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Cyclical monotonicity of maximal monotone step operators

Eduardo H. Zarantonello

Summary.

Maximal monotone operators T : X —2Y such that {Tx},.x is a fi-
nite family of sets are shown to be cyclically monotone.

§1. Let X and Y be two dual locally convex Hausdorff topological vector
spaces paired by a bilinear form (x, y).

Definition. 7 : X — 2" is said to be a step multimapping if the set family
{Tx}..x is finite; T is said to be a local step multimapping if for each
xo€ X there is a neighborhood U(x,) such that {Tx},.y, is finite.

: If T is a step multimapping so is T~'. In fact, if n,,7,,...,n, are
the various distinct sets of the form Tx, then
i Q x| Be=n},  JO)={i|yen,
JEJY

which shows that there are no more than 2" possibilities for T~'y. No
such invariance is enjoyed by local step multimappings. Indeed, on the
real line the inverse of any bounded local step but not step multimapping
is not locally step.

In this article we are concerned with maximal monotone operators
which at the same time are local step mappings. As on the real line they
are the simplest imaginable monotone operators, but in higher dimensions,
unlike in one dimension, the class cannot be expected to furnish an appro-
ximation for any maximal monotone operator. The reason for this appa-
rently odd occurrence is to be found in the coming into existence — as .
one leaves the real line — of maximal operators other than subdifferen-
tials, operators which by their very nature are beyond the reach of local
step ones, the latter being, as we shall see, all subdifferentials. Let us
make things precise:
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A function of the type f(x)= sup [{(x,y;> +r;] is called a po-

i=1,

lyhedral convex function. It is obvious that the effective domain of defini-
tion of such a function is the whole space, and that it is everywhere con-
tinuous and subdifferentiable; its epigraph is the intersection of the half
spaces {x,y;>+r;—z<0,i=1,2,...,n and hence is a polyhedron. The
projection on X of such a polyhedron produces a partition of the space
into a finite number of closed convex polyhedra on each of which f is
affine. The subdifferential of f is easily calculated:

(1) of (x) = colyjljea, JO) =146y + = f(x),

where co denotes the convex hull. This shows plainly that &f(x) cannot
take more than 2" distinct set values. Since f can be identified with a
continuous convex functions f on the finite dimensional quotient space
X/N, where N={x|<{x,y>=0, i=1,2,....n), and &f with &, &f is
maximal monotone. Thus the subdifferential of a polyhedral convex
function is a maximal monotone operator’.

A convex function is said to be locally polyhedral if about each point
in space there is a neighborhood on which the function coincides with a
polyhedral one. Like the earlier kind locally polyhedral convex functions
have the whole space as effective domains, are continuous and subdiffe-
rentiable everywhere. Moreover, since convex functions coinciding on an
open set have the same subgradients at points of this set the subdiffe-
rentials of locally polyhedral functions are monotone local step operators.
It remains to see that they are maximal monotone. The easiest way is
to realize that the locally matching polyhedral convex functions can be
chosen so that their subdifferentials take all their values in the corres-
ponding neighborhood (which can be assumed to be convex), and then
to remark that the enlargement to a monotone set of the graph of the
subdifferential of a locally polyhedral function by the addition of a new
point (X, ) is incompatible with the maximal monotonicity of the matching
functions around X. In conclusion, the subdifferentials of locally poly-
hedral convex functions are maximal monotone locally step operators.

Much less obvious and considerably more interesting is the converse
of this proposition, from which the identifications of maximal monotone
local step operators with subdifferentials of locally polyhedral convex
functions follows.

! We recall that outside of reflexive Banach spaces the subdifferentials of ¢.s.c. proper
convex functions are not necessarily maximal monotone.
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Theorem 1. A maximal monotone operator having the whole space as do-

main is a local step mapping if and only if it is the subdifferential of a locally
polyhedral convex function.

The proof, somewhat long, requires various lemmas. The leading
idea is to think of the operator as a flow and remark that a circulating
(non-cyclical) flow in a simple connected domain must necessarily have
non-vanishing vorticity somewhere.

Lemma 1. Let M be a maximal monotone local step operator with DIM) = X,
and K a compact set in X. Then there is only a finite number of sets of the
form M~'y nK, ye X, and they form a closed covering of K.

Proof. By covering K with a finite family of neighborhoods on each of
which M takes a finite number of set values one concludes that the restric-
tion of M to K is a step multimapping, and that hence so is its inverse.
This amounts to say that the sets of the form M~'y n K, ye Y, which are
closed because of maximal monotonicity, are finite in number and cover K.

Lemma 2. Let M be a maximal monotone local step operator with domain
X, and K a compact finite dimensional set in X ; moreover, let || || be a norm
on the finite dimensional space spanned by K, and for any x€ K and ¢ > 0
define p( x ¢) as the distance from x to the intersection of all the sets of the
form M~y n K whose distances to x do not exceed ¢, setting p(x, £) = + ot
if the intersection is empty. Then, a) there is a positive number py such that
€ < p, implies p(x,e) < +00,¥Yx € K; b) lim p(x, ¢) =0 uniformly in xe K.

50

Proof. Let ny,1,,...,n, be the distinct sets of the form M~'y n K, and

for any subclasse n;, 7, ..., let p; j, ..., k denote the radius of the smallest
closed ball with center in K touching all its members. Some of these quan-
tities vanish, indicating that #;,7;,...,n, have some point in common;

the others, finite in number, have a positive minimum pg. This number
has the property that if a closed ball with center in K and radius strictly
smaller than py intersects a certain number of #;’s then these sets have a
nonempty intersection. It follows that if ¢ < pg then p(x, &) < 4+ oc, Vxe K
proving a). As to b) argue by contradiction and assume the existence of
a sequence {x,}® < K, a sequence of positive numbers converging to
zero {g,}, and a 6 >0 such that p(x,,¢,) >0, n=1,2,.... Since K is
compact we can assume the x,’s to be convergent to an x € K, and since
the intersection of the #;’s at a distance from x, not exceeding ¢, is one
of finitely many sets we may at the same time assume that the closed
balls B, (x,) intersect a fixed group of n/s, say n; ,1;,, ...,M; . But then,
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the »;'s being closed, x e ;, O fiy OO and p(x,,&,) <l x — x,1l, in
contradiction with the assumption p(x,,,g,,)>5

In the next lemmas we shall turn our attention to sums of the form

n
) = 'Zl (g —x, W= (g = X000 +

it <X3 5 Xz,yz> AFear <xn 5] xn—l’yn—1> it <xl i X,,,}',,>

associated with cycles of points (x;,y,), (X2, ¥2), «oes (Xu— 15 Vuz 1) (X, Vo),
(x1,31)..., (where (x;, 1, y;4,) follows (x;, y;), and (x,, y,) follows (x,, ¥,)),
in the graph of maximal monotone local step operators M, aiming to
prove that they are nonpositive, and in consequence that M is cyclically
monotone. The letter 7 in the notation X, referes to the closed oriented
polygonal line in X obtained by joining by a straight segment each point
X; to its successor x;, ;. We shall indicate by (n) the set of points 7 con-
sists of. Remark that neither () nor = surffices to determine X, .

Lemma 3. For given X, = Z {Xj4+1 —X;,¥;>, and afinite number of points

{z:)% < (n) there is a sum §~— Z(x,H, —X;,¥:> such that

3) () = (m)

4) ZatIS q vertex Of ot = 1 20 0k
(5) Vi€ M4, N MX,, Vi

(6) Bk B,

Proof. Proceeding in cyclical order divide the segment [x;, x;,,] into a
finite number of segments individually contained in an M 'y, including
as division points the z,’s left over from previous similar operations. Lemma
1 guarantees the possibility of such a division. Call the dividing points

Xj, = xj,icjz,...,Sch = X;+1, and picking j)]heMx meth write
(7) Z(xj+1 _,xjayj>=Z[<5ch_l _qu,)’jq_1>+
J.
by (qu T ,q qayjq 2> + ...+ <5le W ij,j’j1> + <5<jq o 5‘,‘,J’j>]

+ Z[<xj2 SPRgE 3, DR I(T jzaj"j2> Rt S <5qu =5 qu'_ls)*’jq_,ﬂ-
J

The first on the right is a sum of sums over one-dimensional cycles and
as such is non-positive simply because in one-dimensional spaces all mo-
notone operators are cyclically monotone; the second is a sum X7 of
the sought type.
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Lemma 4. For a closed polygon r of vertices {x;}"l and any two of its points
uv(we[x,,x,.1], ve[x,,X,41], p<q) let m, and 1, denote the polygons

withverticesat u, X, ., X, 2, ...,X,,vand at v, Xgt15Xg425 -5 Xn, X1 005X,
u respectively. Then, for any given sumZ there are sums E~ and , such that
(8) 2 < 2 + 2n29 (7[1) & (TC]), (TEZ) = (7[2).

Proof. By the previous lemma X, admits a majoration by a sum 2= on
a polygon such that (%) = (n) having u and v as vertices. It is clear then
that it suffices to prove the lemma for £;, and in consequence that we
may assume from the start that u and v are vertices of the given polygon.
By cyclical re-numbering of the vertices u and v can be taken to coincide
with x, and x, respectively. Now by means of points X; = x,, X3, ..., X, =
= x, make a partition of [x,, x,] into a finite number of smaller segments
individually contained in sets of the form M~ 'y, ye Y, and letting
Y€ Mxoom; A MX;ni= 12 ....m, WIitE

X, = Z Xjar =Xy =[{Xa = X1, 11D + {X3— X2, 20 + ... +
j=1
== <xq_xq—1’yq—l>+ <5Cm—1 —im’j}m—1>+ <5Cm—2—->~cm—1’j)m—2> Flides ot
Lo P e R TR I N e PN T TR e >
GiE <;Cm— ’?m—lavm~l>+ <xq+1 —Xq,yq>+ <xq+2—xq+l’yq+l>+ il
+ <’( n*lﬁ.}n*1> =+ <X1 xn’yn>]'

A simp]e inspection shows that the sums in brackets on the right are
sums £z, £z, of the desired type.

Lemma 5. Any maximal monotone locally step operator M with D(M) = X
is cyclically monotone.

Proof. The point of the proof is to show that all sums Z, of type (2) asso-
ciated with M are nonpositive. Let K be the closed convex hull of (n);
K is compact and finite dimensional. By repeated appeals to Lemma 4
¥, may be majorated by a finite sum of similar sums over cycles on the
boundaries of triangles contained in K. Since in turn these triangles can
be divided ad libitum into smaller triangles, the problem is reduced to
see that any X, over a sufficiently small triangle contained in K is non-
positive.

Let us recall that by Lemma 1 there is only a finite number of sets
M~'y A K, and that they form a covergin {n;}7 of K. If (n) is a triangle

n i
and £, = ) {X;4+; — X;,y:), then Lemma 3 allows us to assume that for
i=1
each i the segment [x;,x;;] is contained in a n;. By Lemma 2 these
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~ sets have a point x in common as soon as the diameter ¢ of (r) is smaller
than pg/2, implying that Mx n Mx;# &, i=1,2, ...,n. By the same
lemma, if & is sufficiently small, x can be so chosen that its distance to (r)
is smaller than py/2. Now, for each i choose y; in Mx n Mx;, and write
down the identity

X, = Z (X o= X3 Y| = Z [<xi+l — X, Yiy + X = Xip 1, Vi1 +
i=1 i=1

+ {xi = X, 9]

Each term in square brackets is a sum of type (2) over the vertices of a tri-
angle in K, each of whose sides is shorter than pg/2 and contained in a
M~1y. Thus the lemma will be proved as soon as it is shown that all
such sums are nonpositive. So let x;, X, x; be three points in K with
|| x: — x;|| < px/2, i-j=1,2,3, such that any two belong to the same 7;,
and y,, y2, y3 any three points in Mx,, Mx,, Mx; respectively. From the
definition of px (Lemma 2) it follows the existence of an xo belonging
simultaneously to the n;’s containing the sides. This means that each of
the triangles (X, , X2, Xo), (X1, X0, X3), (Xo, X2, X3) is contained in a single #;.
Let ,, 72, 73 be such that (x;,X;,x0)c M~ 'y, (o, 20 33 EM™ 1,
(x;, X0, X3) =M™ 'y;, and remark that

(xz—xl,y1>+<x3—x2,y2>+<x1—x3,y3>=<x2—x1,yl~)71>+
+ {x53—X3,Y2 = Y2) + <Xy — X3, Y3 —P3) + (X1 — X0, P35 —F1> +
+<x2—x0,}71—)72>+<x3—x0,}72—}73>.

By the way the y;’s have been chosen and the monotonicity of M all terms
on the right are nonpositive, and the lemma is proved.

Proof of Theorem 1. Any maximal monotone, cyclically monotone ope-
rator M is a subdifferential. Indeed, if z is any fixed point in D(M),

3 n—1
-9 f(x) = sup [<x — Xp V) + Z Xisr — xiayi>]"

(xi’yl')EG(T)’ l= 1,2,...,", xl = Z, Vn

is a proper {.s.c. convex function whose subdifferential extends and hence
coincides with M. The proof, an immediate consequence of cyclical mo-
notonicity and the definition of f, is left to the reader. With this remark
and with the assistance of Lemma 5 the proof of the theorem is reduced
to showing that an everywhere defined {.s.c. convex function having a
local step subdifferential is locally polyhedral. To this end let us consider
any closed, convex set U with non-empty interior on which df is a step
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(rg;l)liifnappgg. There is thel:n a finite number of distinct sets of the form
yoUsayn=@f) 'ynUi=12,..,p; ysed and co

- ; »2, ..., p; they are closed and -

r;xjr ar;d cm}e(r §J .Foreach i pick a point x; in ;. Now y;being a subgra(fizzt

at x;, f(X)=f(x;)+<{x—x;, 9>, Vxe X, i=1 ,2 :

i»Vi?» » 1=1,2,...,p, and therefore

flx)=> Slfp[f(xi) +(x — x;,»:)], Vx € X. On the other hand if x e ni, y;is
S22

a subgradient of f at x, and hence = flx)4 ¢n —
= J

= SI?P[f(x,') + {x—x;,:>]. But then, since any x € U belongs t RO

0 some 7,

f (x)=sgp[f (X)) + <x = x;, ], Vx€ U, and f is locally polyhedral.

NOTE. This paper is a re-elaboration of material contained in “Estrems
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