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On surfaces of right helicoid type in H?

Hiroshi Mori

1. Introduction.

In a recent paper [3], we have constructed a family of complete
minimal surfaces of revolution in the hyperbolic 3-space H? of constant
sectional curvature —1, which are the first examples of such surfaces
in H? other than the trivial ones H?, the hyperbolic 2-planes, and showed
that some of them are globally stable (cf. [1]).

In this paper, we shall construct a family of complete surfaces
M, (a = 0) of right helicoid type in H> and show that for 0 <a <3 \/5/4,
M, are globally stable, and for a >./(1057)/8, M, are not globally stable.

2. On surfaces of right helicoid type in H3.

It is known (see [2]) that the hyperbolic 3-space H*> of constant
sectional curvature -—1 is realized in the Lorentz 4-space L* as a
hypersurface:

HY = e Lty O a0 5 2 1}

where (,) is a non-degenerate symmetric bilinear form defined by
(X, YY) = —X1¥1 + Xay2 + ... +X4¥4, for x,y in L*
It is easily shown that the curve y defined by

- y(s) = (cosh s, 0, sinh s, 0), seR,

is a complete geodesic in H® parametrized by arc-length, where R is
the set of all real numbers. For any C? function 6 = 0(t), t € J, an open
interval of R, the C?> mapping f from the product space J x R into H>,

f (s, t) = (cosh s cosh t, cosh s sinh ¢, sinh s cos 6(t), sinh s sin 6(t)),

defines a-surface M of right conoid type in H* by screwing y. It can be
easily shown that the first fundamental form I of f is

L I = ds* + (cosh?s + sinh2s §'(t)?)dt>.
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And it is easily checked that N(s,t)= ((cosh?s + sinhZs @’ (1)*)~'/? x
x (sinh s sinh ¢ '(t), sinh s cosh ¢ 0'(t), cosh s sin 6(t), — cosh s cos 0(t)) is
a field of unit normal vectores along f and that the second fundamental
form II of f is

. 1
(2)  II= —(cosh?s+ sinh?s 0()%)~ 1220/ (1)ds dt + — sinh 250 (1)dr?).

From (1) and (2) it follows that f is an immersion, and that f is a minimal
immersion (i.¢., M is said to be a right helicoid in H?) if and only if on
the interval J, the following holds.

3) 0'(t) = 0.
A general solution of (3) is represented as
4) 0(t) = at + b, a, b : constants.

From (4) it is obvious that J, the domain of definition of the function
0(t), can be extended to R. Rotating the surface M around the x,, x,
— plane and reversing the orientation of the x, — axis if necessary, we
may assume that

(5) a=20,b=0.

Conversely, for each non-negative constant a, we see that the surface
M, defined by the one — one, analytic mapping f : R x R— H?,

(6)  f(s,t) = (cosh s cosh t, cosh s sinh ¢, sinh s cos at, sinh s cos ar)

is a complete minimal surface in H>. Thus we have the following result.

Theorem 1. For each nonnegative constant a, the one —one analytic
mapping f : R x R— H? defined by (6), defines a complete minimal surface
M, in H>.

3. On the stability of the minimal surfaces- M, in H3.

At first, we recall the definition of the stability. Let f : M — H?® be
a C* minimal immersion of an oriented, connected 2-manifold M into
H?. A domain D on M with compact closure is stable if the second va-
riation of the induced area of D is nonnegative for all variations that
leave the boundary JD of D fixed. The immersion f is stable (or M is
globally stable) if every such domain is stable. The purpose of this section
is to prove the following results.
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Theorem 2. Let M,(a=0) be as in Theorem 1.
(i) For a<3./2/4, M, is globally stable.

(ii) For a=/(1057)/8, M, is not globally stable (i.e., there is an unstable,
relatively compact domain D on M,).

To prove this Theorem we shall prepare some lemmas.

Lemma 1. Let M, be as in Theorem 1 and D a relatively compact domain
on M,. Then the first eigenvalue 1,(D) of D with respect to the Laplace-

-Beltrami operator of M, satisfies that
i 1
/"I(D) = ? :

Proof. Since M, is analytic diffeomorphic to the Euclidean plane R?,
for a given domain D on M,, there exists a domain D' on M, which is
simply connected and in which the closure of D is contained. From this
it follows that

(7) 44(D) > 24 (D),

where 4,(D’) is the corresponding eigenvalue of D'. And from the equation
of Gauss and the fact that M, is minimally embedded in H?, the Gaussian
curvature K of M, satisfies that

8) K=< —1,
From Mckean’s theorem (see [4]) together with (8) it follows that

1
9 L (D)= —.
9) i(D) 2 4
Combining (7) and (9) completes the proof.
Lemma 2 (see [3]). Let M and f : M — H? be as above, and D a domain
on M. Then for a normal variation with variable vector field uN, ue C” (D),
u| D=0, the second variation of area is given by

A"<o>=j [[Vul = (|| BI? - 2)u?]av
D

> j [ia(D) + 2 — || BI* u2dV,
o

where N is a field of unit normal vectors along f, D is the closure of D and
we used the Rayleigh characterization of Ai,(D).
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Remark. The restriction to normral variations is not essential. In fact,
using the equation of Codazzi, Y. Ogawa has shown that for a variation
with variable vector field uN + vX,ve C®(D), v ! ¢D=0, the second
variation of area is equal to the one of this Lemma, where X is a C* field
of unit tangent vectors along f.

We now compute the length of the second fundamental form || B|.
From the minimality of M, in H? together with (1), (2) and (4) it follows
that

| BI|* (s, t) = 2a* (cosh? s + a? sinh? 5)™2.

Thus we have the inequality
| BII* (s,1) < 2a®,  for s,t in R

Combining this estimate of || B|| ‘with Lemmas 1 and 2 completes the
proof of Theorem 2, (i).

We shall now prove the assertion of Theorem 2, (ii). To do this we
use the following result.

Lemma 3 (see [1]). Let M be a stable, complete minimal surface in H>.
For a fixed point p, we denote by B, the open geodesic ball in M with center
p and radius r. Assume that

r— oo

lim J IBI2dV/r? =0

' 3

Then we have that

r— oo

limsupj | BII*(]| BII* — 6)dV < 0.
B

i

We apply this Lemma to our surface M,, which may be identified
with R? by (6). It follows from (1), (4) and (5) that

) dV = (cosh® s + a” sinh? 5)'/2 ds A dt.
Setting p to be the origin we have that for each positive r,

B, = D,: = {(t,s)e R*;

s| <r, |t] £ r(cosh?s + a* sinh?5)” 172,

From this together with*(9) it can be easily shown that the assumption
of Lemma 3 is satisfied for M,. Defining the function ®(a) of a by

(10) ®(a)= J [a*(cosh®s + a* sinh?s)~* — 3(cosh?s + a?sinh?s) 2] ds,
0
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and taking contrapositive of Lemma 3 together with (9) we see that the:
minimal surface M, is not stable if ®(a) is positive. We now estimate
®(a) from below. By the change of variable, u = sinh s, it follows that

(11) (D(a) -~ azj (uz L[ a2u2)—4(u2 L 1)—1/2 At —

0
- 3J W+ 1+a?®) 2@+ 1) Pdu=1,+1,,
0

where I, (resp. I) is the first term (resp. the second term) of the right
hand side of (11). Since — (u®> + 1)"'> > —1 for all non-negative u, we

-have the following inequality.

Is = = 34a” 4+ 1)‘2J [ + @+ 1)1} 2 du=
0
(12)
= — %n(az 4 1y
On the other hand, by the change of variable, v = (a*> + 1)u* + 1,
we have the following inequality

e8]

IL=d J v *[(@® + V(v + az)]”%(a2 + )72 — 1)"2dp 2

1
©

> az%(az + 1)—1/2J vlg/z(v B 1)_1/2dv,

1

(13)

by virtue of (a* + 1)/(v+a*)=v ™! for all v= 1. Finally, by the change
of variable, (v — 1)}/ = w, it follows that

J v — 1) 2dy = ZJ (wW? + 1)"°2dw =
1 0
(14) 6 4 2 (° , 32
=2— — — 12 Pdw =—.
2753L(W+) dw 35
Putting (12), (13) and (14) into (11) we have the following estimate:
1 3n .
®(a) > <—3%a2 - T’”)(a2 8
From this it follows that

D(a) > 0 if a = /(1057)/8.
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Combining this inequality with Lemma 3 completes the proof of Theorem
2, (ii).

Remark. It can also be shown (cf. [1]) that for
1/2 < a < (1/2)(1 + 57/96)/(1 — 57/96) = 0.69....

the complete, minimal surfaces M, in H* obtained in [3] are not globally
stable.
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