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Uniform stability of perturbed non-linear systems of
differential equations with time delay

Decio Botura Filho and Natalino Adelmo de Molfetta

1. Introduction.

The purpose of this work is to study the uniform stability of the solu-
tions of a system of functional differential equation with time delay

y(t) =f(t’yt) A g([7yt)

perturbed from the non-linear system

() = f(t, x,)

under the assumption that this system has at least one bounded solution.
One of the basic tools needed is the Alekseev-Shanholt’s Integral
Formula, which is a generalization of the Variation of Constants Formula
for non-linear functional differential equations with time delay.
In Section 5, we present an application of our results to the equation

x(t) = - J a(— 0)h(¢(0))do.

I1. Preliminaries.

Suppose r > 0 is a given real number, R = (— o0, 00), R" is an n-dimen-
sional real or complex linear vector space with norm | - |, and C([a, b], R")
is the Banach space of continuous functions mapping the interval [a, b]
into R" with the topology of uniform convergence. If [a,b]=[—r,0],
we let C = C([—r, 0], R") and designate the norm of an element ¢ in C by

I1l=_sup [#@).

If x is a continuous map of [a—r, b] into R", then x,€ C is given,
for each a <t <b, by

x,(0) = x(t+0), —r<0<0.
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Let A be an open subset of C, pe R, I' =(p,0)x A, and f : T > R"
be a given function.
A retarded functional differential equation is a relation of the form

1) x(1) = f(t, x,),

where x(t) denotes the right-hand derivative of x(u) at u =t.
For any (¢4, @) € I', we say that x is a solution of (1) with initial function
¢ at t,, if there exists an 4> 0 such that:

i) x€ C([to—r, to+ 4], R")
i) x,, = ¢
iii) x(¢) = f(t, x,), to <t <ty+ A.
If we call x(t,, ¢) the solution x of equation (1) through (¢,, @), x(to, @)
will denote the element of C given by x(t,, ¢)(0) = x(t + 0, to, P).
Let [to—r,t"), to<t* < oo, be the maximal interval of existence

of the solution x(to, ¢). If t* = 00 we say that x(t,, @) is defined in the
future.

Definition 1. We say that x(t,, ¢) is bounded if there is a constant k >0
such that |x(t,ty, )| <k for any te[to—r,t*). If x(t,, p) exists and is
bounded in [to—r, ), we say that x(ty,P) is bounded in the future.

Definition 2: Stability. A solution x(ty, ¢) of (1), defined in the future, is
stable if given € €0, there exists & = (e, to) such that (€A, ||E— ¢ | <6
implies || x,(to, &) — x,(to, ¢)|| <& for any t >t,. If 5 does not depend on
to, we say that x(to, @) is uniformly stable.

System (1) is said to be stable (uniformly stable) if every solution x(t,, ¢)
of (1) is stable (uniformly stable).

If £ (¢, ¢) is continuous in I', then for every (¢y, ¢) e I there is at ieast
one solution of (1) through-(z,, ¢). If, in addition, f (¢, ¢) is locally Lipschit-
zian in-¢ in each compact subset of I', then there is a unique solution of
(1) through (o, ¢), and x(t,, @) is continuous in (¢, ty, @) [2-b, pp. 13-15
and 21-23].

Suppose that A( - ) is a continuous from (p, o), p € R, into the space
of continuous linear operators from C into R". Since || A(¢) || is a continuous
function of ¢ for t€ (p, ) and | A(t)g | < || A@) || - || @ ||, & #) € (p, 20) x C,
it follows that for any (¢, ¢) € (p, ©0) x C, the linear functional differential
equation

@) W) = A(®)y,
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has a unique solution y(t,, ¢) defined and continuous on [z, —r, 20) [2-b;
pp. 80-82].
Furthermore, for any fixed t, and for t > ¢,

Mo, + ) () :C—>R"

is a continuous linear operator. Thus, we can define a family of continuous
linear operators |

T, ty) : C—> C, t >ty > p,
by the relation

(3) 7-([9 t0)<b = yt(t0> d))a ¢ eC,

where for each t > t,, y(t,, ¢) is the function in C given by y(t,, ¢) () =

= Wty, d)(t+0), to—r <60 <t,. Then, T(t,t,) is a strongly continuous

semigroup on C, for all t >t,. For the proof of these results see [2-b].
For any piecewise continuous function

y:[-r,0] > R"

one can define a solution of (2) with initial values ¥ in t,. Therefore, if
the n x n matrix function Y, is defined by

@ Yol6) = {? B

then the operator T{t,t,) can also be defined on the columns of Y.
If g:I"'> R" is a given continuous function, then z is a solution of

(3) #t) = Alt)z, + (¢, z,)

with initial value ¢ at t,, (to, @) €T, if and only if z satisfies the integral
equation

t
(6) z, = T(t, to)¢ + J Tt 5)Yog(s, zs)ds, t > to,

to

where the integral equation (6) is an integral equation in R" and is to be
interpreted as

z{0) = [T(t, 10)1(0) + f [T(t, 5)Yo](0)g(s, z)ds
to

for t >t,, —r <0 <0. For a derivation of (6), see [2-b; pp. 80-86].
Equation (6) is the counterpart of the classical variation-of-constants

formula for ordinary differential equations. A counterpart of the non-

-linear Alekseev formula will be developed in the next section.
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II1. Integral formula of Alekseev-Shanholt.

The following result, which we are going to state omitting the proof,
is due to Shanholt [7, Theorem 3]. It stabilishes a relationship between
the solutions of system (1) and the solutions of the perturbed system

() o) =@, y) + g, )

It is assumed that f(t,¢) has a continuous Fréchet derivative

% f(t, ¢) with respect to ¢ in T.

Corresponding to each solution x(t,, ¢) of (1), we can define a linear
functional differential equation

* i) = 2 (6%, 8)

which is called the linear variational equation of (1) with respect to x,(t,, ¢).
In what follows, the family of linear operators associated with (*) will be
denoted by T(t,ty: ), t > t,.

Let A, = {¢ € A : ¢(0) exists, is bounded, and is piecewise continuous
on [—r,0)}, and for each (ty, ¢) € I' let J = J(t,, ¢) be the maximal interval
of existence of x(tq, ®).

Theorem 1. If, for any (to, ¢)€(p, ) x A, J(to, ¢) = [to, 20), then

t

(8) yt(t09 d)) T xt(t01 d)) it J T(t, S 3ys(to, 4))) YO g(s, ys(to, ¢))ds

to

so long as (to, )€ (p, 00) X A, and t is in an interval in which y(ty, @) exists.

We will reffer to relation (8) as “Alekseev-Shanholt’s Integral Formu-
la”. It is indeed a generalization of the variation of constante formula.

IV. On the uniform stability of a perturbed non-linear system.

Theorem 4.1. Let us consider the system of functional differential equations
(1) X(t) = f(t, %)

where f : T — R" is continuous and suppose that the following conditions are
satisfied:

H,) There exists at least one bounded solution of system (1).
H,) For every a>0 there exists a constant N(a)> 0 such that if

| ¥ || < o, then || Tt to :9) || < N(@) for all t, t > to.
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H3) The Fréchet derivative o f(t, @) is continuous in T.

o9

Then, for any given ¢ > 0, there exists a constant K = K(c) such that
if || @] <c we have || x{to, d)|| <K for each t, to <t < 0.
More than that, any solution of (1) is uniformly stable in [tq, ).

Proof. Let a(ty, &) be a bounded solution of (1). Then there exists k> 0
such that || o(to,¢)|| <k for any t >¢,. Given ¢>0, let ¢ € A be such
that || ¢ || <c. Since ||&|| <k let a=sup {k,c}.

Let A={YeA:y=4-¢+(1—A)p,0<A<1} be a convex subset of A.
If ye A we have ||y | <o

From [7, Theorem 2],

| x,(to, @) — ato, &) || < %ll Tt :¥)| [ ¢—¢]|

Then hypothesis H, implies
©) || xto, ®) — 0,(to, &) || < N(@) || ¢—¢&]|| for all ¢ > ¢, and hence
| xdto, ) || <[l 0dto, O || + N@) [| ¢ =& <[l oo, )| +
+ N (o]l +[1¢]) <k + N@(c+k) = K = K(c).

Then x(t,, ¢) is bounded in the future

The uniform stability of o(t,, &) follows immediately from (9). Using
the same argument as above we can see that every solution x(ty, ¢) of (1)
is uniformly stable in [t4, ), completing the proof.

Theorem 4.2. Consider the systems of functional differential equations
(1) x(t) = f(t, x,)
) W) = f(6,3) + gt y)

where f,g : T = R" are continuous and the following hypotheses are satisfied:

H,) There exists at least one bounded solution of (1).
H,) For every o> 0 there exists a constant N(a)> 0 such that if

¥ | <o, then || T, to : W) || < N(@) for all t, t > t,.
Hs) For every o> 0, there exists a continuous function A(t,a)>0,

with J Mt, o)dt < o0, such that if|| ¢ || < o, then|| g(t, d) || < At, ).
0

d
¢

f(t, @) and 0, g(t, @) are continuous

o

H,) The Fréchet derivatives

inlk
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Then given ¢>0 and ¢ >0, there is a number T= T(g,c)>0 such
hat if €A with || ¢ || <c, the solutions of (7) are bounded in the future
md || y,(t, ) — x,(1, ) || <& for all t, t >1>T.

°roof. By using Theorem 4.1, hypotheses H,, H, and H, imply that for
iny given ¢ > 0, there is a constant K = K(c) such that if || ¢ || < ¢, then
|z, PAll g K- for.allt, 5600, % =ite!

From Alekseev-Shanholt’s Integral Formula it follows that

10} el )= ) J T, 5 234 (5; D) Yo 905, 7 (5, S

where || ¢ | <c.

We will show that there is a number T= T{(g, ¢) such that y(t, ¢) is
younded in the future for every 7 > T. From (10) it follows that

1) |pie &) <[ e 9| + j | TUt,s < yies D] - | s, e )| ds.

Suppose that y(t, ¢) is not bounded in the future. Let us take
VM = K + 1. Then there exists 11 n(t) such that | y{r, ¢)|| < M for all t,

1<) and ||yl 9)]| = _ |
It follows from hypothe51s H 53 that there is a continuous function

I(t, M) > 0, with (& A(t, M)dt < oo such that |g(t, y,(1, §))| < At, M) for

ll ¢ on [1,n(7)].
From hypothesis H, there exists a constant N(M)> 0 such that
| T(t, s : ys 2 (t, )| < N(M)for all ton [7,7(1)],  <s <t. We choose T; = Ty(c),

I <1, so that J AMt, M)dt <_(IT/I_) Then for all t€[7,n(1)] it follows
T

tom (11) that

| iz, @) || < K+ J“ N(M)A(s, M)ds < K + N(M) OO/l(s, M)ds < K +
1
+ N s =K+ 1=M

Thus ||y{z,¢)|| <M on [z,n(r)], a contradiction.
Then )(t, ¢) is bounded in the future.
From (10) we have that

(el ) = S| = f 50155 Dt ) = il s ) | s
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As || y{t, ¢)|| < M on [1, ), it follows from hypotheses H, and H,
that there exists a constant N(M)> 0 and a continuous function A(t, M) >0
satisfying & A(t, M)dt < co, such that || T(t, s : y(t, ¢))|| < N(M) and
| g(s, ys(t, §)) | < As, M) for all 1 <s <t Given any ¢> 0, choose
T= T c) > T, so that

B :
r NM)

| vz, §) — x{z, 9) || SJ N(M) - s, M)dsgN(M)jw As, M)ds <

Then we have

< NM) - —

(M )
Therefore

| iz, ¢) — x,(z,P)|| < & for all t, t >71>T>0.

The proof is complete

The next theorem is the main result of this work, in the sense that
we can guarantee uniform stability of each solution bounded in the future
of system (7). Onuchic, [6-b], got a similar result for linear perturbed
systems.

Theorem 4.3. Suppose systems (1) and (7) satisfy the same hypotheses as
in Theorem 4.2. Then any solution y(z, ¢) of (7), bounded in the future, is
uniformly stable in any interval [y, 0c0) contained in its maximal interval of
existence.

Proof. Let y(t, ¢) be any solution of (7) bounded in the future, and [y,
an interval contained in its maximal interval of existence. For some cons-
tant M and for ¢, y <t <0 we have || y(7,¢)|| <M.

Let us prove that for any given & 0 <eée <1, there exists o= d(e),
0 <o <gsuchthatifée Awith| &— ¢ | <9, lmply”y,(r P)—y(1, 8| <e
for all t, t>t>7.

We have

(12) ||ydz, ) =ydz. O || < || vz, @) — xdx, P)|| + || {7, &) — x(z, P)|| +
ne ” %Az, &) Lyl &) ”

As ||| <M <M+1, by using Theorem 4.2, with c=M + 1 we
can find T= T(¢/3, M + 1)>0 such that
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(13) || 72(z, @) — x.(z, @) || <% foralle, t>t>T

We havealso || ¢ — ¢ || <6 < 1. This implies || & f| < || || + 1 <M + 1.
By using Theorem 4.2 we have

(14) | ¥z, &) — x{z, &) || < % forall t, t>1>T.

From (13) it follows that || x{z, )| < | ydz. ®)|| +&/3<M+1 for
all t, t>1t>T

By using Theorem 4.1, with c=M + 1 and k=M, we can find a
number &= &(g/3, M, M+ 1)> 0, such that || £{—¢|| < implies

(15) || x4z, &) — xz, 9)|| < i3 for all t, t>t>T.
From (12), (13), (14) and (15) it follows that

| vdz, ) — ydz, &) || <%+i+ =¢foralt t>t>T

B
3 3
. Letustaket, y<t<T The solution y(t,, ¢) is continuous uniformly
in t, with respect to the initial value ¢ for any compact subset of I'[2-b].
Then we can find a 8, >0, 5, = 6,(5) = 5,(¢) < such that || E— ¢ || < I,
implies
| ydz. @) — ydz, &) <d<eforallt, y<t<t<T

Therefore

|&E—¢|| <0, implies
|| iz, @) — ydx,&)|| < & for all t, y<t<t<o0.

The proof is complete.

Remark. If we take A = A, we can delete hypothesis of continuity of the
Fréchet derivative, %g(t, ¢), in T". Thus, we can also delete the hypo-
thesis of unicity of the solutions of the perturbed system (7), if we restrict
ourselves to initial data ¢ in A,.
V. Application.

Suppose

T Bt j (= Oh(H(O)d0

where

e
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(i) h(x) is a scalar function of class C', —o0 < x < o0, satisfying,
h(0)> 0, x.h(x)>0 for x# 0, and

H(x)=J h(s)ds > o as | x| — o0
0

(ii) For 0<t<r, a(r)=0, a(t) >0, da(t) <0, a(t) >0 are continuous.
We consider the especial case of (1) given by

o 3

0
(16) x(t) =f(¢) = — J a(— O)h(x(t + 0))do =

= — jt a(t — uh(x(u))du.

=

Any solution of (16) satisfies

(17) x(t) + a(O)h(x(t)) = — J‘ a(t — wh(x(u))du
i f S
(18) X(t) + a(0)h(x(r)) = —a(r)l[ h(x(t + 0))d6 +

0 0
+ J a(—o) (j h(x(t + u))du) do.

Equation (17) is the model of a special type of circulating fuel nuclear
reactor, as well as can also serve as a one-dimensional model in viscoelas-
ticity.

If we define V:C— R by the relation

0 0 .
@ ver=HeO) -5 [ a0 | | wos [a

]

then the derivative of V along solutions of (16) is given by

y 1 ° 2 o 0 2
=y [ mooao| -5 [ s [ g [a

Since the hypotheses on a(t) and

0 2 0 2
[J h(¢(0))d0] >0, [ j h(¢(s))ds:| >0

imply that V(¢)<O0.
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If u(x)=min{H(x), H(—x)}, 0 <x < oo, then u(x) is continuous,
u(0)=0, u(x)> 0 for x>0 and u(x)— oo with x—o00. We can see also that

V(¢) = H($(0)) = min{H( $(0) ), H(—|$(0)])} = u(| $(0) ).

Therefore from Onuchic [6-c; p. 43, Thm. 2] it follows that all solu-
tions of (16) are bounded in the future.

We will show now that the hypothesis of Theorem 4.1 are satisfied.

Since f(t,0)=0, x(t)=0 is a bounded solution of (16) and (H,) is
satisfied, (H ;) follows from the fact that h(x) € C* and the hypothesis on a(t).

To show that (H,) is satisfied, we do as follows.

Since equation (16) satisfies (i) and (ii), from corollary 5[2-a] it follows
that the solution x=0 of (16) is globally asymptotically stable. From
theorem 4 [3] this solution is globally uniformly asymptotically stable.
Thus, we have that:

(*) for every a >0 there exist a(x) >0 and A(x)> 0 such that if
| ¢|| <o then || x,(to, ¢)|| < a(w) for all ¢ on [to,to + A(x)].

Let us consider the variational system of (16) relatively the solution

X,(to, @),
0
(20) u(®) = F(t, x)u, = — j a(— O)h(x(t + O)u(t + 0)do.

=

Let us show that the solutions of (20) are uniformly bounded.
We have that

IF(t,¢)ISJ

=i

0

0
a(—0) | h(¢(0)) | dO < b(x) J a(—0)do,

where b(o) = Sup | h(&(0)) .

0
From (ii) we have j a(—0)df < k,. Then, if ||¢|| <o we have
| F(t, ¢)| < b(a), where b(a) = b(x). k; for all t on (ty, }).
By using (*) we have that |i(s)| < b(a(®)) - || || for all ¢ on

[to, to + A(@)].
Integrating the last inequality and using Gronwall’s Inequality we
obtain

|| “:(to’ ¢) H < ebla@)t=to) H ¢ “ < eba@A@® o ﬂ_(oc).
Therefore,

(@ || ulto, ) || < Bl for all ¢ on [tg,to+ A(x)] provided || ¢ < o
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We consider now t >ty + A(x).

The origin, in system (16), is a globally asymptotically stable equili-
brium point. Since h(0) > 0, from corollary 5[2-a] the solution u= 0 of
the linear variational equation

ut) = — Jv a(—0) h(0) u(t + 0)do

is globally asymptotically stable. Therefore the solution u =0 of (20) is

globally asymptotically stable, i.e., given « > 0 and for every ¢ > 0, there

exists A(g, o) > 0 such that if || ¢|| < «, then | u,(to, $)|| < & for all ¢,

>ty + Ale, ). »
Therefore,

(IT) For every a >0 there exist e>0 and A = A(e, «) such that if

| ¢ || <o implies || u,(to, @[ < ¢ for all t, t >t,+ A.

In fact:

a) If A(e,x) < A(«) the assertion (II) is correct.
b) If A(e, o) > A(a), we can repeat the same argument in (I) for the interval
[A(x), A(e, )] and then the assertion (II) is also true.

From (I) and (II) we have that, for every a >0 therc exists f(a) =
=max{f(a), ¢} such that if | @] <o, then | u,to, #)||< B for all t,
t >1t,, i.e, the solutions of (20) are uniformly bounded.

We also know that

utg, @) = T(t,to 1Y) for all ¢, t >t,.

Let us consider ¢, Y € C such that || ¢ || <o and || ¢ || < o. Then, we
have || T(t,t0 1Y) || = || u,(to, 9) || < B(2) for all ¢, t > t,.

Since T(t,t, :¥) is a linear operator, by using the Uniformly Boun-
dedness Principle, there exists a constant N(x)> 0 such that

| Tt to :¥)|| < N(w) for all ¢, t > t,.

Therefore, for every a > 0 there exists a constant N(x)> 0 such that
if ||y <o then || T(t,t, : )| < N(x) for all ¢, t>t,.

Thus the hypothesis H, of the Theorem 4.1 is satisfied. Therefore any
solution of (16) is uniformly stable.

Let g(t, y,) be a perturbation of system (16) satisfying the hypothesis
Hj; of the theorem 4.2. Then, by Theorem 4.3, every solution, bounded in
the future, of the perturbed system is uniformly stable.
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