An invariant of certain fields of genus 2

H. Borges Neto(*)

0. Introduction and Notations.

The aim of this paper is to describe the isomorphy classes of algebraic functions fields of genus 2 and of absolute genus 1 by using suitable invariants. Using Proposition 2 it is easy to give examples of non isomorphic fields of the kind.

A field K of algebraic functions of one variable over k is said to have genus 2 if and only if there exist $x, y \in K \setminus k$ such that K = k(x, y), $y^2 = f(x) \in k[x]$ has degree 5 or 6 and has no multiple factors over k. In this case, the rational field is characterized as the unique quadratic subfield of K which contains k and has genus 0 (see Artin [1]).

Denote the algebraic closure of k by \bar{k} . We say that $K \mid \bar{k}$ has absolute genus 1 (or that it is absolutely elliptic) if the composite $K \cdot \bar{k}$ has genus 1 (for genus change see [2], [4] or [5]).

It is easy to see that for K|k with genus 2 to be absolutely elliptic it is necessary and sufficient that char (k)=3 and K=k(x,y), with $y^2=(x^3-\alpha)$ $(f_0x^3+f_1x^2+f_2x+f_3)$, $\alpha\in k\setminus k^3$, and discriminant of $f_0x^3+\ldots+f_3$ is non-zero (this last condition is equivalent to $f_1^2f_2^2-f_0f_2^3-f_3f_1^3\neq 0$) (See Borges Neto [3]).

Obviously, $k(\sqrt[3]{\alpha})$ is determined uniquely as it is the smallest extension of k among those that have their composition with K of genus 1.

1. The invariant.

Theorem 1. Let K = k(x, y) and K' = k(x, v) be two abolutely elliptic fields of genus 2 with $y^2 = f(x) = (x^3 - \alpha)$ $(f_0x^3 + ... + f_3)$ and $v^2 = (x^3 - \alpha')$ $(g_0x^3 + ... + g_3)$.

K and K' are k-isomorphic iff there exists a fractional linear transtransformation $\psi: \bar{k} \cup \{\infty\}$ given by $z \mapsto \frac{az+b}{cz+d}$, if $z \neq \infty$, $\infty \mapsto a/c$ if $c \neq 0$ or ∞ if c = 0, where $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(k)$, such that:

^(*) During this work the author held a fellowship by CNPq-Brazil. Recebido em 22/1/81. Versão definitiva em 12/2/82.

1)
$$\sqrt[3]{\alpha'} = \psi(\sqrt[3]{\alpha});$$

2) ψ transforms separable roots of f into those of q:

3) if
$$f_0 \neq 0$$
, $\frac{1}{f_0}g(\psi(\infty)) \in k^2 \setminus \{0\}$ if $\psi(\infty) \in k$ and
$$\frac{g_0}{f_0} \in k^2 \setminus \{0\} \text{ if } \psi(\infty) = \infty.$$
If $f_0 = g_0 = 0$, $\psi(\infty) = \infty$ and $a \in k^2 \setminus \{0\}$.

Proof. (\leftarrow) If $\psi(\infty) \in k$ and $f_0 \neq 0$ we consider the k-isomorphism given by $x \mapsto \psi(x)$ and $v \mapsto \sqrt{\frac{g(\psi(\infty))}{f_0}} \frac{1}{(cx+d)^3} y$; if $\psi(\infty) = \infty$ and $f_0 \neq 0$, we consider $x \mapsto \psi(x)$ and $v \mapsto a^3 \sqrt{\frac{g_0}{f_0}}y$. Finally, if $f_0 = 0$ consider $x \mapsto \sqrt{a} x + b$ and $v \mapsto \sqrt{a^5}y$.

 (\mapsto) Let $\sigma: K' \mapsto K$ be a k-isomorphism. Then k(x) is left invariant by σ as it is the unique subfield of K which contains k and has genus 0. It means that $\sigma|_{k(x)} \in \operatorname{Aut}(k(x)|k)$ and therefore one finds $\{a, b, c, d\} \subset k$ with $ad-bc \neq 0$ such that $\sigma(x) = \frac{ax+b}{cx+d}$.

As for $\sigma(v)$ we may say that $\sigma(v) = t + uv$, where $t, u \in k(x)$ are uniquely determined and $u \neq 0$.

But
$$t^2 - tuy + u^2 f(x) = \sigma(v)^2 = g(\sigma(x))$$
.

Therefore t = 0 and $\sigma(v) = uv$. We put u = r/s, $r, s \in k[x]$ relatively prime, r monic.

Consequently, as
$$g(\sigma(v)) = \sigma(v)^2 = \left(\frac{r}{s}\right)^2 f(x)$$
 we have
$$s^2 \left(\frac{ax+b}{cx+d} - \sqrt[3]{\alpha'}\right)^3 \left[g_0 \left(\frac{ax+b}{cx+d}\right)^3 + \dots + g_3\right] = r^2(x - \sqrt[3]{\alpha}).$$

$$(f_0x^3 + \dots + f_3).$$

Eliminating denominators we obtain

(1)
$$(a - c\sqrt[3]{\alpha'}) s^{2} \left(x - \frac{d\sqrt[3]{\alpha'} - b}{a - c\sqrt[3]{\alpha'}}\right)^{3},$$

$$[(\partial g - 5) (g_{0}a^{3} + g_{1}a^{2}c + g_{2}ac^{2} + g_{3}c^{3})x^{3} + \dots] =$$

$$= (cx + d)^{\partial g} r^{2}(x - \sqrt[3]{\alpha})^{3} (f_{0}x^{3} + \dots + f_{3}).$$

One easily concludes from equation (1) above that s = 1, as otherwise one would have $s^2 = (x - \sqrt[3]{\alpha})^3$, impossible in virtue of degree arguments. For the same reason r does not divide $\left(x - \frac{d\sqrt[3]{\alpha'} - b}{a - c\sqrt[3]{\alpha'}}\right)^3$. Thus, we infer that

(2)
$$x - \sqrt[3]{\alpha} = x - \frac{d\sqrt[3]{\alpha'} - b}{a - c\sqrt[3]{\alpha'}}.$$

From here we get a fractional k-linear transformation $\psi: k \cup \{\infty\} \mapsto \bar{k} \cup \{\infty\}: z \mapsto \frac{az+b}{cz+d}$ which satisfies

1)
$$\sqrt[3]{\alpha'} = \frac{a\sqrt[3]{\alpha} + b}{c\sqrt[3]{\alpha} + d}$$
 (by (2)).

An invariant of certain fields of genus 2

2) ψ sends separable roots of f into those of q (by (1) and (2)).

3) If
$$f_0 \neq 0$$
, $\frac{1}{f_0}g(\psi(\infty)) \in k^2 \setminus \{0\}$ if $\psi(\infty) \in k$ or $\frac{g_0}{f_0} \in k^2 \setminus \{0\}$ if $\psi(\infty) = \infty$.

If $f_0 = 0$, we have c = 0, d = 1 and $r = \sqrt{a^5}$.

Corollary 1. $Aut(K|k) \simeq Z/2Z$.

Corollary 2. The field k_0 of roots of separable factor of f as well as $k(\sqrt[3]{\alpha})$ are canonically determined by the class of k-isomorphy of K

From now on, we shall suppose that $[k_0:k]=2$. Let $x_0 \in k$ be a root of $f_0 x^3 + ... + f_3$. Substituting x by $\dot{x} := \frac{1}{x - x_0}$ and y by $y := \frac{1}{x^3}y$ we may suppose that the polynomial equation which involves generators of K|k has degree 5 and is monic in the variable x.

In those conditions, $w \ell g$, we take the absolutely elliptic fields of genus 2 having generators related by the following condition: $Y^2 = (X^3 - \alpha)(X^2 + f_2X + f_3), \ \alpha \in k \setminus k^3 \text{ and } f_2^2 - f_3 \neq 0.$

Proposition 2. Let K = k(x, y) and K' = k(x, v) be two absolutely elliptic fields of genus 2, satisfying $v^2 = (x^3 - \alpha)(x^2 + f_2x + f_3)$ and $v^2 = (x^3 - \alpha')$.

K and K' are k-isomorphic iff
$$\frac{f_2 - \sqrt[3]{\alpha}}{g_2 - \sqrt[3]{\alpha'}} \in k^2 \setminus \{0\}$$
 and
$$\frac{(f_2 - \sqrt[3]{\alpha})^2}{f_2^2 - f_2} = \frac{(g_2 - \sqrt[3]{\alpha})^2}{g_2^2 - g_2}.$$

In particular, $\frac{(f_2 - \sqrt[3]{\alpha})^2}{f_2^2 - f_3}$ is an invariant of k-isomorphy class of K.

Proof. It follows immediately from Theorem 1 that if K and K' are k-isomorphic then an isomorphism is determined by the formulae $x \mapsto a^2x + b$ and $v \mapsto a^5y$.

Applying the isomorphism to the equation $v^2 = g(x)$ we obtain $a^{10}y = (a^2x + b - \sqrt[3]{\alpha'})^3 (a^4x^2 + a^2(g_2 - b)x + b^2 + g_2b + g_3)$.

But $y^2 = f(x)$, so we arrive at

$$(x-\sqrt[3]{a})^3 \ (x^2+f_2x+f_3) = \left(x-\frac{\sqrt[3]{a'}-b}{a^2}\right)^3 \ \left(x^2+\frac{g_2-b}{a^2} \ x + \frac{b^2+g_2b+g_3}{a^4}\right).$$

As $(x-\sqrt[3]{\alpha})^3$ is purely inseparable over k and $x^2+f_2x+f_3$ is separable, we have $\sqrt[3]{\alpha}=b+a^2\sqrt[3]{\alpha}$, $a^2f_2=g_2-b$ and $a^4f_3=b^2+g_2b+g_3$.

Thus, K and K' are k-isomorphic iff there exists $a \in k \setminus \{0\}$ such that $\sqrt[3]{\alpha'} - g_2 = a^2(\sqrt[3]{\alpha} - f_2)$ and $a^4(f_2^2 - f_3) = g_2^2 - g_3$.

But on the other hand this is also equivalent to saying that

$$\frac{f_2 - \sqrt[3]{\alpha}}{g_2 - \sqrt[3]{\alpha'}} \in k^2 \setminus \{0\} \quad \text{and} \quad \frac{(f_2 \sqrt[3]{\alpha})^2}{f_2^2 - f_3} = \frac{(g_2 - \sqrt[3]{\alpha'})^2}{g_2^2 - g_3}.$$

Corollary 3. Let k be quadratically closed. The fields K and K' are k-isomorphic iff their invariants coincide.

References

- [1] A. Artin; Algebraic Numbers and Algebraic Functions, Gordon and Breach (1967).
- [2] H. Borges Neto; Mudança de Gênero e Classificação de Corpos de Gênero 2, Tese de Doutoramento, IMPA, Rio de Janeiro, Brasil (1979).
- [3] H. Borges Neto; Absolutely Elliptic Fields of Genus 2 and their Normal Form (to appear).
- [4] H. Stichtenoth; Algebraische Funktionenkörper einer Variablen, Vorlesungen der Universität Essen (1978).
- [5] J. Tate; Genus Change in Inseparable Extension Fields, Proc. Amer. Math. Soc. 3 (1952), 400-406.

Departamento de Matemática — UFC 60.000 — Fortaleza — CE Brasil