position [Hal pg. 391] gives immediately the existence of
a vanishing cycle on a leaf L, . Since the inside of L, is simply connected
we can repeat the argument and get a second vanishing cycle on a leaf
L,. Now we look at the inside of L, in the inside of L, , i.e., the intersections
of the insides of L, and L,. This is a simply connected set (see below) and
we can repeat the argument and so on. We thus obtain a countable num-
ber of leaves supporting vanishing cycles. In order to see that the inter-
section of the insides of L, and L, is simply connected, we apply propo-
sition 2 to the inside of L,.

Proposition 3. Let xe M/F. Let P be a persisting side of x. Then x has a
neighborhood V such that VAP n A= .

Remark. We write a persisting side of x because if x ¢ A, both sides are
persisting.

Corollary 3. A is closed.

Proof of the Corollary.If x ¢ Alet Pand P’ beitssides. Then VAP n A= &
and VnP nA= ¢ for some neighborhood V of x. Since M/F =
=P U {x} U P’,we have V n 4 = J, which implies that M/F — A is open.

Proof of Proposition 3. Let V; be a neighborhood of x in M/F. We can
suppose ¥; homeomorphic to (0, 1). Let x, € V; be such that a generator
of m,(p~'(x)) lifts to a loop in p~*(x,) non homotopic to zero in p~1(x,)
(Just take x, € P sufficiently close to x). We claim that taking the intersec-

A
<=
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tion of V; with the connected component of M/F — {x;} which contains
x, we get a neighborhood V that answers our question. To see this take
x, between x and x,. Then, the lifting of loops from p~!(x) to p~'(x;)
can be factored through p~'(x,). Passing to the homomorphism induced
on the fundamental groups we see that if p~!(x,) supports a vanishing
cycle, we will have a non trivial homomorphism from Z to Z factoring
through a trivial homomorphism.

Corollary 4. A is countable.

Proof. We want to associate to each x € 4 an open set V, such that if x # y,
then V,nV,= . Since M/F has a countable base, M/F cannot support
an uncountable disjoint family of open sets.

Let B= {xe M/F :3y :x and y are non separated}. Since M/F has
a countable base, B is countable [Pm 1 pg. 123]. If 4 is uncountable,
(M/F — B) n A is also uncountable, and there is a coordinate system
® : V- R, where Vis an open set in M/F and ® is a homeomorphism,
such that ¥V n 4 is uncountable. Since V is homeomorphic to R, using
proposition 3, we associate to each xe A N V an open set V, such that
V.n A= and such that if x # y, then V, n V,= &. Thus, we obtain
in ¥V an uncountable family of disjoint open sets, which is a contradition.

Corollary 5. Let A° = A and A" be the set of cluster points of A~ if k> 0.
Then there exists an integer n such that A" ' # & and A"= , i.e, A"
is a discrete set.

Proof. If for all k, A*# ¥, let D= ) A"
k=0
Then D is a perfect set, i.e., all its points are accumulation points.
We know that there is a map from M/F to R which is locally a homeomor-
phism, so the image of D is also perfect and this implies that it is an unco-
untable set. So D is uncountable. But D < A and A4 is countable.

3.5 Properties of M/F.

Preliminary remark: Let us recall that M/F is a connected, simply
connected, not necessarily Hausdorff, one dimensional manifold. Such
manifolds can be represented by sets of horizontal lines. A neighborhood
of a point is an interval containing the point. For end points of half lines,
the interval is to be continued on the nearest line. For instance, on figure
9 a neighborhood of point a is formed by the union of the intervals (f, a)
and (b,e). A neighborhood of ¢ is (d,b) U (c,g). A neighborhood of b
may be (d, e) or (d, b) U (¢, g) or (f,a) U (b, e) but not (f,a) L {b} U(c,9g).
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Given two points a,be M/F such that there exists a chart g:V->R
with a,be V(V= M/F is an open set), we will call open interval (a, b),
the image by g ! of the open interval with end points g(a) and g(b). In the
same way we define closed and half-closed intervals in M/F. Notice that
(a, b) and (b, a) are both well defined and are the same interval. In figure 9
we can consider the intervals: (f,a) = (a,f), (£, e), (d, ), (c, g), (d, g) but not
(f; b) nor (f,g), nor (b, g). Notice that ae( f.e) but bé¢(f,e).

f a

I

l

|

. :
d b .

|

|

I

|

|

c

g
Fig. 9

Proposition 4. Let (a, b) =« M/F be an open interval, such that
(a,b) N A= . Then (a, b) is not in the outside of both a and b. In particular
if ac A and be A, (a,b) is not on the persisting side of both a and b.

Proof. If (a, b) is in the outside of both a and b, then there is no vanishing
cyclein F restricted to p~'[a, b] and we can apply the trivialization lemma,
obtaining a conjugacy h:p~'[a,b] > [a,b] x (R x S') between the fo-
liation F in p~'[a,b] and the product foliation of [a,b] x (R x S*).
Let us consider the cylinder C=[a,b] x {1} x S*.

The cylinder h™!(C) is transversal to F and has its bases in p~!(a)
and p~!(b). Just as in the proof of proposition 2 we can glue disks to the
bases of h™!(C), obtaining a sphere which intersects p~'(a), transversely,
along one circle which is a homotopy generator. We have arrived at a
contradiction, so (g, b) cannot be in the outside of both g and b.

Proposition 5. Let (a,b) = M/F be such that (a,b) n A= & (we allow
a= —0o0 or b=+ ). Then there exists ce d(a,b) such that (a,b) is in
the outside of ¢, and such c is unique. See figure 10 for possible c (in this
and other figures, arrows are used to indicate the inside of points).

SO S
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Proof. Existence — Let a’€(a,b). Applying the trivialization lemma to
P~ '(a, b) we see that m,(p~'(a, b)) = Z = n,(clp~*(a, b)), where by cIX we
denote the closure of the set X. Let o : S' — p~!(a’') be an embedding which
is a generator of m,(p~'(a’)) so it is also a generator of ,(p~'(a, b)). By
proposition 2 there exists an embedding f:D?* - M which extends o.
We can suppose f transversal to Op (g, b) = U p'(x). Then

xed(a,b)

B(D*) N dp~'(a,b) is a finite union of circles C,, ..., C,. It is easy to see
that one of them must be homotopic to zero out of p~!(a, b).

Uniqueness: Let c¢,,c, € d(a, b) be such that (g, b) is on the outside
of both ¢, and c,. Let C; be a circle embedded in p~!(c;), non homotopic
to a constant in p~'(c;), i = 1, 2. Since (a, b) is on the outside of ¢;, when
we push C; to a nearby leaf p~!(c}) with c}e (a, b), we obtain a circle C;
non null homotopic on the leaf. Using the product structure of p~'(a, b)
we can join the circles C{ and C; by a cylinder obtaining thus a cylinder
with bases C; and C,. Let us recall that on the other side of p~!(c;) there
is a disk bounded by C;. If we join these disks and the cylinder with bases
C, and C, just obtained, we get a sphere intersecting the leaf p~'(c;)
transversely along C; and as before this is a contradition. We have thus
proved that there is only one point c€ d(a, b) such that (a, b) is on the
outside of c.

Corollary 6. Let (a,b)= M/F and let {a;,i€ I} be a (countable) set of
points non separated from a and such that Vi€ I, 3(a;, b). We consider that
ae{a;,iel}. Then either: 3ig€l such that (a,b) is on the outside of a;,
and this implies that 3b’ € (a, b) such that (a,b') N A = & and Vi # iy, (a, b)
is on the inside of a;; or: Vi€ I, (a, b) is on the inside of a; (figure 11).
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Proof. Immediate from the previous proposition, remembering that every
leaf has a neighborhood on its outside where there are no vanishing
cycles.

Corollary 7. Let (a,b) = M/F be such that (a,b) n A= & and (a, b) is on
the outside of a. If c €0 (a,b) then (a,b) is on the inside of c.

Given ae M/F let us denote by in a and out a respectively the inside
and the outside of a.

Corollary 8. Let ae M/F be such that there exists a neighborhood V of
a such that Yxe Vnin a, a€in x. Then, either a is an accumulation point
of A or there exists a unique ¢ non separated from a such that V N ina < out
cRand™xe Vrvin a0, T).

Such a point a will be called a turning point. The set of all turning
points not in A will be denoted by T. The set of points ¢ obtained this way
will be denoted by T

The first case can be seen in example 4 (section 2). The point /2
(identifying R*/F with the z-axis) is a turning point which is a cluster
point of A. For the second case rotate the foliation of figure 12 around
the z-axis and complete as in example 5.

Az

dld s

Fig. 12
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The cylinder x* + y?>=4 is a turning point with no vanishing cycle.

Proof of Corollary 8. Suppose a is not a cluster point of 4. Then a has neigh-
borhood V' < V such that either V'nA = {a) or V'nA = Let
bein anV'. Then 3(a,b) and (a,b) n A = &. By proposition 5,
dc€d(a, b) : (a, b) < out c. By our hypothesis (a, b) < in a and (a,b) < in b,
S0 a # ¢ # b (figure 13).
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Fig. 13

The first case (3(c, b)) cannot happen by corollary 7 applied to (¢, b),
i.e. (¢, b) cannot be on the outside of both ¢ and ¢’. The second case cannot
happen by proposition 4 applied to (c, d), i.e., since (c,d) N A= &, (¢, d)
cannot be on the outside of both ¢ and d. If ¢’ = b, since ¢’ € d(a, b), then
3(a, ¢) and the same reasoning, as in the second case above, applies. So
the only other possibility is ¢’ = a and since c € d(a, b), then 3(c, b) (figure 14).
Corollary 6 implies that ¢ is unique.
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Fig. 14

Remark 1. We could have defined also another kind of turning point:
let a e M/F have a neighborhood Vsuch that Vx € V n out a, then a € out x.
It is clear that by proposition 4 such turning points don’t exist (figure 15).
As a matter of fact if a path, transversal to the foliation, crosses a leaf
from its inside to its outside, it will never in the future cross another leaf
from its outside to its inside.
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Remark 2. Since T is contained in the set of non Hausdorff points of
M/F and this is countable, T is countable. So T" is also countable. Actually
it is easy to see that Tis a discrete set, then so is T".

Decomposition lemma. There is a decomposition of M/F in a countable,
disjoint union of intervals [a;, b;) such that:

(a) Vi, (a;,b;) " A= & and (a;,b;) = out a;

(b) Vi’a[aiabi) < U {a}

© U{a}—4 is'a discrete set.
k

Proof. Since Vi, (a;, b;)) n A= & and M/F =) [a;, b)), it is clear that we
must have 4 < | ) {a;}; also, by remark 1, no turning point can belong

to an interval (a, b) with (a, b) = out a, so YVae AU T let (a, b) be a maximal
interval such that (a,b) n A = & and (a, b) < out a. We may have b= oo.
Notice that if xe d(a,b) and x # a, then (a,b) = inx and if x ¢ A then
we will have xe T or x¢ T according to whether A(x,a) or 3(x,a)
(figure 16).

[ S —

A

X t—————t

Fig. 16

Now Vxed[a,b), x¢ A, we consider the maximal interval [x,y) such
that (x,y) " A= and (x,y) < out x; and so on, ie., Vced(x,y), c¢ A,
we consider the maximal interval (c,d) such that ...

We have thus obtained a disjoint countable family of intervals.
It is countable because the end point belonging to the interval is chosen
either in A U T or in the set of non Hausdorff points and both sets are
countable. We make the same construction for any points of 7’ which
do not belong to the disjoint union so far obtained and we will prove
now that we have covered M/F. Let xe M/F, x¢ Au Tu T'. It is easy
to see that if x € out a for some ae A U Tu T’ then xe U {(a,b) :a€ A L
u Tu T'}. We can suppose then that x€ B= nina. It suffices to show
this intersection is empty. This is done in two steps:
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first step. B is open: given x€ B let V be an interval containing x. Let
Let ye V, y ¢ B. Then for some ae 4 U Tu T', either y =a or ye€ out a,
and in this latter case, since x € ina, we will have a€ V. So if there is no
V'such that V< B then x is a cluster point of A U Tu T’ and since T and
T' are discrete and- A4 is closed, this implies that x € 4, so x ¢ B, which
is a contradiction, so B is open.

second step. Let (c,d) be an interval containing x and such that (c, d) is
a maximal interval contained in B, i.e., if (¢, d) < (g, h) then (g, h) ¢ B. Since
(c, d) is maximal, then either ce A U TU T' or ¢ = —o0; the same is true
for d. Since (c,d) n A = &, by proposition 5 3q € d(c, d) such that
(c,d) = out ¢'. Notice that ¢ # q' # d. Then we have one of the situations
of figure 17, where g€ (c,d) is non separated from g'.

~

q q q

| . |

| | 1

1 | I

| 1 |

1 ! 1
. -t ; — >
X q X=q X q

Fig. 17

Corollary 6 implies that (x,q) = inq and proposition 4 implies that
Vye(x,q), geiny, so ge Tand ¢ € T’ so either x € [¢/, r) for some r with
(¢,r) < out ¢’ (figure 17 left) or xe[g,r) for some r with (g,r) < out g
(figure 17 right if x # q and center if x = g). In all cases we arrive at x ¢ B,
so B= .

3.6. Order on Non-Separated Points.

The existence of an order on a set of non-separated points (a set of
points a; such that Vi # j, every neighborhood of a; intersects every neigh-
borhood of a;) follows from the fact that we can define an order on dis-
joint circles embedded in a cylinder L, in the following way: let us call
— oo and + oo the ends of the cylinder L. If C, and C, are disjoint embedded
circles, we will say that C, < C, if every continuous path joining C, to
+ o intersects C, (figure 18). It is easy to see that this is a well defined
partial order which is total on the set of circles (disjoint, embedded) non
null homotopic on L. Circles homotopic to zero are comparable only
if one is contained in the disk bounded by the other.
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The choice between the two end values is made by giving a diffeo-
morphism f; : R x §' - L and taking +oc = lim f(t,x) and —oc =

t=>+ioc
= lim f(t,x) for any fixed x.

e Sy ¥ ¢ 51

When we have an interval (a, b)) = M/F such that (a, b) n A = (¥, the
trivialization lemma gives us a diffeomorphismf : R x S! x (a, b)—p~'(a, b)
such that p(f(t, x,u))=u for all (t,x,u)e R x S* x (a,b). This allows us
to choose continuously the end values for all leaves in p~'(a, b). Notice
that to choose the end values is equivalent to, given two circles C; and
C, non homotopic to zero, state whether C, < C, or C, < C,. The circles
are supposed to be disjoint. '

On a leaf L which supports vanishing cycles there is a canonical
way to do this: we take the cylinder bounded by C, and C, and push it to a
nearby leaf L on the vanishing side of L.

We have now an annulus on L, null homotopic on L. Let C{ and C,
be the images of C, and C, respectively. We will say that C; < C; if C{
is contained in the disk bounded by C;. Notice that for whatever choice
of end values in L we will always have C;{< Cj.

By continuity, this choice of end values can be extended to all leaves
in () p~!'[a, b) where (a, b) is a maximal interval such that (a,b) N A = &

aeA
and (a,b) < out a. As in the decomposition lemma, the choice remains
to be made only in ﬂ in a, and this is an open set which can easily

aeA
be seen to be connected (follows from the fact that M/F is one dimensional
and simply connected). Choosing the end values for one leaf on

i ﬂ ina), we have the order defined on every leaf.
ac A

It remains to be seen how this order on circles on a leaf induces an
order on every set of non-separated points in M/F. So let {a;,i€ I} be a
set of non-separated points. Let x be such that Viel, 3(a;,x) and

Foliations by closed cylindres in 3 dimensional manifolds 73

(@i, x) nA = . Viel, let C; be a circle non homotopic to zero on its
leaf, embedded in p~'(a;). If x is close enough to g; for all i, we can push
C; to the leaf p~!(x) in such a way that the obtained circles C; are all dis-
joint. We will say that a; <a; if and only if C;/ < C;. It is easy to see that
this order is well defined (independent of the choice of C; for all i).

Given two foliations by closed cylinders F and F’, on simply connected
irreducible 3-manifolds M and M’, a diffeomorphism h: M/F— M'/F’
is said to preserve order if a <b=>h(a) < h(b).

3.7. Extension Lemma.

Extension lemma. Let F and F' be foliations by closed cylinders in M and
M'. Let N and N’ be 3 dimensional submanifolds of M and M’ respectively,
connected, with boundary, saturated respectively by F and F' and such that:

(a) The spaces of leaves N|F and N'[F' are closures of open intervals
(a,b) € M/F and (a',b') = M'[F’ such that (a,b) n A= ¢,(a’,b') n A'=
=¢, (a,b) < out a and (a',b’) < out a'.

(b) There is a diffeomorphism h : M/F — M|F' which preserves side, order
and vanishing cycles and such that h(N/F)= N'[F'.

Then:

(A) There exists a diffeomorphism H : N — N’ which induces h by passing
to the quotient.

(B) If a priori is given a conjugacy H, defined on a neighborhood of ON in
M-int N, then H can be constructed such that H extends H, provided
H, preserves the orientation of the leaves, induces h by passing to the
quotient and can be extended differentiably to — o on all leaves of ON.

Before proving the lemma it is convenient to make some preliminary
remarks.

Let us recall that h: M/F — M'F’ is said to preserve sides if for all
x in M/F, h takes the outside of x into the outside of h(x) and the inside
of x into the inside of h(x). A choice of orientation of M and the transversal
orientations of F and F’ induce orientations on the leaves. This is the
orientation considered in (B) above.

The proof of the lemma is analogous to the proof of the Main Lemma
[Pm 1, pg. 118].

Proof of the extension lemma. Parallel to every construction involving

F and N, the corresponding construction is carried out for N’ and F".
Since N and N’ are saturated, it is clear that the connected compo-

nents of 0N and 0N’ are leaves; and so, diffeomorphic to R x S'.
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If in some connected component L of dN the conjugacy is not yet
defined, we choose an orientation presgrving diffeomorphism between
Land p~'chop(L). Now the conjugacy is defined in 0N and we want
to extend it to the interior of N. We are going to obtain neighborhoods
(which will be called fundamental neighborhoods) of the connected
components of N and N’ and we are going to extend the conjugacy to
these neighborhoods.

Since NJ/F is the closure of (a, b) and (a,b) N A = ¢, we may use the
trivialization lemma to define a conjugacy H :int N—int N'. Using the
parameter version of a diffeomorphism extension lemma from Palais
[P1], [Pm 1, th. 2, p. 130], we will glue A and the conjugacy defined on
the union of the fundamental neighborhoods.

Construction of the fundamental neighborhoods:

Let {a;,i€ I} be the boundary of N/F, where I is a set of natural
numbers. We can suppose a,=a. Let L; = p~(a;).

Since L; and | )-L; are closed disjoint sets, let ¥, N be a neigh-
j#i
borhood of L; such that ¥; n | ) V;= @ and )V, is closed. The proce-
j¥i j
dure of construction of the fundamental neighborhood of a leaf L, will
depend on whether or not L, supports a vanishing cycle with N on ’its
vanishing side. Let us first suppose not. Let y; : [0, 1) N be an arc trans-
versal to F such that y,(0)e L, and y([0, 1)) = V,. Let U, be the satura-
ted by F of y([0,1)). Let g, : Dy x [0,1)> U, be the conjugacy given
by the trivialization lemma (D, = D? — {(0, 0)}). We are going to construct
a surface G, in D, x [0, 1), separating L, from () L;. The image by
jFk

gi of the region between D, and G, will be the fundamental neighborhood
of L,. We will denote it by B,.

Construction of G,:

Let 6, :[0,1]-[0,1] be a differentiable function such that §,(0) =
=0, 6,(1)=0, 0i(t)> 0 for t <1/2, §(t)<O0 for t>1/2, 6}(1/2)=0. Let
G, be the graph of themap D, — (0, 1). Wemust take &, such that g(G,) < V,.
Notice that x—0y(| x |?). Each leaf cuts B, along a bounded cylinder and
it is easy to extend H, from L, to B,. (Figure 19).

Let us consider now the case in which L, supports a vanishing cycle
and N is on its vanishing side. Let us consider a countable family of vanis-
hing cycles on L, :{fJ;n is a non negative integer} such that:

(@) If n# m, f5(S*) N f3'(S*) = &.
(b) If n < m, fXS') < fMS") (in the L, order).
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1A

o L

Fig. 19

(c) If Q, < L, is the cylinder with bases f(S') and f2*!(S'), then

(J @n = one of the connected components of L, —f(S*).
n=0

(d) Forall n, we take the associated map to £ to be defined not in [0, 1) x S*
but in [0, E,) x §* for some E,, such that f"(S* x {r}) and f™(S* x {t})
are contained in the same leaf for all ¢, n,m.

Let us notice that as n— oo, we will probably have E,— 0.

Let Di be the disk bounded by f*(S* x {t}) on its leaf. The union
(J Dt is a neighborhood of L, in N. Just as in section 2 of [Pm 1] we can
n,t

glue the cylinders f*(S* x [0, E,]) and f"**(S* x [0,E,,,]) to abtain a
surface G, diffeomorphic to R?, which cuts every leaf transversely a circle
(except one leaf where it is tangent) and which séparates L, from

U L;(we can suppose that all our constructions were made in ¥, ) (figure 20).
itk ;

Fig. 20



76 Carlos Frederico Borges Palmeira

We make the same construction for N’, taking care that the projection
of G, on R*/F is taken by h on the projéction of G; on R*/F’. As before,
the region B, bounded by L, and G, is the fundamental neighborhood of
L,. Now we extend H, from L, to B, and since each leaf cuts B, along a
disk, here we need that H, can be extended differentiably to — oo in each
boundary component of N.

In order to extend conjugacy to N, we apply the trivialization lemma
to p~'[a, b) and we bring all surfaces G, to this coordinate system. Let
2, € [a,b) be such that g, is non-separated from z,. It is clear that
96 '(Gi) N (Do x {z}) = & and if {(amyn)}nez+,15 a sequence in go(G;) =
< Do X [a, b) such that y,— z, then either | x,|—0 or | x,|— 1. Since G,
cuts every leaf along a disk or along a bounded cylinder, we have one of
the situations of figure 21.

bq\ b |

/) V4] A

é" 7 wg_l(ék(ék))
ié |

AN A g0 (B A*\\

: 0 7N

v
N,
N /
\Ni/ \\ 1 ’,
\l/ N/
a - 8- *
Do Do

Fig. 21

~Figure 21 left corresponds to the vanishing cycle case. Each leaf
cuts B, along a disk. Figure 21 right corresponds to the non vanishing
cycle case. Each leaf cuts B, along a bounded cylinder, so each leaf on
D, x [a, b) will cut gg '(g«(By)) along an annulus. The surface gg *(g,(Gy))
is a cylmder which folds to its inside until one base coincides with the
other. This is the case |x,|— 1. If we colapse the ldentlﬁed bases to a
point, we get the case |x,|—0. :

What decides between limit zero and limit one is the order. The
limit will be zero if a, < ay and the limit will be one if a, < a,. So on each
leaf we will have the conjugacy already defined on a collection of disks
and bounded cylinders. In order to extend it to the whole leaf, the relative
position (order) among these disks and cylinders must be respected. The
fact that h preserves order guarantees just that. It is sufficient to apply
the one parameter version of Palais’ difffomorfhism extension theorem
[P1] or [Pm.1, appendix] and proceed as in the main lemma of [Pm 1].

e
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3.8. Actual proof of the Theorem.

By corollary 5, there exists n such that A"~ ! is a discrete non empty
set (n > 1). We define H arbitrarily in p~ (4" ') preserving the orientation
of the leaves, compatibly with h and extending differentiably to — oo.
Just as in the proof of the extension lemma, we construct neighborhoods
B, on the vanishing side of every leaf L of p~!(4""!) and we extend H to
these neighborhoods compatibly with h. In every leaf L; in |p~ (4" 2)
which intersects V;, H is already defined on a disk; we extend it to the

whole L;. On the leaves of p~!(4"~2) which do not intersect ) B
pLyean—1

we define H arbitrarily with the same restrictions as before. We repeat
the procedure and extend H to p~ (4" 3) and so on. We finally have H
defined on A. We decompose M/F as in the decomposition lemma and
carry the decomposition to M’'/F’ via h. We define H on the leaves p~'(ay)
of the decomposition lemma (remember that {a,} — A4 is discrete) and
apply the extension lemma to the closure of each p~![a, by).

4. Proof of the Corollary.

Let M be a 3-dimensional, simply connected, irreducible manifold
with a foliation by closed cylinders F. Let 4 be the projection on M/F
of the set of leaves supporting vanishing cycles. Let J be a maximal in-
terval in M/F, i.c., J=(— o0, 4+ o0).

It is easy to construct a foliation by closed cylinders in R3, with space
of leaves R and a diffeomorphism h : R —J which preserves sides and
vanishing cycles.(there is no question of order here). Just use the technique
of examples 1, 2, 4.

In view of the decomposition lemma, it is sufficient to show how to
add a branch corresponding to a point c e dJ. Notice that J will always
be on the inside of c.

We use a procedure due to Reeb for foliations in R?, which can be
found in [R]. The basic construction is described in figure 22 where we
added a leaf a non separated from the existing leaf a on a foliation in R2.

~In our case (cylinders), the situation in each interval (a, b) = J such
that (a,b) n A= is that of a band a <z <b in R*® foliated by
z = constant, with the segment x =y =0 removed.

To add a branch corresponding to a point ¢ € dJ, we perform the cons-
truction of the previous figure on the plane y=0, and 1) if c € A, we take
the product with R (represented by the x-axis) 2) If ¢ ¢ A, we rotate the
figure around the z-axis.
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As in Reeb’s original construction, at the n* step, the construction
is made on the region y > n— 1, which assures that it can be done a coun-
table number of times, if needed, without disturbing, at each step, any
of the previous ones.
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