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Bounded Random Perturbations of the Liapounov Number

Artur Oscar Lopes

We will present here a model for bounded random perturbations
of the Liapounov numbers. We will prove that the Liapounov number
changes in a continuous fashion (in an almost everywhere sense) with
the variance of the random perturbation. Our result will be for the simplest
case of a sequence of 2 x 2 matrix with one Liapounov number bigger
than zero and the other one smaller than zero. We’'ll suppose here that
the angles between the stable and unstable directions are going to zero
subexponentially in the sense of Oseledec [1]. This will play an important
role in our model. This hypothesis appears in a natural way in the Non
Commutative Ergodic Theorem of Oseledec. It’s the general situation
of most of the points of a general system. Our model will be not the one
that would correspond to Kifer’s [2] concept of random perturbation.
We'll explain later what we mean by bounded perturbation (see defini-
tion 3. page 86, and Theorem on page 89).

We would like to point out that, as the angles between stable and
unstable directions are going to zero, we will have to consider a reescaling
in our model.

It’s quite reasonable to suppose in a real model that we are able
to make a reescaling and that the randomness appears after the reescaling.
We will make clear this point later.

Let’s now state the particular case of matrix that we intend to study.

Let 6, be a decreasing sequence of.real positive numbers such that
lim ilog (sin 6,) =0 and lim (sin 60,) = 0. We'll define now a sequence
n—aoo n— o
of 2 x 2 matrix A4,. Let be 4 <1 < p. First we define 4, as the only one
matrix such that

A,(1,0) = (4,0)

cosf; sinf 0
0,1) = { 1
4:0,1) (— sin 6, c0561> <,u>

and by induction we obtain 4, for n>1 by solving

Versdo definitiva em 23/3/83.
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(Ano An—l @ An—2 A2 e Al) (190) = (An’ 0)

(Awo Ay_y 0 Ay g v Ayo Ay) @, 1) = (050 Sin0) (0]
—sinf, cosé, u

Let Bn= (AnOAn——l O eee 0A2 oAl).

Definition 1. We define I(v) the Liapounov number in the direction v € R?

as lim % log || B, (v)|| = Ulv). An equivalent definition is

— 1 fa . |BuB )]
(it <§1  [[Baci@)]] )

As lim a5 log (sin 0,) =0, it’s easy to see that for any v in R?, that

is not in the x-axis, I(v) = log u. For v in the x-axis l(v) = log A. The

condition lim L2 log (sin 6,)=0 is the one obtained in Oseledet
Theorem [1].

In our model we'll just consider bounded random perturbations of
the angles of the vectors. In this direction we’ll introduce the following
definitions. Let be ¢ = {(1,y)| y€ R}, and for xe ¢ and n> 1, g,(x) will
be the only element in ¢ such that, if E (A4,(x)) is the one dimensional
subspace generated by A4,(x), then g,(v) € ¢ N E(A,(x)). There exists a point
in ¢ such that g, is not defined. Anyway we’ll consider D the domain
of g,, the points of the form (1,y)y > 0. Note that for any g, we have
g.(D)= D and g, is the homeomorphism of D. Therefore we can define
the successive iterations of (g, o gn—10 ... 0g1) (v) for ve D. They will
represent the successive iterations of (4,0 A,_10...0A4;) (v) in a more
or less normalized sense. For instance (¢, o g1 - ¢1) (0, 1) = (1,sin 0,/cos 0,).

~ We'll identify now R with ¢ in such a way that (1, 0) corresponds
to 0 and (1, 1) corresponds to 1. We'll think on x € ¢ alternatively as a
vector in R? and as an element in R, depending on the context we are.

As the Liapounov number can be defined up to a finite number of
iterations, we can always suppose that 0, is very small and therefore
random perturbations of the angles of the vector on R? can be represented
as random perturbations in R (or in 0).

For xe¢ let h,(x)=(gno0gn_10-.-0g;1) (x). Then h,(x) represents
for us the orbit of x (see picture 1). By bounded random perturbation
of the orbit we mean a sequence x, of real random variables such that x,
has mean h,(x) and a suitable variance that we’ll specify later. In our
model we’ll need to bound the possible differences between h,(x) and x,,.

Let be X =(x;)ieny X;€D.
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¢ hp(x)
y = xcosf,/send, \r = x cosf) /senf, Y = xcosfpn/sen O
¢2zp(r)

¢z, (r)

Fig. 1

Definition 2. The Liapounov number (X), for X = (x;);cn the random per-
turbation, will be by definition the limit

in case it exists. In case this limit doesn’t exist, we’ll denote I(X) either as

Ay )H
li — 1 L4, L
nl—l:l;lo o g <;1 o8 || -1 “

n—+ o

or as

lim inf — (Z": A% I)H )

” Xi—1 ”

n—+o
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If we write just [(x) we mean the Liapounov number of x € D in the sense
of definition 1. It has a different meaning from I(x) for x = (x;);.y the
random term. In the case x;= hy(x) for xe D, it’s easy to see that both
definitions agree, that is I((x;);c5) = I(x). This shows us that our definition
is the natural one.

We'll be interested to make the difference I(x) and /(X) small for
X = (x;);en and x € D, such that the first term of X is x (that is x, = x).

An easy computation shows us the explicit value of g,(x):

n uxsin@,,
=) o xX) = A o
V= 9d0) ux cos 0,4 + (sinf, — x cos 0,)A

Therefore gn(O) =0 and 9n sin Qn - sin 0n+1 '
cos 0, cos 0,

Let’s now make the change of coordinates

__ xcosf, . ycos O,
sinf, ’ sin 6,

for each ne N. We'll explain the reason for that later. After the changing
of coordinates we’ll obtain f,:

= 1= urcos 0,4 .
urcos 0,4y + (1 —r)Acosé,

Therefore f,[0,1]=[0,1].

Note that f, — f uniformly, where f is
ru
N=—
1) ur + (1 —r)a

and f,(0)=0 and f,(1)=1.
Let’s define z,(r)=(fpo fa=10...0 f1)(r) for re R positive.
It’s easy to see that lim z,(r)=1 for any r bigger than 0. Observe that

sinf,
cesf,

h,(x).

z(r)
That is, z,(r) represents the h, orbit of x in the new variables r.

Definition 3 — Bounded random perturbation. Now we are able to define
a stationary stochastic process r, such that for a fixed r, € [0, 1], we have
that (r, — z,(ry)) = Y, are independent equally distributed random variables
in R with mean O and variance ¢. This represents in our model the fact
that, as g,(sin 6,/cos 6,) =sin 6, ,/cos 0, ,, then the spread of the random
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term around z,(r,) depends on the proportion of sin 6,/cos 6, and
sin 0, ,/cos 0,,,, for all ne N. That was the reason for the change of
coordinates

xcos 6, s_ycos(),,ﬂ
sin@, sinf,,;

sin 0,

cosf,

We are reescaling the transformation in earch step. This means that
without a change of coordinates in our model the absolute variance
of (x,— h,(x)) is decreasing with n as ¢ sinf,/cos0,. We'll assume in
our model that for each ne N the probability of (r, — z,(r,)) > 1 equals
zero...(1). That is the reason for the word bounded random perturbation.

As the angles between stable and unstable directions are going to
zero and the precision of a computer is limited, in a real situation, we
always have to consider in this case a reescaling. If we dont’t do that,
we will be not even able to distinguish between stable and unstable di-
rections.

The variance measures the dispersion of the random term around
its mean. We'll show here that if ¢ is small then the Liapounov number
of the random perturbation of the orbit will be not very different from
the original orbit.

- We point out that it is reasonable to suppose in a real model that
we are able to reescale and that the random term appears in the iteration
after this reescaling.

Before we continue I'd like to make some comments about our
definition of random perturbations.

Let be x,=r,

1) Our definition assumes that the random variable is stationary,
unlike [2], [3], [4] and [5].

2) Our definition is the suitable one, because in the other case
([2] and [3]) the variance would go to infinity with n, and in this situation
it is not possible to control the Liapounov number, as we can see in (7)
in our proof.

3) In terms of the variables x and y our model supposes that the
variance is going to zero subexponentially.

Two important consequence that we have for our model are that,
almost everywhere in the set of events (see Breiman [6] for definitions
and theorems):

@) im L 3 (= zfro) = 0

n— o i=0
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and

(3) lim — Z (ri — z{ry))* = o.
These results are known as the Law of Large Numbers [6].
The last assumption in definition 3 means that almost everywhere
in the set of events:

(4) ‘rn_zn(r0)| =1

That means that for the old variables x and y the differences
| x, — h,(xo) | are going to zero subexponentially. This means that almost
everywhere in the set of events r;, we have that for the old variable

x;=r;sin 0;/cos 0; is such that lim || x;||=1. This means that
(5) lim 7 Z log ”"‘li"(x"'l”)' = Z log || Ai(xi-1)]|-
n— o i= =1 n— o i=

We’'ll show now that the Liapounov number can change in a dis-
continuous fashion with the random perturbation (this will be not possible
almost everywhere as we’ll see later). Take a point x, € D that has Lia-
pounov number log x and for any i in N — {0} take x; = 0. In this case the
event (x;);.y = X is such that I(x,) = log u (see definition 1) but I(X) = log 4
fsee definition 2). Therefore, independently of the variance, there exists
the possibility of a change of | log 4 — log 4| in the Liapounov number of
a vector and its random perturbation. We’ll prove here that if the variance
is small, then almost everywhere in the set of events the Liapounov number
I(x) is near l(x,) for X = (x;);cn, Where x, is the first element of x.

Before we state the theorem we need the following propositions:

Propeosition 1. Suppose that q;—0, p;—p and p >0, then

11m—Zlog (¢; + p:) = hm—Zlog(p)

n— o i=1 n— o i=1

Proof. We just have to prove that

lim —n(z log (¢; + pi) — 10g(P)>

n— oo

that is

i g ¥ log<q1 1>=0.

n-»owo N =1 Di
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But as

0 = lim log <% + 1), we have

n— oo

11m—Z(q,+p)— lim — 3 log (p).

n— o n— oo i=1

An easy consequence of proposition 1 is

Corollary 2. In the hypothesis of proposition 1 about gq;, p; and if ¢;— 0,
pi—p >0, we have:

it Ppi
lim — Y log (< log
n—-oo N i; g(‘lu a4 Pi) o0 izl < >

We'll begin now the proof of the theorem.

Theorem. — Let () = (r;)ien Satisfying def. 3. Then for any & > 0 there exists
6 >0 such that, if ro€(0, 1) and s; is a sequence such that s;= z;(r,), then
for almost everywhere ¥ = (r;);en, such that s =ry, 6 <@, o as in def. 3,
we have I(s)— I(r) <e.

Proof. Suppose

sin 0; sin 6;
TR LA P T

i=

Letc—||A(y, D di=| 4> |-

From the way we define z; (see (5) and (1)), all we have to prove is
that:

[1G3) = 1(7)| = hm— Z log<dl)

n— o i=1

is small if ¢ is small.
As lim z;(ry) = 1, we have that for 6 >0 and i very large, r; and s;

n—*ao

are much bigger than — ¢ and smaller than 2.
As the map t,:[—J,0]— R such that

gihe ., “sin® . I
th = 2 7+
i {[,ur cos0,_, sinb,
a o 1/2
1 ) sinf,_, cos 6 sinf,_,cos0,., |
4+ —5—|Asinf,—r 2ol "+ ur et L
sin? 0, |: i ¢os 0,54 ,u cos0,_,
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is continuous and (sin 6, ,/sin 0,) < 1, it’s easy to see that there exist M
and M’ bigger than zero such that if n is big enough then 0 < M <c,< M’
and 0 <M <d,< M, where ¢, and d, are in the r and s coordinates:

0 2
o= lAutoa) | = {l oy Sl [

n A(sin 0, — x,_, cos0,) + ux,_,cos0,., 1"
sin 0,

sinf,_, sinf,,, P
= | i, . +
{[H 'cosh,_, sin 0,

1 . sin@,_, cos 0 sin 0 e
*— Al sm, )AL 0P s ——leseg
sin? 0,,[ ( ST cos .4 >+W" Ycosh,_, e

and

: . .
d" a ” An (yn—l) || = {l:,us,,_l S 0"_1 Sll’? 0n+1 :| +

cosf,_, sinf,

1 : sin6,_, cos 0 sin0,_ e
———| Alsin@,— s, —" 2" 4 s, —""Lcosh,
sm28,,|: < "1 cosH,_, > Fon Ycos0,_, i

Therefore there exists K >0 such that — K < log(c,/d,) < K for n
big enough. We will need this estimate later.

Let now V,={ie{0,1,...,n—1,n} |0 < (sin 0,/sin 0;_,) < A}.

Note that as sin 6; is decreasing and as

0 = lim ilog (sin6,) = lim — Z log (sin 6;/sin 0,_ ),

n— o n— oo i=1

we have that lim B3 # V,=0. The union of all V, is what is usually called

n—oo

a set of 0 density on N. _ B
Using now the estimates — K < log(c;/d;) < K and the fact that the
union of all V, has zero density we have that

hmi Z logz_ llm— Z log—

n-w N i n— oo i=1 dl
1¢V,.

The meaning of the above equality is that in order to compute the
Liapounov number we can avoid a set of zero density (that determines
a subsequence that is bounded). This means that we just have to prove
that

lim — Z log £

n-o M =1 dl
i¢Vn
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is near /(X) if o is small. By the considerations that we had done before
we have the extra condition that

sin 0; :
(6) > o A e

Let now gq,, p,, ¢, and p, be such that

1 § sinf,_, sinf,_, 8
= Alsin@,—r,_,—2=*cos0, |+ wr,_, —=2"+cosb,
Pn=sin? 9,,[ ( L ' cos,_, ") x 'cosh,_, i

. o T
qn=|:,urn—1 sin 0,4, sin 6, 1:|

cosf,_, sinf,

, | . sind, 5 sin@,_, €
Ph=<7j [l(sm()n—sn_lmTcosH,,)+ys,,_lCOSQ cos 0,4

sin” 0, e n—1

I sinf,,, sinf,_; 2.
" "1 cosf,_, sinb,

Therefore we have

“Oiin 8 GuloDs

& dutp
As (sinf,,,/sin6,) < 1 and r, and s, are almost everywhere bounded
(4), we have that q,—»O and q’l—>0 Therefore by corollary 2

i Z log < d 2 lim — Z 10g< )

n—> o n—o

We can express log % as

n

; sin 0,,_
logZ—Z =2 {log |:}, <Sln 9" = Lpty (:0879"_11 CcOS H,,) +

Sine_l
+ prp-y——=--c08 0,1 | —
fir cos 0,_, :

i sin 0,,_ sin 0,,_
— log [/1 (sm 8, — s,,_lzo—sﬁcos 9,,) + pus,_, —Cgs—a:ll—cos 0,,“}} =

ol 0, 0080,
cosf,_,

sinf,_;cos 0,
Spq1 — Fp—
+ N Cosen_l (n 1 r 1)

_ sinf, c0s 0, oosi,
{Smen-l [/1 <W,,_—1 o e 0,.+1>+ Hon 1 cos 0.,-1]}}]
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If we define a, as

cos B, cos 6,
<l —u +l)(rn—l_sn—l)

cosf,_, cos0,_,

(e . 5
; sin 6, s cosf, p cosf,,,
B N, e M Wikt bl 3
sinf,_, "% cos0,_, """ cosf,_,

then log%= 2log|1 + a,]|.

We are going to show now that
lim’ 0 Y log(l +a)<e
n—w i=1

if ¢ is small.
Let v, be

_log(l +4a,)—a
a,
sin 0,+1

A
S18

> A by (6), |ri—s;| <1 by (4), and

him S"_l_c"_sgn_ =1
n—© Cos 6n+1
we have that
7=

(—'1)+#+'12 =c> —1.

Therefore v, is well defined.

As lim 1%8( ;tzx) — % we have that there exists K such that
x=0

log(1 + x) — x

— K<
x2

<K, x€e[c, —c].

Note that lim log{l ;tzx) st 0.
x—>—1

As log (1+a,)=a,+ v,a?, we have that
o' 1 Y log(l + a;) = lim'i Y (a;+ val) =

1

di. avw N i=i nso M i=1
1
n

Lokt 23 ot

n-o N =

lim' L ¥ log
1
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As the a, are bounded and using again the fact that we are avoiding a
sequence with zero density we have that

hm—Za+hm Zva llm—Za-l—hm—Zva

n—oo n =1 n—ow N n— o =1 nbo N oi=1

where the ' in the summation means that we avoid elements of the se-
quence that are in the V, sets.
Using now (2) we have that

lm—27_1 —lZv,a?.
i i=1

n— o n— oo

As —|ri—s;|* K *<val <K ¢*|r;—s;|* and by (3), we have that

(7) — Kc%c £ lim 2 i va? < K c?o.
nsoo N i=1
Therefore
| 1G5) — IF) | = | lim — Z long—’ lim — Z log <t
n— o ”A( 1—1)” n— dl
lim = i va? | < K c?o.
n-o N i=1

The conclusion is that I(s)— I(r) is small if ¢ is small enough.
This is the end of our proof.
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