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Endomorphisms of Branched one-dimensional Manifolds

Carlos Arteaga

Introduction.

This paper is concerned with the description of the orbit structure
of endomorphisms of a branched one-dimensional manifold K.

Endomorphisms of branched I-manifolds have been studied by
Williams [7], who showed how to unfold certain endomorphism of K
to obtain difffomorphisms with similar orbit structure. Here, we will be
mainly interested in the problem of the topological classification of the
endomorphisms of K.

In [4] Shub proved that the expanding endomorphisms of any com-
pact differentiable manifold M are structurally stable. Later on Jakobson
[2] considered the case M =S' and contructed in the space CXS',S"),
of all C* endomorphisms of S' into S', an open set J consisting of struc-
turally stable endomorphisms. He showed that J together with the expan-
ding endomorphisms of Shub are C'-dense in C*(S'.S").

In this paper, in Part 4, we extend this result of Jakobson to the
space Imi(K) of all C' immersions of K preserving the branch set B:
in Part 3, we extend the result of Shub for expanding endomorphisms
of K preserving B. In Part 2 we give a necessary condition for structural
stability of certain endomorphisms of K. We also prove that expanding
endomorphisms on a branched 1-manifold with non empty branch set
are unstable. Using this fact we prove that structural stability is not generic.

This paper contains parts of the author’s thesis at the Instituto
de Matematica Pura e Aplicada do C.N.Pq. of Brazil (1980). The author
takes the opportunity to thank Professor Jorge Sotomayor, his thesis
advisor, for his advice and constant encouragement.

Recebido em 26/01/82.



94 Carlos Arteaga

1. Preliminaries.

We recall here a few definitions in order to establish the terminology.

To define a branched 1-manifold K [7], one proceeds just as in the
definition of a 1-manifold, except that two types of coordinate neigbor-
hoods are allowed. These are the real line R and Y = {(x,y)e R*; y=0
or y=¢(x)}. Here ¢ :R—> R is a fixed C* function such that ¢(x)=0
for x <0 and ¢(x) >0 for x > 0. The branch set B of K is the set of all
points of K corresponding to (0,0)e Y. If K is compact, B is finite and
K —B has a finite number of components. In this case, the closures of
these componentes will be called the simplexes of K. For a neighborhood
Y of a branch point r, the branches at r are the two 1-submanifolds corres-
ponding to Y, ={(x,0)e Y} and Y, = {(x,y)e Y; y = o(x)}.

A Cr structure for a branched 1-manifold is defined as usual; note
that K has a tangent bundle T(K) since the two branches of a branch
point r have the same tangent line at r. A differentiable map f : K; » K,
of branched 1-manifolds induces a map Df : T(K,)— T(K,) of their tan-
gent bundles; f is an immersion if Df is a monomorphism on the tangent
space at each point. A C"-immersion f : K — K is called expanding relative
to a Riemannian metric || || on T(K), if there are constants ¢ >0 and
A>1 such that || Df"(x)||>cA" for all xe K and neZ*.

We denote by End'(K), r=1,2,...,00, the space of C" maps of a
compact connected branched 1-manifold K. For f e End'(K), a point
x€ K is a periodic point of f with period n if f"(x)=x and f™(x)# x
for all m < n; x is hiperbolic if |Df"(x)| # 1; x is a source if | Df"(x)| > 1
and x is contracting if |Df"(x)| < 1. In this case x has a local stable ma-
nifold W(x), which is either an open interval or a neighborhood Y. The
stable manifold of x, W*(x) is defined by W¥(x)= () f ~"(W¥x)) and the

nz0

stable manifold of f, A(f) is defined by A(f)= UW?*(x), where the union
is taken over all contracting periodic points x of f. We denote X(f)=
= K — A(f). Note that A(f) and Z(f) are invariant under f. A point x
is eventually periodic of f if some iterate of x is a periodic point of f.
A point x is called a singularity (turning point) of f if Dfix) = 0; x is non-
degenerate if D*f(x) # 0. A point x is said to be wandering if x has a neigh-
borhood U with the property that f(U)nU = & for all n. Otherwise
x is called non-wandering.

A endomorphism f € End’'(K) is said to be structurally stable if there
exists a neighborhood U of f in End'(K) such that any ge U is topolo-
gically conjugate to f; i.e. there exists a homeomorphism h : K — K sa-
tisfying hf = gh.
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In this paper K will denote a compact connected branched 1-mani-
fold with non empty branch set.

2. Nongenericity of structural stability.

The following result will be used to prove that structurally stable
endomorphisms are not dense in End'(K).

Theorem 2.1. Let f € End'(K) such that f /X(f) is expanding. If f is struc-
turally stable then B N X(f)= .

Proof. The proof will be done by contraction; so we assume that
B N X(f)# & and show that there exists g, arbitrarilly close to f, which

is not conjugate to f. Let reX(f) n B. Then either re A(f) n B or
re }:77') N B.

If re A(f) n B, there exists y e A(f), arbitrarilly close to r. Then, in
a small neigborhood Y of r, we have that f"(y)¢ Y for all n> 1. Since
B is finite, we may assume by choosing Y smaller if necessary, that
j'"(X)¢ Y for all n>1 and x€ B n A(f). Then, there is a small C"-per-
turbation g of f such that f = g outside a small neighborhood of Y and
g(r)= f(y). Thus B n A(g) o (B nA(f)) u {r} and f is not conjuggte to g,
since a conjugacy preserves B and the stable manifold. If rei(j‘) N B,
we have that re Uf “"(B), since f/Z(f) is expanding. Thus we can find
g, and g, arbitrarilly close to f such that g'|(r) e B and g¢'(r) ¢ B for some n.
Since B is finite we may assume that g(7) = g%(¥) = f"(F) for Fe Z(f) N B
with 7 # r. Then f is not conjugate to g; for some i = 1,2. This finishes
the proof of the theorem.

As an inmediate Corollary we have

Corollary 2.2. The expanding endomorphisms of K are not structurally
stable.

Now we prove that structural stability is not generic.

Theorem 2.3. There exists an open set U in End'(K) such that no f € U
is structurally stable.

The proof of the theorem requires the following.
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Lemma 2.4. K contains a branched submanifold K, which is either the
circle S or the branched 1-manifold shown in figure 2.4.

Fig. 24

Proof. We first show that K contains a loop L which is not contractible.
In fact let I, = [ro.r,] be a simplex of K. If r, = 1, we are done. Otherwise
we consider a simplex I, = [r;., ] such that the juxtaposition I, v I,
is a branch at r,. If r, = r; for some i = 1,2, we are done. Otherwise we
consider I5 = [r,,7;] such that I, v I is a branch at r,. We continue
this procedure. Since B is finite, after finitely many steps we get a loop
L with vertex re B such that L is not contractible and L — {r} is a diffe-
rentiable arc. If L is differentiable at r then L = S' and the proof of lemma
follows, so we assume that L is not differentiable at r. Without loss of

generality we may assume that L=/, Vv ...V I, where I;=[r;_;,r;] and
= ro =r,. Consider the simplex I,,, = g P s e R ]
and I, v I, are the branches at ro. If ry, =r;for some i=1,....,5 — it

then either
T2 oo 1 tniiaidaee midgie Netf @l ] Fil o el s vl

are circles and in this case the lemma follows, so we assume that oy # 1
for all il ) advsuConsider By s it nes ) such! thatil{ng v by, 18
a branch at r.,,. If ry4, = ryy; then either I, is a circle Siréar
Byl ) el 5V lgg Jvis @ branched submanifold as shown in fi-
gure 2.4. If r,,, =r; for some i=2, ...,s—1 then following the same
procedure above we get a circle S'. In both cases the lemma follows.
We continue this procedure since B is finite, after finitely many steps
we get either a circle ' or a branched submanifold as shown in figure 2.4.

Proof of Theorem 2.3. Let K, be as in lemma 2.4. Tt is clear that K, allows
an expanding endomorphism f :K,— K. Extend f to an endomor.—
phism f on K. Since K, is compact and contains no singularities of f,
there are neighborhoods U of f in End'(K) and V of K, satisfying the
following conditions

1) No simplex I of K—K, is contained in V
2) g(K,)c V and V contains no singularities of g, for any ge U
We claim that no ge U is structurally stable. First we show that K, 1s
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g-invariant. In fact, for any simplex I of K, it follows easily from pro-
perty 2) that g(I) is a juxtaposition of simplexes of K, g(I)=1, v ... v I,.
Then from 1) it follows that g(I)c K,, so K, is g-invariant. We may
assume by choosing U smaller if necessary that g/K, : K, — K is expan-
ding. Then as in the proof of theorem 2.1, it follows that g is not structu-
rally stable and the proof of theorem is finished.

Remark 2.5.Call J the set of f € End*(K) satisfying the following conditions:

J1) f has a finite (non zero) number of contracting periodic points and
all critical points of f lie in A(f).

J,) All critical points of f are nondegenerate and no critical point is
eventually periodic. :

I3 B0 =0 o Lhalf) S0 6= W) 5 B far K e Zer).

J4) lterates f¥g) and f'(z) of distinct critical points y and z do not coin-
cide for any k and ¢. : ;

Js) The branch set is contained in A(f), no branch point is eventually
periodic point of f and iterates f*y) and f¢(z) of distinct branch
points y and z do not coincide for any k and ¢. ;

Je) No critical point of f is eventually a branch point and no branch
point is eventually a critical point of f.

Using the same techniques as in [2] it can be shown that J consists of struc-
turally stable endomorphisms. Also it can be shown, using arguments
similar to those used in the proof of Theorem 2.1 that in presence of the
condition J3), the other conditions are necessary for -structural stability,
so it is reasonable to expect that J consists of the all C? structurally stable
endomorphisms of K. This however is unknown even for B= & (Ja-
cobson [2]).

3. Expanding Endomorphisms preserving the Branch set.

From this chapter on, we study the classification of endomorphisms
of K preserving B by the relation of topological equivalence.

. We denote by Endy(K) the set of endomorphisms of K preserving B.
Clearly Endy(K) is a closed subspace of End'(K) which contains all the
diffeomorphisms of K. We remark that no f € EndyK) is structurally
stable. In fact, by a small perturbation of f we get g € End'(K) such that
B is not g-invariant. Then f and g are not topologically conjugate.

This section is devoted to the proof of the following
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Theorem 3.1. Let f, g € Endy(K) be expanding endomorphisms homotopic
relative to. B. Then f and g are topologically conjugate.

Before proving this theorem we establish several preliminary results.
The following two lemmas are reformulation of Lemmas la. and 1b,
page 164 of [2]. They can be proved in a similar way as in [2].

Lemma 3.2. a) Let f € End*(K) and 16 215, N 2FE Pal sequiencerof Minter-
vals contained in K and such that

i) I; = f(I;_,) for all ieN

ii) Z u(l;) < oc, where p is the usual Borel measure:;
i=0

iii) There is a constant ¢ >0 such that |Df(x)| > ¢ for all xe U 1.
i=0

Then Y | Df"(xo)| < oc for all xq€l,.
n=0

Lemma 3.2. b) Let f € End)K) and x,€ K such thai
i) Y [ Df(xo)| < o5,

n=0
ii) | Df(f"(xo)| > ¢ >0 for all neN.

Then, there exists a neighborhood 1 of xo such that
i‘ | Df*(x)| < oc for all xel,.
n=0

Also we need the following lemmas

Lemma 3.3. Let f € EndyK) be an immersion such that all its periodic
points are sources. Then

a) The set P =) f ""(B) is a countable dense set of K.

b) Q(f)= Per(f)r. Here Q(f) denotes the set of nonwandering points
of f and Per(f) denotes the set of all periodic points of f.

Proof. a) First we show that P is dense. Let I be a connected component
of K— P. We must show that I is a point. Suppose this is false. Thf:n ")
is an interval for all ne N, since K—P is f-invariant. We claim that

fiI)yn f™I)# & for some n#m. Otherwise i u(f"(I)) < oo and by
n=1

lemma 3.2.a) we have that ) |Df"(x)| < oo for all xel. In particular

n1
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Y. | Df"a)| < oo for any endpoint a of I. It follows from lemma 8:b)
n=1 oo
that there exists a neigborhood U of a such that )’ | Df"(x)| < oo for al

g =l
xeU.But UnP# Fandforall xeP, ) | Df"(x) | is divergent because

n=1
x is eventually a source. This contradiction proves that f"(I)~ f™(I) # (%)
for some n # m. Let I be the component of K — P which contains
f*I) o f™(I). Then f" "I)<T, so I contains a periodic point of f
which is either contracting or neutral. But by hypothesis all periodic
points of f are sources. This contradiction proves that [ is a point. Hence
P is dense.

Now we prove that P is countable. Let ne N. Since f" is an immer-
sion we have that for each x € K there exists a neigborhood U of x such
that f" is at most 2-to-1 in U. It follows from this that f ~"(B) is finite
because B is finite and K compact. Hence P is countable.

b) Let xe Q(f). Since B is finite, K— B is dense. So it is enough to
take xe K— B. Let I be any interval around of x and such that ] N B = .
By the part a) we may assume that the endpoints of I belong to P. Then
there exists ny € N such that for any n > n,, the endpoints of f"(I) belong
to B, so f"(I) is a juxtaposition of simplexes of K because by hypothesis
f has no singularities. Take n > n, such that f"(I) n I # . Then I is
contained in some simplex of f"(I) because I N B = . Hence I contains
a periodic point of f. Then Q(f)= Per(f).

Lemma 3.4. Let f, ge Endy(K) be expanding endomorphisms homotopic
relative to B. Then for each simplex I of K, f(I)= g(I) and f(I) is a juxta-
position of simplexes of K, f(I)=g(I)=J, v ... v J,.

Proof. Let I =[a,b] be a simplex of K and let a=t,<t,<...<t,=b
be the partition in I given by f ~!(B). Since f and g are homotopic rela-
tive to B we have that f(I)v— g(I) is contractible and since f and g are
expanding, f()=J, v ... vJ,and g()=J, v ... v J, with J, # =L fbed
and fj;éfjH for all i=1,...,n and j=1,...,m. We claim that J,=7J,.
Otherwise f(I)v — g(I) contains a closed curve which is not contractible.
Then f(I)v — g(I) is not contractible. This contradiction proves that J, =
=1J,.. By exactly the same argument it follows that J, ,=J, ,,....J,_, =
=Jn-, for all r<n Then n=m and f()=g)=J, v ... v J,.

Proof of Theorem 3.1. Call P, = f ~*(B) and P, =g (B); we will define
a homeomorphism h, : P, — P satisfying h, f = gh,. Let I =[r,,r,] be
asimplex of K. By lemma 3.4 there exist two partitions x, = r, < x, < ... <
<x,=ryand x;=r; <x3<..<x,=r, in I given by P, and P, res-
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pectively and such that f[x,, x,4,] = g[x}, xi+,] = J,, where J, is a sim-
plex of K and s=1,...,n— 1. We define h; on P, n1 by h,(x;) = x; for
all i=1,...,n. It is clear that h, is a homeomorphism on P, satisfying
h,f = gh,. Now we extend h, to a conjugacy h, on P, = f ~*(B). Let us
write I, =[x.yx,1 {Jandvifi= L1k fors=100n= b oF=[ x5 xid and
g,=g,/I,. It’s clear that f, and g, are homeomorphisms onto J,. We
define h, on P, n1 by hy=h, on P, n1I and hy(x)=g; 'hyf(x) for
xe(P,—P,)nI,. Since f, and g, are both increasing homeomorphism
or both decreasing, h, is a increasing homeomorphism. It’s clear that
h,f = gh,. Inductivily we obtain a sequence of increasing homeomor-
phisms h, : P,— P, with h,,,=h, on P, and h,.,f = gh,,,. Then we
can define a conjugacy h on P between f and g by h(x)= h,(x), where
xeP,. By lemma 3.3, PnI and P' n I are denses in I, for all simplexes
I of K. This together with the fact that h is increasing in I, imply that h
can be extended to a conjugacy on K. Hence f and g are topologically
conjugate.

4. Structural stability in Endj(K).

An endomorphism f € Endy(K) is said to be B-structurally stable if
there exists a neighborhood U of f in Endg(K) such that if ge U then
f and g are topologically conjugate. It follows from theorem 3.1 that
the expanding endomorphisms of K preserving B are B-structurally stable.

Call J, the set of f € End}K) satisfying the conditions J, to J, of
Remark 2.5. In this section we prove the following theorems.

Theorem 4.1. J ; is an open set of Endy K) consisting of B-structurally stable
endomorphisms.

Theorem 4.2. Let ImyK) be the space of immersions of K preserving B
with the C'-topology. Then the set of C' B-structurally stable immersions
is dense in Imy(K).

Bofore proving the theorems, we have to establish some prelimi-

nary lemmas.
Let f € EndiK). Denote by K'(f) the union of the simplexes I of

K such that I < X(f). Call KX(f) = K — K!(f); Z(f) = U 1 "K(f))

and Z2(f) = {x€ 2(f) : f"(x)e K2(/) for all n}. Clearly Z'(f) and EX(f)
are compact and X(f)=X! U X%
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Lemma 4.3. Let fe End}(K) with all singularities of f in A(f). Then K'(f)
is f-invariant. Moreover if f |[K*(f) is expanding, there exists a neigborhood
U of f in End}K) such that for any g€ U, K'(g) is g-invariant and g/K'(g)
is expanding.

Proof. Let I be a simplex of K'(f). Since I contains no singularities of f,
f) is a juxtaposition of simplexes of K, f(I)=J, v ... v J,. Then
Jic K'(f) for all i=1,...,n, because f(I)=X(f). Thus K!(f) is f-in-
variant. Now if f/K'(f) is expanding, there exists a neighborhood U of
f such that for any ge U, K!(f) contains no singularities of g. Then
K'(f) is g-invariant. By choosing U smaller if necessary we may assume
that g/K'(f) is expanding. Then to prove the second part of the lemma
it is enough to show that K!(f)= K(g). It is clear that K'(f)< K'(g)
because g/K'(f) is expanding. By choosing U smaller if necessary we
may assume that K*(f)< K*(g). Then K'(g) = K'(f), so K'(f)= K(g)
and the proof of the lemma is finished.

Using the same arguments as lemma 3.3, one can easily prove the
following

- Lemma 4.4. Let f be as lemma 4.3. Suppose f contains no neutral periodic

points. Then Z*(f) is totally disconnected.

Now, let o be a contracting periodic point of f € EndyK). The local
stable manifold of o, W3, (a), is the connected component of W*(a) which
contains . .

The following lemma describes the structure of W9, («).

Lemma 4.5. Let o be a contracting beriodic point of f € EndyK):

a) If ae K — B, then Wi,(a) is an interval of K—B.

b) If a€ B, then either Wi,(a) is a loop L as in the figure 4.5 with
L nB={a} or Wi,(a) is a coordinate neighborhood Y of a (See Part 1).

c) There exists ny€ N such that for n > ny, the connected components
of f "(Wila) — f"o(Wi, () are intervals of K—B.

Fig. 4.5
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Proof. By looking at a power of f if necessary we may assume, without
loss of generality, that « is fixed.

a) follows immediately from the fact that B is f-invariant.

b) It is enough to show W3, (o) n B= {a}. Let ye Wi,(a) n B. Then
lim f"(y)=a, and so f"(y)=o for some n, because B is finite and f-in-

variant. Hence y = o by definition of W3, (a).
Assertion c) follows from the fact that B is finite.

Lemma 4.6. Let f € Jg and let « be a contracting periodic point of f. There
are neighborhoods V of f in EndiK) and U of o in K such that for any g€V,
there exists a unique contracting periodic point & of g in U and g/Wi,(®)
is topologically conjugate to f|Wi,(a).

Proof. By looking at a power of f, if necessary we may assume, without
loss“of generality, that « is fixed. If «e K— B, by lemma 4.5 Wj,(x) is
an open interval of K— B. In this case the proof of lemma follows as in
the case of endomorphisms of S', so we assume that a€ B.

Let g be close enough to f in End}K). Then o is a contracting fixed
point of g. Moreover it follows from lemma 4.5 that W1, {«) and Wi, (o)
are both loops as in the figure 4.5 or both coordinate neighborhoods
of o. By hypothesis f has a finite number of singularities ¢y, ...,t,, 0 g
has a finite number of singularities 7,,...,T, with ; close enough to ¢;
for all i=1,...,n and such that iterates g“(¥;) and ¢(t;) do not coincide
for any k and ¢ and i+ j. Take a coordinate neighborhood Y of a in

Soc ) such that f(Y)c Y, 0<|df | < 1on Y Let Y;, Y, be the branches
of Y. For definiteness assume df (x) >0, f(Y;)= Y, and f(Y;) < Y;; the
other cases are similar. Since g can be taken close enough to f, there
exists a coordinate neighborhood ¥ of o with branches ¥, and Y, and
with the same behavior of Y. Moreover g?/Y; : ¥, - ¥, is topologically
conjugate to f2/Y; by a conjugacy h, : Y; - ¥; close to the identity. Now
we will define a conjuggcy h on Wj, Aa). Since df (@)>0, f(Y; N Y) =

e Y'n Y5! Letvaye YT?YZ and a, € Y; — (Y; N Y) such that a,:;ff”(t,-)
for any ¢ and i=1,2, j=1,...,n Also we take 4, € ¥;'n Y, and
i, e PPV A ¥,) with the same behavior and such that & = hy(a)),
i=1,2. Consider a homeomorphism h :[a, f(a)] - [4, g(@)] which maps
any iterate of a singularity f(¢;) to g(f;). We define h on [£2(b),b] in the
same way. We extend h, as in the case of endomorphisms of S o X Xy
by the formula h = g"hf ~". Also we extend h on Y, —(¥; N Y,) by
h=(g?)"h(f2)~". Next we extend h on Y, — (Y; N Y;) by h(x) =g~ 'hf (x)
where ¢! maps ¥, =(¥, n 7)) to ¥, — (¥, n 1,). It is clear that hf =gh
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on (YynY)u(a—(YinY,)) If xeY, — (Y, nY,) then hf(x)=
=g~ 'hf%(x) = g~ 'g*(x) = gh(x). Hence hf = gh on Y. Since W3, () and
Wiecg(®) are both loops or both coordinate neigborhoods, the corres-
pondence of singularities of f and g gives us a correspondence of intervals
on which f and g are 1—1, so we can extend h, as in the case of endo-
morphisms of S', to Wi, {(«) using the formula h =g~ 'hf. Hence the
lemma is proved.

Proof of Theorem 4.1. It is clear that properties J, and J, are open. We
show the openness of J, and J;. We follow arguments of Jakobson in
[2]. Let f eJg and let g be close enough to f in End)K) satisfying J,
and J,. By lemma 4.3. K'(g)=K'(f) and g/K'(g) is expanding. Then
there are constants ¢; >0 and A; > 1 such that | Dg"(x)| > ¢, A} for all
xeZ'(g). Now by lemma 4.4 X*f) is totally disconnected. From this
and from the proof of a theorem of Jakobson [2, Theorem 4, page 177],
we conclude that K*(g) contains a finite number of contracting periodic
points and that there are constants ¢, >0 and 4, > 1 such that ] Dg"(x)| =
> 43 for all xe X*g). Take A= min{A,,4,} and ¢ = min{c,,c,}. Then
ng"(x)]> cA" for x e X(g). Hence g satisfies the conditions J, and J;.

Now we show that f is topologically conjugate to g. Since K!(f)=
=K'(g) and f/K'(f) and g/K'(g) are expanding endomorphisms, there
is a homeomorphism ¢ : K'(f)— K'(g) such that ¢f = g¢. Moreover ¢
is increasing on the simplexes of K'(f). By lemma 4.5 we can extend ¢ on

i=1

K'(f)u (| Wida) |, wherea,, ..., a, are the contracting periodic points
gp p

of f. Now we extend ¢, as in the case of endomorphisms of S!, to

Z(f) U A(f). Since Z!(f) U A(f) and Z'(g) U A(g) are denses in K, we
can extend ¢ on K.

Remark 4.7. B-structural stability is nongeneric in EndK); r>2. In
fact using arguments similar to those used in the proof of theorem 2.3
we can define an open subset V' of End(K) such that forany f € V, K—B

contains a singularity o of f with () f"(a) " B# . It follows from this

that no f eV is B-structurally stable.
The remainder of this section is devoted to the proof of theorem 4.2.
Let A be the set of f € Im)K) such that f has at least one contracting

“periodic point. Call C=Imj(K)— A. Denote by Exp}(K) the set of C'-expan-

ding endomorphisms of K preserving B.
The proofs of the following lemmas are similar to the analogous
results of [2]. :
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Lemma 4.8. ExpyK)'is C'-dense in C.

Proof. This follows from lemma 3.3 and from the proof of lemma > ot
Jakobson [2, page 179].

Lemma 4.9. Let ge ImiK) satisfying the conditions

a) All periodic points of f are hiperbolic and A(f) is nonempty.

b) g/K'(g) is expanding.
Then there exists g, € ImyYK) close enough of g such that g, satisfies the
condition a); g,/Z(g,) is expanding and g, has only a finite number of con-
tracting periodic points.

Proof. This follows from lemma 4.4 and from the proof of lemma of Slenk
[2, page 174].

Lemma 4.10. J; n Imy(K) is C'-dense in A.

Proof. Let f € A. We apply Shub’s generalization of the Kupka-Smate
theorem [4] to the case of endomorphisms and approximate f by
f1 € ImyK) without neutral periodic points. Then by lemma 4.8 we can
approximate f,/K'(f,) by a expanding endomorphism f,: K'(f,)—- K'(f,).
Now we extend f, to a immersion f; < Im}K) close enough to f, and
such that K!(f;)= K'(f,). By the Kupka-Smale theorem f; is appro-
ximated by f, € Imy(K) without neutral periodic points and with the same
behavior of f;. Then by lemma 4.9 we can approximate f, by fs€Jy N
n ImYK). Hence the proof of lemma is finished.

Proof of Theorem 4.2. Follows from lemmas 4.8 and 4.10.
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